JPH11132584A - Helium liquefaction refrigerating system - Google Patents

Helium liquefaction refrigerating system

Info

Publication number
JPH11132584A
JPH11132584A JP29670797A JP29670797A JPH11132584A JP H11132584 A JPH11132584 A JP H11132584A JP 29670797 A JP29670797 A JP 29670797A JP 29670797 A JP29670797 A JP 29670797A JP H11132584 A JPH11132584 A JP H11132584A
Authority
JP
Japan
Prior art keywords
dewar
helium
liquid helium
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29670797A
Other languages
Japanese (ja)
Inventor
Jun Yoshida
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29670797A priority Critical patent/JPH11132584A/en
Publication of JPH11132584A publication Critical patent/JPH11132584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce steady external intrusion heat by enclosing a Joule-Thomson valve and an upper heat exchanger in the final liquefaction process in the upper part of a liquid helium Dewar. SOLUTION: Helium gas compressed by a helium compressor 1 is introduced to a cold box 4 where an intermediate pressure helium gas exchanges heat with return gas and liquid nitrogen chill from a cryogenic part through upper heat exchangers HX-81, 82. It is cooled down to about 80K and then further cooled down to 40K through an HX-83 and a part of the intermediate pressure gas is extracted to the chill generating source, i.e., first and second expansion turbine 2, 3, side where it is expanded and combined with a return gas line 9. The remaining intermediate pressure helium gas is further cooled down to 10-15K through heat exchangers HX-84, 85 and 86 and fed through a transfer tube to a container 5 on the liquid helium Dewar side. At the time of steady operation, helium gas is expanded and liquefied by a JT valve 7 through a heat exchanger HX-87 built in the upper part of the liquid helium Dewar and non-liquid helium gas is fed through the low pressure return line and recovered to a normal temperature in the cold box.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極低温(ヘリウム)
冷凍システムに係わり、特に液体ヘリウムデュワと組み
合わされたヘリウム液化冷凍システムに関する。
TECHNICAL FIELD The present invention relates to a cryogenic (helium)
The present invention relates to a refrigeration system, and more particularly to a helium liquefaction refrigeration system combined with a liquid helium dewar.

【0002】[0002]

【従来の技術】従来のヘリウム液化冷凍機では、コール
ドボックスと液化貯槽(液体ヘリウムデュワ)は別置きに
されており、コールドボックス最低温部分に相当するジ
ュールトムソン(JT)弁から気液混相の極低温ヘリウム
がトランスファーチューブを介して液体ヘリウムデュワ
側へ送られ、気液分離された後、再びトランスファーチ
ューブを介してコールドボックス低温部に戻される。
(図3)従来の構造では、プラント起動時の常温からの初
期冷凍において、液体ヘリウムデュワに供給される予冷
ガスは、JT弁を介した末端部のみからの供給となるこ
とから、定常低温時に対して温度が高い場合は循環しず
らく、予冷に多大な時間を要すひとつの要因になってい
る。
2. Description of the Related Art In a conventional helium liquefaction refrigerator, a cold box and a liquefaction storage tank (liquid helium dewar) are separately provided, and a gas-liquid mixed phase is supplied from a Joule Thomson (JT) valve corresponding to a cold box lowest temperature portion. Cryogenic helium is sent to the liquid helium dewar side via a transfer tube, separated into gas and liquid, and returned to the cold box low temperature section again via the transfer tube.
(FIG. 3) In the conventional structure, in the initial refrigeration from room temperature at the time of starting the plant, the pre-cooled gas supplied to the liquid helium dewar is supplied only from the end portion through the JT valve. On the other hand, when the temperature is high, it is difficult to circulate, and this is one of the factors that require much time for pre-cooling.

【0003】また、従来では、液体ヘリウムデュワの液
面を急速に下降させる場合には、デュワ内に設置され
た、電気ヒータにより、強制的に液体ヘリウムを蒸発さ
せている。
[0003] Conventionally, when the liquid level of the liquid helium dewar is rapidly lowered, the liquid helium is forcibly evaporated by an electric heater installed in the dewar.

