JPH11133196A - Electron beam irradiating device - Google Patents

Electron beam irradiating device

Info

Publication number
JPH11133196A
JPH11133196A JP9311205A JP31120597A JPH11133196A JP H11133196 A JPH11133196 A JP H11133196A JP 9311205 A JP9311205 A JP 9311205A JP 31120597 A JP31120597 A JP 31120597A JP H11133196 A JPH11133196 A JP H11133196A
Authority
JP
Japan
Prior art keywords
electron beam
mask
irradiation
tip
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9311205A
Other languages
Japanese (ja)
Other versions
JP3787993B2 (en
Inventor
Yoshiaki Adachi
義明 足立
Toshiro Nishikimi
敏朗 錦見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP31120597A priority Critical patent/JP3787993B2/en
Publication of JPH11133196A publication Critical patent/JPH11133196A/en
Application granted granted Critical
Publication of JP3787993B2 publication Critical patent/JP3787993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sharpen the change of beam distribution and to prevent the sag of electron beam irradiation by providing a beam mask having a tapered inclined face at the tip on both or one side between a window foil and a processed object, and conforming it to the boundary between an unnecessary portion and a necessary portion of electron beam irradiation. SOLUTION: A quadrilateral frame-shaped window 14 is put on a flange 11 at the lower end of a vacuum chamber 1, and a foil presser plate 12 is fixed. Four peripheries of a window foil 6 are pinched between the window 14 and the presser plate 12. A beam mask 9 having parallel planes is provided reciprocatably and vertically movably in the direction perpendicular to an electron beam 5. It is important that the tip 10 of the beam mask 9 is inclined, and the inclination angle is set to about 30-60 deg., about 45 deg. is optimum, and its thickness is set to about 5-30 mm to interrupt the electron beam 5. Since the beam mask reciprocatable perpendicularly to the advancing direction of a processed object is provided, the processed object having the narrow-width portion requiring electron irradiation can be irradiated. The tip of the beam mask 9 is tapered, thus the change of beam distribution is sharp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子線を被処理
物に照射して化学反応などを促進する電子線照射装置に
おいてマスクの端部におけるビームの切れをより鋭くす
るビーム端部改善に関するものである。電子線照射装置
というのは真空中で電子を発生し、これを加速し照射窓
の窓箔を通して大気中に取りだしこれを被照射物に当て
るものである。高分子の架橋反応を促進し、電線被覆の
耐熱性の向上、発泡ポリエチレンの品質向上、自動車用
タイヤの品質改善、包装用フィルムの改質、凹版印刷、
粘着剤、転写フィルムなどにも使われる。更にまた医療
用機具などの滅菌殺菌に用いられる。加速エネルギーは
200keV〜5MeVと広範囲に渡る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam irradiation apparatus for irradiating an object to be processed with an electron beam to promote a chemical reaction and the like, and to an improvement in a beam end portion which sharpens a beam at an end portion of a mask. It is. The electron beam irradiator generates electrons in a vacuum, accelerates the electrons, extracts the electrons through the window foil of the irradiation window into the atmosphere, and irradiates the objects to be irradiated. Accelerates the crosslinking reaction of the polymer, improves the heat resistance of the wire coating, improves the quality of foamed polyethylene, improves the quality of automobile tires, modifies the packaging film, intaglio printing,
It is also used for adhesives and transfer films. Furthermore, it is used for sterilization and sterilization of medical equipment and the like. The acceleration energy ranges from 200 keV to 5 MeV.

【0002】[0002]

【従来の技術】電子線照射装置には走査型と非走査型の
ものがある。走査型はエネルギーが高くて細いビームを
左右に振って被処理物の全面に電子線が当たるようにす
るものである。非走査型は平行な複数本のフィラメント
から熱電子を発生させ初めから広い断面積のビームを作
り出すものである。これを一方向に一様に加速して被処
理物に照射するようになっている。非走査型のものはエ
リア型とも呼ぶ。走査機構がないのでフィラメントのす
ぐ近くに照射窓がありここに窓箔が張ってある。窓箔の
外は大気圧である。ここには搬送装置がある。搬送コン
ベヤによって被処理物が入口から照射窓の下を通って出
口まで運ばれる。照射窓の直下で電子線を受けて架橋反
応、殺菌作用などの処理を受ける。
2. Description of the Related Art There are a scanning type and a non-scanning type electron beam irradiation apparatus. In the scanning type, a narrow beam having a high energy is swung right and left so that an electron beam hits the entire surface of the object to be processed. The non-scanning type generates thermoelectrons from a plurality of parallel filaments to create a beam having a wide cross-sectional area from the beginning. This is uniformly accelerated in one direction to irradiate the workpiece. A non-scan type is also called an area type. Since there is no scanning mechanism, there is an irradiation window in the immediate vicinity of the filament, and here the window foil is stretched. The outside of the window foil is at atmospheric pressure. Here is the transport device. An object to be processed is carried from the entrance to the exit by passing through the conveyor below the irradiation window. It receives an electron beam immediately below the irradiation window and undergoes processing such as a crosslinking reaction and a bactericidal action.

【0003】本発明は非走査型の電子線照射装置の改良
に関する。ビームの断面積が広ければ大型の被処理物の
電子線照射処理ができる。しかし断面積が広いと電流が
増えパワーも大きくなるから電力費が増大する。コンベ
ヤの搬送方向をx方向、電子線の方向をz方向とする。
図5にフィラメント、被処理物の概略の関係を示す。フ
ィラメントは複数本のW線などを平行に設けたものであ
る。並列接続のこともあり蛇行させて直列に接続するこ
ともある。フィラメントはxy面に平行な広がりを持っ
ている。フィラメントのxy面の広がりにより電子線ビ
ームはX×Yの面積をもつとする。搬送方向がx方向で
あるから、ビーム断面積の奥行きXはビーム照射量を規
定する。ビーム断面積の横方向の広がり(幅)Yは、被
処理物の幅Bより僅かに大きければ良い(Y>B)。通
常はフィラメントから発生した電子を窓に向けて加速し
そのまま窓箔を通し被処理物に当てる。ビーム幅Yが被
処理物の幅Bより大きい場合、(Y−B)の部分のビー
ムは搬送装置に当たることになり無駄である。無駄であ
るが別段差し支えない事である。被処理物の全面を覆う
ように電子線ビームが当たれば良いのである。
The present invention relates to an improvement in a non-scanning type electron beam irradiation device. If the cross-sectional area of the beam is large, a large object can be irradiated with an electron beam. However, when the cross-sectional area is large, the current increases and the power also increases, so that the power cost increases. The conveying direction of the conveyor is the x direction, and the direction of the electron beam is the z direction.
FIG. 5 shows a schematic relationship between the filament and the object to be processed. The filament has a plurality of W lines provided in parallel. They may be connected in parallel or meandered and connected in series. The filament has a spread parallel to the xy plane. It is assumed that the electron beam has an area of X × Y due to the spread of the xy plane of the filament. Since the transport direction is the x direction, the depth X of the beam cross-sectional area defines the beam irradiation amount. The lateral spread (width) Y of the beam cross-sectional area may be slightly larger than the width B of the object to be processed (Y> B). Usually, electrons generated from the filament are accelerated toward the window, and are directly passed through the window foil to strike the object to be processed. If the beam width Y is larger than the width B of the object to be processed, the beam in the portion of (Y-B) hits the transport device and is useless. Although it is useless, there is no problem. It suffices if the electron beam is applied so as to cover the entire surface of the object.

【0004】[0004]

【発明が解決しようとする課題】ところが被処理物の大
部分には電子ビームを当てて処理したいが、端の部分に
は電子ビームを当てたくないという場合が希にある。図
6にそのような場合のフィラメント、被処理物の関係を
示す。つまり被処理物Wの中央部S0 は電子線処理が必
要であり、両端部S1 、S2 には電子線を当てたくない
という場合である。このようなことはあまりないが、ご
くたまにあることである。この場合、S1、S0 、S2
がy方向に並ぶようにコンベヤに置いて、幅Qの部分S
0 だけに電子線を当てるようにすれば良い。そのために
は走査型の場合は走査幅を減らしてやれば良い。しかし
非走査型の場合は簡単でない。フィラメントの広がりに
よってX×Yの断面積の広いビームが発生するので、幅
Yの全体にビームが出る。被処理物の幅Bのうち(B<
Y)、真中のQにだけビームを当てるという訳にはゆか
ない。その場合はフィラメントを交換してビーム断面積
がX×Qのより小型のフィラメントを採用するというこ
とが考えられる。フィラメントを交換するのは局所照射
に有効であろう。しかしそのような小型のフィラメント
が常にあるとは限らない。また交換に時間が掛かる。こ
れまで使ってきたX×Yの既設のフィラメントによって
幅Qだけ局所照射したいものである。
However, there are rare cases where it is desired to treat most of the object by applying an electron beam, but not to apply an electron beam to an end portion. FIG. 6 shows the relationship between the filament and the workpiece in such a case. That central portion S 0 of the workpiece W is required electron beam treatment, the both end portions S 1, S 2 is the case do not want against the electron beam. This is rare, but only occasionally. In this case, S 1 , S 0 , S 2
Are placed on the conveyor so that
It suffices to apply an electron beam only to 0 . For that purpose, in the case of the scanning type, the scanning width may be reduced. However, it is not easy in the case of the non-scan type. Since a beam having a wide X × Y cross-sectional area is generated by the spread of the filament, the beam is emitted over the entire width Y. Of the width B of the workpiece, (B <
Y), it cannot be said that the beam is focused only on the middle Q. In that case, it is conceivable that the filament is replaced and a smaller filament having a beam cross-sectional area of X × Q is used. Changing filaments may be effective for local irradiation. However, such small filaments are not always present. In addition, it takes time to exchange. It is desired to locally irradiate only the width Q by using the existing X × Y filaments used so far.