【0004】[0004]

【発明が解決しようとする課題】上記従来の方式では、
通常のプロセスにおけるヘリウムを極低温液化させる最
低温部分は、おおむね4〜5Kであり、プロセス上最も温
度が低い領域に相当する。従来の機器構成では、極低温
中圧ヘリウムをJT弁で液体ヘリウムデュワの内部圧力
まで膨張させ、飽和の気液混相状態の極低温ヘリウムを
真空断熱多重構造のトランスファーチューブを介して液
体ヘリウムデュワ側に送られる。
In the above conventional method,
The lowest temperature portion for liquefying helium at a very low temperature in a normal process is approximately 4 to 5K, which corresponds to the lowest temperature region in the process. In the conventional equipment configuration, the cryogenic medium-pressure helium is expanded to the internal pressure of the liquid helium dewar with a JT valve, and the saturated cryogenic helium in a gas-liquid mixed-phase state is transferred to the liquid helium dewar via a vacuum adiabatic multi-layer transfer tube. Sent to

【0005】この過程(部分)において、最低温部分への
外部侵入熱はプロセスに要求される液化能力や冷凍能力
に大きく影響してくるため、この部分の外部侵入熱低減
が、ヘリウム冷凍システムの課題となっていた。特に小
型のヘリウム液化冷凍システムほど、この部分の侵入熱
の影響割合が大きくなる。
In this process (portion), the external heat entering the lowest temperature portion greatly affects the liquefaction capacity and the refrigeration capacity required for the process. Had been an issue. In particular, the smaller the helium liquefaction refrigeration system, the greater the influence rate of the heat penetrating into this part.

【0006】図2にJT熱交換器(HX-7)以下の模式図を示
す。
FIG. 2 shows a schematic diagram of the JT heat exchanger (HX-7) and below.

【0007】FL:必要液化量(g/s), QR:必要冷凍能力
(W), QL87:外部侵入熱(W),m91:中圧ヘリウム流量(g/
s), h**:各点のエンタルヒ゜(J/g)
FL: required liquefaction (g / s), QR: required refrigeration capacity
(W), QL87: Heat of external penetration (W), m91: Medium pressure helium flow rate (g /
s), h **: enthalpy at each point ゜ (J / g)

【0008】[0008]

【数1】 (Equation 1)

【0009】中圧ヘリウム流量m91は、ヘリウム圧縮機
で圧縮される動力にほぼ直接的に影響することから、シ
ステムの熱効率向上には、中圧ヘリウム流量を減少させ
ることが目標とされる。中圧ヘリウム流量は(1)式の関
係で表わされるが、現実には小型のヘリウム冷凍システ
ムほど、外部侵入熱分:QL87の影響割合が大きくなる。
[0009] Since the medium pressure helium flow rate m91 almost directly affects the power compressed by the helium compressor, the goal is to reduce the medium pressure helium flow rate in order to improve the thermal efficiency of the system. The medium-pressure helium flow rate is expressed by the equation (1), but in reality, the smaller the helium refrigeration system is, the larger the influence rate of the externally penetrated heat component: QL87 is.

【0010】また、常温状態からの起動ではまず系内の
初期冷凍を行なうが、従来構造では、定常状態と同じ末
端部分からしか、液体ヘリウムデュワ内部に、定常状態
から比べてはるかに少ないガスしか流動できないため、
液体ヘリウムデュワ部分の冷却に最も時間を要してい
る。これは、液体ヘリウムデュワの全加温時も同様で、
単独加温には時間を要している更に、従来の液体ヘリウ
ムデュワでは、液面制御用および液体ヘリウムの回収時
用に電気ヒータが使用され、わずかではあるが、電力を
消費する上に専用の制御回路も必要であった。
[0010] When the system is started from the normal temperature state, the system is initially frozen, but in the conventional structure, much less gas is introduced into the liquid helium dewar only from the same end portion as in the steady state than in the liquid helium dewar. Because it cannot flow
It takes the longest time to cool the liquid helium dewar. This is also true when the liquid helium dewar is fully heated,
Independent heating takes time.In addition, conventional liquid helium dewars use electric heaters for liquid level control and liquid helium recovery, which consumes power, albeit slightly, Control circuit was also required.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、図1に示す如く、JT弁および第7熱交換機(HX-8
7)を液体ヘリウムデュワの上部に内包させた機器構成と
する。更に、HX-87の中圧上端部分より、初期冷凍用の
ラインを分岐し、HX-87入口ガスが直接液体ヘリウムュワ
を冷却可能とするとともに、定常運転時の2次的な液面
制御を行なう。
In order to solve the above problems, as shown in FIG. 1, a JT valve and a seventh heat exchanger (HX-8) are used.
7) is to be included in the upper part of the liquid helium dewar. Furthermore, a line for initial refrigeration is branched from the upper end of the medium pressure of the HX-87, and the HX-87 inlet gas can directly cool the liquid helium whiskers and perform secondary liquid level control during steady operation. .