【0005】これまでそのような局所照射の要求がなか
ったので解決手段が検討される事はなかった。本発明
は、非走査型電子線照射装置において、両端部または片
端部に電子線を照射してはいけない被処理物を処理する
場合に、端部の電子線ビームを遮断できるようにした工
夫を与える事を目的とする。単に端部の電子線ビームを
遮断するだけでなく、ビーム分布の変化を鋭くして電子
線照射のダレがないようにした電子線照射装置を提供す
る。
Until now, there has been no request for such local irradiation, and no solution has been considered. The present invention provides a non-scanning type electron beam irradiation device, in which, when processing an object to be processed which is not to be irradiated with an electron beam at both ends or one end, an electron beam at the end can be cut off. The purpose is to give. Provided is an electron beam irradiation apparatus which not only blocks an electron beam at an end but also sharpens a change in beam distribution so as to prevent sagging of electron beam irradiation.

【0006】[0006]

【課題を解決するための手段】真空中で縦横方向に広が
ったフィラメントによって縦横方向に広がった断面積を
持つ電子線を発生させ、加速して窓箔を通して大気中に
取りだし、大気中で搬送装置によって一方向に搬送され
る被処理物に電子線を照射するようにした電子線照射装
置において、窓箔と被処理物の間に、搬送方向に対して
直角に進退自在で先端に先細りの傾斜面を有するビーム
マスクを両側或いは一方に設置し、ビームマスク先端を
被処理物の電子線照射を不要とする部分と、電子線照射
を必要とする部分の境界に合わせることによって、被処
理物に対して局所的に電子線照射するようにした。
Means for Solving the Problems An electron beam having a cross-sectional area expanded in the vertical and horizontal directions is generated by a filament expanded in the vertical and horizontal directions in a vacuum, accelerated and taken out to the atmosphere through a window foil, and then transported in the air. In an electron beam irradiation device that irradiates an object to be processed conveyed in one direction with an electron beam, a taper is formed between the window foil and the object to be processed so that it can move back and forth at right angles to the direction of conveyance and tapers to the tip. A beam mask having a surface is installed on both sides or one side, and the tip of the beam mask is aligned with the boundary between the part of the object that does not require electron beam irradiation and the part of the object that requires electron beam irradiation. On the other hand, electron beam irradiation was performed locally.

【0007】ビームマスクの先端が先細りであるという
点が重要である。もしもビームマスク先端が水平面と直
角であって太いものであると端部でのビームの広がりが
ブロードになって、S0 に当たるべき電子ビームのロス
が増える。またS1 、S2 など電子線を当ててはいけな
い部分にも電子線が当たってしまう。
It is important that the tip of the beam mask is tapered. If the beam mask tip becomes spread of the beam is broad at the end those thick a right angle with the horizontal plane, the loss of the electron beam to strike the S 0 is increased. In addition, the electron beam is also applied to a portion where the electron beam should not be applied, such as S 1 and S 2 .

【0008】[0008]

【発明の実施の形態】被処理物の中央部S0 に電子線を
当て、両端S1 、S2 または片端S1 に電子線を当てて
はいけない部位があるとすると、搬送方向に対して直角
な方向に移動できるビームマスクを両側、または片側に
設ければ良い。ビームマスクの先端がテーパー状になっ
ているので電子線照射分布の切れが良い。単にビームマ
スクを付けるというだけでなくて、先端を傾斜状に形成
しているので電子線分布の切れがよい。
Against an electron beam in the central portion S 0 of the DETAILED DESCRIPTION OF THE INVENTION The object to be processed, when there are sites do not hit the electron beam across S 1, S 2 or one end S 1, to the transport direction What is necessary is just to provide the beam mask which can be moved in a perpendicular direction on both sides or one side. Since the tip of the beam mask is tapered, the distribution of the electron beam irradiation is good. In addition to simply attaching a beam mask, the tip is formed in an inclined shape, so that the electron beam distribution is cut easily.

【0009】図1は本発明の実施例を示す側断面図であ
る。図2は正面断面図である。これは非走査型の電子線
照射装置である。非走査型(エリヤ型)真空チャンバ1
の内部にはフィラメント2がありここから熱電子5が出
るようになっている。真空チャンバ1の下端は開口にな
っており閉じられた筐体3の開口部につながっている。
筐体3の下方は大気圧であり真空チャンバ1の内部は真
空である。その境の開口が照射窓4である。チャンバ1
の真空を維持するために照射窓には窓箔6が張られてい
る。
FIG. 1 is a side sectional view showing an embodiment of the present invention. FIG. 2 is a front sectional view. This is a non-scanning type electron beam irradiation device. Non-scan type (area type) vacuum chamber 1
Is provided with a filament 2 from which thermoelectrons 5 are emitted. The lower end of the vacuum chamber 1 is open and is connected to the opening of the closed housing 3.
The lower part of the housing 3 is at atmospheric pressure, and the inside of the vacuum chamber 1 is at a vacuum. The opening at the boundary is the irradiation window 4. Chamber 1
A window foil 6 is stretched over the irradiation window in order to maintain a vacuum.

【0010】窓箔6はAl、Tiの箔であり長方形状で
開口フランジと窓箔押さえの間に固定される。照射窓4
の直下には搬送コンベヤ7があり被処理物8を搬送して
いる。搬送方向をx方向とする。電子線5の方向をz方
向とする。被処理物8のコンベヤ7での横方向の広がり
がy方向である。被処理物8の中央部S0 のみが電子線
照射を必要とする。両端S1 ,S2 は電子線被爆しては
ならない部分である。その境界が、ビームマスク9の先
端に合わしてある。
The window foil 6 is a foil of Al or Ti and is rectangular and fixed between the opening flange and the window foil holder. Irradiation window 4
A transport conveyor 7 is provided directly below the workpiece 8 to transport the workpiece 8. The transport direction is the x direction. Let the direction of the electron beam 5 be the z direction. The horizontal spread of the workpiece 8 on the conveyor 7 is the y direction. Only the central portion S 0 of the workpiece 8 requires an electron beam irradiation. Both ends S 1 and S 2 are parts that must not be exposed to electron beams. The boundary is aligned with the tip of the beam mask 9.

【0011】照射窓から出た電子線5がビームマスク9
によって制限され、被処理物8の中央のS0 に当たり電
子線処理をする。つぎつぎと被処理物が処理されてい
く。本発明の特徴は、照射窓と被処理物の間の位置に進
退自在にビームマスク9を設けたところにある。ビーム
マスク9はx方向には十分な広さを持ち、搬送方向と直
角のy方向には進退自在である。しかも先端が傾斜面1
0になっている。これが重要である。両側にビームマス
ク9がありこれが同時に反対方向に進退するようにすれ
ば、電子線5の照射域を広くしたり狭くしたりすること
ができる。これは両側にあるので両開きビームマスクに
なる。しかし、搬送経路の片側だけに設ける事もでき
る。その場合は片開きビームマスクとなる。電子線が直
進するならビームマスクの先端に被処理物のS0 /S1
の境界、S0 /S2 の境界を単に合わせるだけでよい。
しかし実際には電子線は直進しないので回り込みがあ
る。
The electron beam 5 emitted from the irradiation window is applied to a beam mask 9.
, And hits the center S 0 of the object 8 to perform electron beam processing. The objects to be processed are processed one after another. A feature of the present invention resides in that a beam mask 9 is provided at a position between an irradiation window and an object to be processed so as to be able to move forward and backward. The beam mask 9 has a sufficient size in the x direction, and is movable back and forth in the y direction perpendicular to the transport direction. Moreover, the tip is inclined surface 1
It is 0. This is important. If the beam masks 9 are provided on both sides and are simultaneously moved in the opposite directions, the irradiation area of the electron beam 5 can be widened or narrowed. This is a double-sided beam mask because it is on both sides. However, it can also be provided on only one side of the transport path. In that case, a one-sided beam mask is used. S of the object at the tip of the beam the mask if an electron beam is straight 0 / S 1
And the boundary of S 0 / S 2 may be simply adjusted.
However, since the electron beam does not travel straight, there is a wraparound.