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例形態を図1
により説明する。コールドボックスは液体窒素で約80K
まで冷却する上部熱交換器部(HX-81,82)と寒冷発生のた
めのタービン回路や更にガスを冷却する熱交換器(HX-8
3,84,85,86)とから構成され、HX86から更に低温液化部
分に対しては、往復のトランスファーチューブで連結さ
れている。液体ヘリウムデュワ内上部に最終液化部であ
るJT熱交換器(HX-87)やJT弁が組み込まれたシステ
ム構造となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
This will be described below. Cold box is about 80K with liquid nitrogen
Heat exchanger (HX-81,82) to cool down to the turbine circuit for generating cold and a heat exchanger (HX-8
3,84,85,86), and from the HX86 to the low-temperature liquefaction part, is connected by a reciprocating transfer tube. The system structure is such that the JT heat exchanger (HX-87) and JT valve, which are the final liquefaction unit, are incorporated in the upper part of the liquid helium dewar.

【0013】ヘリウム圧縮機1で圧縮されたヘリウムガ
スは中圧ヘリウムガスとしてコールドボックス4へ導か
れる。コールドボックス内部で中圧ヘリウムガスは、上
部熱交換器HX81,82で極低温部分からの戻りガスおよび
液体窒素の寒冷と熱交換し、約80Kまで冷却され、さら
にHX-83で40K以下に冷却された後、一部の中圧ガスは寒
冷発生源である第1、第2膨張タービン2,3側へ抽気さ
れ、膨張し、戻りガスライン9へ合流する。残りの中圧
ヘリウムガスは更に熱交換器HX84〜86により、10〜15K
レベルまで温度降下後、トランスファチューブにて液体
ヘリウムデュワ側容器5へ送られる。定常運転において
は、液体ヘリウムデュワ上部に内蔵された熱交換器HX-8
7を介して、JT弁7で膨張液化し、非液化分は低圧戻り
ライン9にてコールドボックス内で常温まで温度回復さ
れる。
The helium gas compressed by the helium compressor 1 is guided to the cold box 4 as a medium-pressure helium gas. Inside the cold box, the medium-pressure helium gas exchanges heat with the return gas and liquid nitrogen from the cryogenic part in the upper heat exchangers HX81 and 82, and is cooled to about 80K, and further cooled to 40K or less in the HX-83. After that, a part of the medium-pressure gas is extracted to the first and second expansion turbines 2 and 3 which are cold generation sources, expanded, and merges with the return gas line 9. The remaining medium-pressure helium gas is further heated to 10 to 15K by heat exchangers HX84 to 86.
After the temperature drops to the level, it is sent to the liquid helium dewar side container 5 by a transfer tube. In normal operation, the heat exchanger HX-8 built in above the liquid helium dewar
Through 7, the liquid is expanded and liquefied by the JT valve 7, and the non-liquefied component is returned to normal temperature in the cold box in the low pressure return line 9.

【0014】装置起動時の初期冷凍や、停止時の全加温
動作において、液体ヘリウムデュワ上部の中圧ラインか
ら分岐11させた中圧ヘリウムを直接液体ヘリウムデュワ
に膨張12させることにより、予冷時にはJT弁7末端部
より温度の低いガスを、加温時にはJT弁7末端部より
温度の高いガスを供給可能な構造となっている。
In the initial freezing at the start of the apparatus and the full heating operation at the time of stoppage, the medium pressure helium branched 11 from the medium pressure line above the liquid helium dewar is expanded 12 directly into the liquid helium dewar, so that during precooling, The structure is such that a gas having a lower temperature than the terminal of the JT valve 7 and a gas having a higher temperature than the terminal of the JT valve 7 can be supplied during heating.