【0012】図4に片側だけの拡大断面図をしめす。真
空チャンバ1の下端のフランジ11に、四辺形枠状のウ
インドウ14があてがわれ、さらに箔押え板12が固定
される。ウインドウ14と箔押さえ板12との間に窓箔
6の四周が挟み込まれている。箔押え板12とフランジ
11は多数のボルト(図示しない)によって締結されて
いる。電子線5と直角の方向に平行な面をもつビームマ
スク9が、照射窓4の直下にy方向(搬送方向と直角)
に進退自在、z方向に昇降自在に設けられる。一点鎖線
が被処理物の高さである。ビームマスクと被処理物間隔
のz方向の調節幅hは5〜8ミリである。ビームマスク
9のy方向の調節幅kは照射窓開口の全幅Qの半分Q/
2以下の適当な値とする(k≦Q/2)。
FIG. 4 is an enlarged sectional view of only one side. A rectangular frame-shaped window 14 is applied to a flange 11 at the lower end of the vacuum chamber 1, and a foil presser plate 12 is further fixed. Four rounds of the window foil 6 are sandwiched between the window 14 and the foil holding plate 12. The foil holding plate 12 and the flange 11 are fastened by a number of bolts (not shown). A beam mask 9 having a surface parallel to a direction perpendicular to the electron beam 5 is provided directly below the irradiation window 4 in the y direction (perpendicular to the transport direction).
And can be moved up and down in the z direction. The dashed line is the height of the object. The adjustment width h of the distance between the beam mask and the object to be processed in the z direction is 5 to 8 mm. The adjustment width k of the beam mask 9 in the y direction is a half Q / of the total width Q of the irradiation window opening.
An appropriate value of 2 or less (k ≦ Q / 2).

【0013】y方向の進退はボルトをゆるめて手動でビ
ームマスクを動かすようにしても良いし、電動器と減速
機を組み合わせて自動的に行うようにしても良い。縦方
向の調節は調整ボルトを廻す事によって行っても良いし
電動器と減速機によって自動的に行っても良い。図4に
おいてビームマスク10の端部のy座標が小さいと開口
部が狭い。S0 の幅の狭い被処理物の処理に適する。ビ
ームマスクの端部のy座標を増やすと開口部が広がるの
で、S0 の幅の広い被処理物の処理に適する。端部y座
標の大きさは被処理物のS0 の幅によって適当に決め
る。
The forward / backward movement in the y direction may be performed by manually loosening the bolt to move the beam mask, or automatically by combining a motor and a speed reducer. The adjustment in the vertical direction may be performed by turning an adjustment bolt, or may be automatically performed by a motor and a speed reducer. In FIG. 4, when the y coordinate of the end of the beam mask 10 is small, the opening is narrow. Suitable processing narrow object to be processed having width of S 0. Since the opening is widened by increasing the y-coordinate of the end portion of the beam mask, suitable for processing a wide object to be processed having width of S 0. The size of the end y coordinate suitably determined by the width of the S 0 of the object.

【0014】ビームマスク9の先端10が傾斜している
事が重要であり、傾斜角は30゜〜60゜の程度とす
る。45゜が最適である。ビームマスクの厚みは電子線
を遮断できる厚みであれば任意である。5mm〜30m
m程度である。ここでは例えば20mmの厚みのステン
レス板をビームマスクとする。ビームマスク9がどうし
て先端が傾斜面10となっているのか、その理由を述べ
る。
It is important that the tip 10 of the beam mask 9 is inclined, and the inclination angle is set to about 30 ° to 60 °. 45 ° is optimal. The thickness of the beam mask is arbitrary as long as it can block an electron beam. 5mm-30m
m. Here, a stainless steel plate having a thickness of, for example, 20 mm is used as the beam mask. The reason why the tip of the beam mask 9 is the inclined surface 10 will be described.

【0015】本発明者は初め図3に示すような端部20
が面に直交するようなビームマスク19を作製した。す
ると被処理物面での電子線照射量がグラフにしめすよう
にビームマスクの端部においてなだらかな裾を引く事が
分かった。直角面20のy座標をfとすると、それより
内側のg点から既に電子線照射量が低下し始める。fよ
り外側においても電子線量は0にならずe点まで徐々に
減衰する。被処理物の中央部の必要部分S0 には一様な
密度で電子線を照射する必要がある。端のS1、S2
は電子線を当てないようにする必要がある。ために被処
理物7のS0 /S1 の境界をf点に合わせる。
The inventor has initially determined that the end 20 shown in FIG.
The beam mask 19 was manufactured such that the direction was perpendicular to the plane. Then, it was found that the amount of electron beam irradiation on the surface of the object to be processed had a gentle tail at the end of the beam mask as shown in the graph. Assuming that the y coordinate of the right-angled surface 20 is f, the electron beam irradiation amount starts to decrease from point g inside the y coordinate. Even outside of f, the electron dose does not become 0 but gradually attenuates to point e. The necessary portion S 0 of the central portion of the workpiece is necessary to irradiate an electron beam in a uniform density. It is necessary to prevent electron beams from being applied to the ends S 1 and S 2 . For this purpose, the boundary of S 0 / S 1 of the workpiece 7 is set to the point f.

【0016】f点に被処理物境界S0 /S1 を合わせた
としてもe〜gの広い範囲に落ちる電子線がある。電子
線照射してはいけない部分にe〜fの電子線が当たって
いるので好ましくない。反対にfg間では電子線の密度
が低下している。両方とも好ましくない。これを端部ロ
スと呼ぶ事にする。このような電子線分布の減衰幅Dは
15mm〜20mmにもなる。ビームマスク19を下げ
て被処理物に接近させるとefが短くなるが被処理物と
衝突してはいけないからビームマスク19をあまり接近
させることができない。どうしてこのようなテイルを引
くのか?これが問題である。
Even if the object boundary S 0 / S 1 is adjusted to the point f, there is an electron beam which falls in a wide range from e to g. It is not preferable because the electron beams e to f hit portions where the electron beam should not be irradiated. Conversely, the density of the electron beam decreases between fg. Both are not preferred. This will be referred to as end loss. The attenuation width D of such an electron beam distribution is as large as 15 mm to 20 mm. When the beam mask 19 is lowered to approach the object, ef is shortened, but the beam mask 19 cannot be approached too much because it must not collide with the object. Why do you pull such a tail? This is the problem.

【0017】電子線はフィラメント2からz方向に引き
出されるが、窓箔6に当たるのでここで散漫散乱され
る。散乱電子線22はもはやz方向に進行するとは限ら
ず、y方向の運動量をも持つようになり斜めに飛び出
す。イ、ロのようにビームマスク19の直上で散乱され
たものは右斜めに出た電子線だけが被処理物8にあたる
が、端面20が垂直に突き出ているからビームが殆ど遮
られる。fg間での分布の低下はこれによる。ハ、ニか
らの散乱電子線であって端面20に斜めに衝突したもの
はここで反射されて被処理物8に入射する。衝突しなか
ったものは被処理物にあたらず、ef間に進む。これが
長いテイルをもたらす。
The electron beam is extracted from the filament 2 in the z direction, but hits the window foil 6 and is diffusely scattered here. The scattered electron beam 22 does not always advance in the z direction, but also has a momentum in the y direction and jumps out obliquely. As shown in FIGS. 2A and 2B, only the electron beam emitted obliquely to the right hits the object 8 scattered just above the beam mask 19, but the beam is almost blocked because the end face 20 projects vertically. The lower distribution between fg is due to this. The scattered electron beams from C and D that obliquely collide with the end face 20 are reflected here and enter the object 8 to be processed. Those that did not collide do not hit the object to be processed and proceed between ef. This results in a long tail.

【0018】本発明のビームマスクは図4のように先端
が斜め傾斜面10になっている。イ、ロ、ハでの散乱電
子線が傾斜面10の上を斜めに飛んでfg間に至るから
fg間の分布を引上げて、bcのように低下分を狭く少
なくする。また端面20での反射がないので、y<gの
分布を押し上げない。ab間の回り込みは、ビームマス
クを下げて被処理物に接近させると少なくなる。
The beam mask of the present invention has a slanted inclined surface 10 at the tip as shown in FIG. Since the scattered electron beams at (a), (b), and (c) fly obliquely on the inclined surface 10 and reach between fg, the distribution between fg is raised, and the decrease like bc is narrowed and reduced. Further, since there is no reflection at the end face 20, the distribution of y <g is not boosted. The wraparound between a and ab is reduced when the beam mask is lowered to approach the workpiece.

【0019】テーパー上のビームマスクのために本発明
は、ビームマスク直下でのビーム分布の切れを鋭くし、
端部ロスabcを少なくする事ができる。被処理物の境
界S0 /S1 はy=bの位置に置く。S0 には電子線が
ほぼ一様密度で当たる。S1には殆ど電子線が当たらな
い。
According to the present invention, for a beam mask on a taper, the beam distribution just below the beam mask is sharpened,
The end loss abc can be reduced. The boundary S 0 / S 1 of the object is placed at the position of y = b. An electron beam impinges on S 0 at a substantially uniform density. Most electron beam does not hit in the S 1.

【0020】ビームマスクは電子線が当たって加熱され
るので、水冷する。内部に冷却水流路を設けて常時冷却
水を流す。ビームマスクの厚みは先述のようにこの例で
は20mmであるが、冷却水による冷却能力によって厚
みを適当に決める。加熱が著しい場合は大量の冷却水を
流す必要があり、冷却水断面積を広くしなければならな
い。ためにビームマスクは厚くならざるを得ない。だか
ら先端形状が問題になる。
Since the beam mask is heated by being irradiated with an electron beam, it is cooled with water. A cooling water flow path is provided inside to constantly flow cooling water. Although the thickness of the beam mask is 20 mm in this example as described above, the thickness is appropriately determined depending on the cooling capacity of the cooling water. When heating is remarkable, it is necessary to flow a large amount of cooling water, and the sectional area of the cooling water must be widened. Therefore, the beam mask must be thick. Therefore, the shape of the tip becomes a problem.