【0015】さらに、定常運転中の液化冷凍負荷変動に
対しては、JT弁7末端部とは異なるエンタルピのガス
を分岐ライン11から一部抽気・膨張させることにより、
系内の熱バランスを微妙に制御可能な構造となってい
る。
Further, with respect to the liquefaction refrigeration load fluctuation during the steady operation, the enthalpy gas different from the end of the JT valve 7 is partially extracted and expanded from the branch line 11, thereby
It has a structure that can finely control the heat balance in the system.

【0016】[0016]

【発明の効果】JT弁や最低温部分熱交換器HX87を液体
ヘリウムデュワ内部へ設置したことにより、コールドボ
ックス内部サポートされた従来方式に対して、液化ガス
雰囲気中に設置されているため定常的な外部侵入熱を低
減出来る。
By installing the JT valve and the lowest temperature partial heat exchanger HX87 inside the liquid helium dewar, it is installed in a liquefied gas atmosphere, compared to the conventional method supported inside the cold box. External heat of penetration can be reduced.

【0017】JT弁や最低温部分熱交換器HX-87への外
部侵入熱の低減による、必要ヘリウム流量の低減すなわ
ち、システム熱効率の向上につながる。また、液体ヘリ
ウムデュワの初期冷凍や、加温時間の短縮にも効果があ
る。更に定常運転時における液体ヘリウムデユワ内部の
熱バランスを電気ヒータを使わずに直接的にかつ微妙に
制御できる効果がある。
[0017] The reduction in the amount of heat entering the outside of the JT valve and the lowest temperature partial heat exchanger HX-87 leads to a reduction in the required helium flow rate, that is, an improvement in the system thermal efficiency. It is also effective for initial freezing of liquid helium dewar and for shortening the heating time. Further, there is an effect that the heat balance inside the liquid helium dewar during the steady operation can be directly and finely controlled without using an electric heater.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるヘリウム液化冷凍システムの一実
施例を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a helium liquefaction refrigeration system according to the present invention.

【図2】図1において用いられるJT熱交換器(HX-7)を示
す模式的構成図である。
FIG. 2 is a schematic configuration diagram showing a JT heat exchanger (HX-7) used in FIG.

【図3】従来式の一般的なヘリウム液化冷凍システムを
示す構成図である。
FIG. 3 is a configuration diagram showing a conventional general helium liquefaction refrigeration system.

【符号の説明】[Explanation of symbols]

2…ヘリウム圧縮機、2….第1膨張タービン、3…第2
膨張タービン、4….コールドボックス、5…液体ヘリ
ウムデュワ、6…トランスファーチューブ、7…JT
弁、8…中圧ヘリウムライン、9…低圧戻りヘリウムラ
イン、11…中圧ヘリウム分岐ライン、12…分岐ライ
ン用膨張弁。
2 ... helium compressor, 2 ... first expansion turbine, 3 ... second
Expansion turbine, 4 cold box, 5 liquid helium dewar, 6 transfer tube, 7 JT
Valves: 8: medium pressure helium line, 9: low pressure return helium line, 11: medium pressure helium branch line, 12: expansion valve for branch line.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】液体ヘリウムデュワ等の被冷却体断熱容器
と、主コールドボックスと、上記被冷却体断熱容器と主
コールドボックスとの間を接続し、極低温流体を循環さ
せるトランスファーチューブとからなるヘリウム液化冷
凍システムにおいて、最終液化過程のJT弁とその上部
熱交換器を液体ヘリウムデユワ上部に内包させ、最低温
部分の熱侵入量を減少させたことを特徴とするヘリウム
液化冷凍システム。
1. A cooling target heat insulating container such as liquid helium dewar, a main cold box, and a transfer tube connecting the cooling target heat insulating container and the main cold box and circulating a cryogenic fluid. A helium liquefaction refrigeration system in which a JT valve in a final liquefaction process and its upper heat exchanger are included in the upper portion of liquid helium dewar to reduce the amount of heat infiltration in the lowest temperature portion.
【請求項2】上記液体ヘリウムデュワの初期冷凍、加温
を促進させるため、10〜15Kレベルのガスを直接液体ヘ
リウムデュワ内面に供給可能な分岐を備えたことを特徴
とする請求項1記載のヘリウム液化冷凍システム。
2. The liquid helium dewar according to claim 1, further comprising a branch capable of directly supplying a gas of 10 to 15K level to the inner surface of the liquid helium dewar in order to promote initial freezing and heating of the liquid helium dewar. Helium liquefaction refrigeration system.
【請求項3】液体ヘリウムデュワ内上部に内包された熱
交換器の中圧入口部分から、直接デュワ内部に膨張させ
る回路を有し、液体ヘリウムデュワの単独予冷・加温時
間促進を図ったことを特徴とする請求項1記載のヘリウ
ム液化冷凍システム。
3. A circuit for expanding the dewar directly from the medium pressure inlet part of the heat exchanger contained in the upper part of the liquid helium dewar to promote independent precooling and heating time of the liquid helium dewar. The helium liquefaction refrigeration system according to claim 1, wherein:
【請求項4】液体ヘリウムデュワ内上部に内包された熱
交換器の中圧入口部分から、直接デュワ内部に膨張させ
る回路を有し、液体ヘリウムデュワヒータの代用として
の負荷変動に対処可能としたことを特徴とする請求項1
記載のヘリウム液化冷凍システム。
4. A circuit for directly expanding the inside of the dewar from the medium pressure inlet portion of the heat exchanger contained in the upper part of the liquid helium dewar, so that it is possible to cope with load fluctuation as a substitute for the liquid helium dewar. 2. The method according to claim 1, wherein
A helium liquefaction refrigeration system as described.
JP29670797A 1997-10-29 1997-10-29 Helium liquefaction refrigerating system Pending JPH11132584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29670797A JPH11132584A (en) 1997-10-29 1997-10-29 Helium liquefaction refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29670797A JPH11132584A (en) 1997-10-29 1997-10-29 Helium liquefaction refrigerating system

Publications (1)

Publication Number Publication Date
JPH11132584A true JPH11132584A (en) 1999-05-21

Family

ID=17837052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29670797A Pending JPH11132584A (en) 1997-10-29 1997-10-29 Helium liquefaction refrigerating system

Country Status (1)

Country Link
JP (1) JPH11132584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138130A (en) * 2021-04-22 2021-07-20 哈尔滨工业大学 Ultralow-temperature in-situ tensile platform and scanning electron microscope ultralow-temperature in-situ tensile test system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138130A (en) * 2021-04-22 2021-07-20 哈尔滨工业大学 Ultralow-temperature in-situ tensile platform and scanning electron microscope ultralow-temperature in-situ tensile test system

Similar Documents

Publication Publication Date Title
RU2362099C2 (en) Method for cryogenic liquefaction/cooling and system for method realisation
KR100761975B1 (en) Lng bog reliquefaction apparatus and lng bog reliquefaction method
EP1913117A1 (en) Lng bog reliquefaction apparatus
US6477847B1 (en) Thermo-siphon method for providing refrigeration to a refrigeration load
KR20090025514A (en) A bog re-liquefaction system for lng carrier
JPS6399459A (en) Method and system of obtaining package of plurality of separate discrete low-temperature liquefied co2
JP3123126B2 (en) Vacuum container with cooler
KR100699163B1 (en) Reliquefaction apparatus of lng bog and reliquefaction method
KR100740686B1 (en) Bog reliquefaction apparatus
Jin et al. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling
KR100777135B1 (en) Lng bog reliquefaction apparatus and method
KR20080081436A (en) Lng bog reliquefaction apparatus and method
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
WO2002066908A1 (en) System and method in which co2 is used for defrost and as refrigerant during stand-still
US20230304731A1 (en) Facility and method for refrigerating a fluid
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
JPH11132584A (en) Helium liquefaction refrigerating system
JP4409828B2 (en) Gas liquefaction equipment
JP6926153B2 (en) Superconductor cooling device and superconductor cooling method
RU2166709C1 (en) Highly efficiency combined system for liquefaction of main-line natural gas
Dauguet et al. Two Large 18 KW (Equivalent Power at 4.5 K) Helium Refrigerators for Cern’s LHC Project, Supplied by Air Liquide
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPH10206010A (en) Method of separating air and device
McIntosh et al. A re-Liquefying Hydrogen Refrigerator
JPH0411784B2 (en)