【0021】[0021]

【発明の効果】被処理物進行方向と直角に進退できるビ
ームマスクを設けたので電子線照射の必要な部分の幅の
狭い被処理物にも電子線照射できる。電子線を当てたく
ない部分がある被処理物を処理するのに適する。ビーム
マスクの開口幅を自在に調整できるから電子線を当てる
べき部分が様々の被処理物に対して応用することができ
る。ビームマスクの先端がテーパ状であるからビームの
分布の切れが鋭い。被処理物の当てたくない部分に電子
線が当たらず、当てたい部分には電子線が十分に当たる
ようになる。
According to the present invention, since a beam mask capable of moving back and forth at right angles to the traveling direction of the object is provided, the object to be processed can be also irradiated with an electron beam having a narrow width at a portion where electron beam irradiation is required. It is suitable for processing an object to be processed that has a portion that is not desired to be irradiated with an electron beam. Since the opening width of the beam mask can be freely adjusted, a portion to be irradiated with an electron beam can be applied to various objects to be processed. Since the tip of the beam mask is tapered, the beam distribution is sharply cut. The electron beam does not hit the portion of the workpiece that the user does not want to hit, and the electron beam sufficiently hits the portion that the user wants to hit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る電子線照射装置の被処理
物の進行方向に平行な面で切った概略縦断面図。
FIG. 1 is a schematic vertical cross-sectional view of an electron beam irradiation apparatus according to an embodiment of the present invention, taken along a plane parallel to a traveling direction of a processing object.

【図2】本発明の実施例に係る電子線照射装置の被処理
物の進行方向に直角な面で切った概略縦断面図。
FIG. 2 is a schematic vertical cross-sectional view of the electron beam irradiation apparatus according to the embodiment of the present invention, taken along a plane perpendicular to the direction of movement of a processing object.

【図3】ビームマスクの先端を直角の端面としたものの
照射窓近傍の断面図。
FIG. 3 is a cross-sectional view of the vicinity of an irradiation window when the tip of the beam mask is a right-angled end face.

【図4】ビームマスクの先端部分を傾斜面とした本発明
の実施例の照射窓近傍の断面図。
FIG. 4 is a cross-sectional view of the vicinity of an irradiation window according to an embodiment of the present invention in which a tip portion of a beam mask is an inclined surface.

【図5】被処理物幅よりも広い照射面積を持つフィラメ
ントを有する電子線照射装置の概略構成図。
FIG. 5 is a schematic configuration diagram of an electron beam irradiation apparatus having a filament having an irradiation area larger than the width of an object to be processed.

【図6】一部に電子線照射してはいけない部分を持つ被
処理物に対して広い照射面積をもつフィラメントを有す
る電子線照射装置を用いた場合の概略構成図。
FIG. 6 is a schematic configuration diagram in a case where an electron beam irradiation apparatus having a filament having a large irradiation area is used for an object to be processed which has a part that cannot be irradiated with an electron beam;

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 フィラメント 3 筐体 4 照射窓 5 電子線 6 窓箔 7 搬送コンベヤ 8 被処理物 9 ビームマスク 10 傾斜先端部 11 チャンバフランジ 12 窓箔押さえ 13 Oリング 14 ウインドウ 19 ビームマスク 20 直角端面 22 散乱電子線 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Filament 3 Case 4 Irradiation window 5 Electron beam 6 Window foil 7 Conveyor 8 Workpiece 9 Beam mask 10 Inclined tip part 11 Chamber flange 12 Window foil holding 13 O ring 14 Window 19 Beam mask 20 Right angle end face 22 Scattered electron beam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空中で縦横方向に広がったフィラメン
トによって縦横方向に広がった断面積を持つ電子線を発
生させ、加速して窓箔を通して大気中に取りだし、大気
中で搬送装置によって一方向に搬送される被処理物に電
子線を照射するようにした電子線照射装置において、窓
箔と被処理物の間に、搬送方向に対して直角に進退自在
で先端に先細りの傾斜面を有するビームマスクを両側或
いは一方に設置し、ビームマスク先端を被処理物の電子
線照射を不要とする部分と、電子線照射を必要とする部
分の境界に合わせることによって、被処理物に対して局
所的に電子線照射するようにした事を特徴とする電子線
照射装置。
1. An electron beam having a cross-sectional area spread in the vertical and horizontal directions is generated by a filament spread in the vertical and horizontal directions in a vacuum, accelerated and taken out to the atmosphere through a window foil, and is unidirectionally transported in the air by a transport device in the air. In an electron beam irradiation apparatus configured to irradiate an electron beam to an object to be conveyed, a beam having a tapered inclined surface at a tip between a window foil and the object to be processed, which is movable back and forth at right angles to a conveyance direction. By setting the mask on both sides or one side and aligning the tip of the beam mask with the boundary between the part of the object that does not require electron beam irradiation and the part that requires electron beam irradiation, An electron beam irradiating apparatus characterized in that an electron beam is radiated to the device.
JP31120597A 1997-10-27 1997-10-27 Electron beam irradiation device Expired - Fee Related JP3787993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31120597A JP3787993B2 (en) 1997-10-27 1997-10-27 Electron beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31120597A JP3787993B2 (en) 1997-10-27 1997-10-27 Electron beam irradiation device

Publications (2)

Publication Number Publication Date
JPH11133196A true JPH11133196A (en) 1999-05-21
JP3787993B2 JP3787993B2 (en) 2006-06-21

Family

ID=18014376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31120597A Expired - Fee Related JP3787993B2 (en) 1997-10-27 1997-10-27 Electron beam irradiation device

Country Status (1)

Country Link
JP (1) JP3787993B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143087A2 (en) * 2006-06-01 2007-12-13 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8246904B2 (en) 2007-06-01 2012-08-21 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
US8715569B2 (en) 2010-08-20 2014-05-06 Abbott Cardiovascular Systems Inc. Post electron beam stabilization of polymeric medical devices
US8986608B2 (en) 2011-05-17 2015-03-24 Abbott Cardiovascular Systems Inc. Method for radiation sterilization of medical devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471229B2 (en) 2006-06-01 2013-06-25 Abbott Cardiovascular Systems Inc. System for radiation sterilization of medical devices
WO2007143087A3 (en) * 2006-06-01 2008-02-14 Abbott Cardiovascular Systems Radiation sterilization of medical devices
EP2436401A1 (en) * 2006-06-01 2012-04-04 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
WO2007143087A2 (en) * 2006-06-01 2007-12-13 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8298483B2 (en) 2006-06-01 2012-10-30 Abbott Cardiovascular Systems Inc. Method for radiation sterilization of medical devices using a package having modifier sections
US8524151B2 (en) 2006-06-01 2013-09-03 Abbott Cardiovascular Systems Inc. Method for radiation sterilization of medical devices
US8461561B2 (en) 2006-06-01 2013-06-11 Abbott Cardiovascular Systems Inc. System for radiation sterilization of medical devices using a package having modifier sections
US8246904B2 (en) 2007-06-01 2012-08-21 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8318088B2 (en) 2007-06-01 2012-11-27 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8696984B2 (en) 2007-06-01 2014-04-15 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
US8715569B2 (en) 2010-08-20 2014-05-06 Abbott Cardiovascular Systems Inc. Post electron beam stabilization of polymeric medical devices
US8986608B2 (en) 2011-05-17 2015-03-24 Abbott Cardiovascular Systems Inc. Method for radiation sterilization of medical devices

Also Published As

Publication number Publication date
JP3787993B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP2010524784A (en) Sterilization system for PET containers and bottles
JP3787993B2 (en) Electron beam irradiation device
EP1215706A2 (en) Electron beam treatment device
Ozer Electron beam irradiation processing for industrial and medical applications
JPH10268100A (en) Electron beam irradiation device
JPH05309311A (en) Improved nitrogen inerting method of surface to be irradiated with electron beam and apparatus therefor
JPH0526539B2 (en)
EP1502605B1 (en) Apparatus and method for electron beam irradiation having improved dose uniformity ratio
JP2012242145A (en) Electron beam irradiation apparatus
JP3432545B2 (en) Processing equipment using high-speed atomic beams
JPS6059926B2 (en) Method and apparatus for irradiating film
JPH04182093A (en) Laser beam machining method
JP2001143983A (en) Irradiation processing method of electron beam
JP2563052B2 (en) Plasma processing device
JPH07318698A (en) Electron beam emitter
US5079187A (en) Method for processing semiconductor materials
JP2010008387A (en) Electron beam irradiation equipment
JP2000312708A (en) Electron beam irradiation device
JP2004347510A (en) Device and method for irradiation with electron beam and object irradiated with electron beam
JP3730850B2 (en) Particle transport mechanism in electron beam irradiation equipment
JPH0968600A (en) Electron beam irradiating device
JP2003156600A (en) Method and device for irradiating object with electron beam equally
JPH11231100A (en) Electron beam irradiating device
JP2002341100A (en) Electron beam irradiation device
JP2603765Y2 (en) Electron beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees