JPH11131693A - Earthquake resistant reinforcing structure for existing building - Google Patents

Earthquake resistant reinforcing structure for existing building

Info

Publication number
JPH11131693A
JPH11131693A JP31000297A JP31000297A JPH11131693A JP H11131693 A JPH11131693 A JP H11131693A JP 31000297 A JP31000297 A JP 31000297A JP 31000297 A JP31000297 A JP 31000297A JP H11131693 A JPH11131693 A JP H11131693A
Authority
JP
Japan
Prior art keywords
steel
seismic
building
floor slab
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31000297A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31000297A priority Critical patent/JPH11131693A/en
Publication of JPH11131693A publication Critical patent/JPH11131693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce time, labor, and cost, and considerably reduce a noise- vibration problem by jointing an earthquake resistance reinforcing member between floor slabs at a part not substantially closing an opening part on the outside of space surrounded by columns and beams. SOLUTION: A steel 5a of a very low yield point formed of H-shape steel is inserted between the end parts of upper and lower common steel 5b, 5b and connected by connecting plates 8 spliced to a pair of flanges and webs of both steel, and bolts and nuts 9 to form an earthquake resistant reinforcing member 5. The lateral end parts of base plates 10 welded to the other end parts of the common steel 5b project from both lateral side faces of the common steel 5b, and rib plates 11 are welded between the steel 5b and the projecting end parts so as to enlarge the joint side end part of the steel 5b to a floor slab 6. A clearance between the base plate 10 and floor slab 6 is filled with grout material 22 for integration. The reinforcing member 5 is arranged in proximity to the direct front of a column 2 so as not to hinder passage. Noise and vibration are thereby reduced, and work can be executed while inhabitants remain living.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】 本発明はRC造またはSR
C造の既存建物の耐震補強に関するものである。
TECHNICAL FIELD The present invention relates to an RC or SR
This is related to the seismic retrofit of an existing C building.

【0002】[0002]

【従来の技術】 図11に示したように建物は地震を受
けると変形し、層間変形が生ずる。一般的に古い建物
(旧耐震基準に準拠して設計施工された建物)は、層間
変形各が約1/200程度で柱がせん断破壊し、居住者
の命は非常に危険な状態となる。そのための既存の建物
の耐震補強が急務とされている。
2. Description of the Related Art As shown in FIG. 11, a building is deformed when subjected to an earthquake, causing interlayer deformation. Generally, in an old building (a building designed and constructed in accordance with the old seismic standards), the columns are sheared and destroyed when the interlayer deformation is about 1/200, and the life of the resident is extremely dangerous. Therefore, it is urgently necessary to reinforce existing buildings.

【0003】実開平5−17024号公報に開示された
耐震補強方法では、一般の建築用鋼材よりなる柱と梁か
ら構成されるラーメン構造の鉄骨造建物において、図1
2に示したように上下の梁間に間柱や筋違い材等の耐震
補強部材を配設し、該耐震補強部材の中間部分に耐震補
強部材本体よりも耐力の低い小耐力部材を組み込んでい
る。この耐震構造では、柱と梁が弾性域であり、間柱や
筋違い材等の小耐力部材が塑性域であるような振動の地
震に対しては、地震による建物の振動エネルギーを、小
耐力部材が履歴エネルギーとして消費して、建物の振動
を早めに減衰させる。また、従来の構造物であれば間柱
等の耐震補強部材が著しく塑性変形するほどの大きな振
動の地震に対しては、先に小耐力部材が充分に塑性変形
して振動エネルギーを吸収して、耐震補強部材の塑性化
を防ぐと共に、仕上材の損傷を防止する。
According to the seismic retrofitting method disclosed in Japanese Utility Model Laid-Open No. 5-17024, a steel frame building having a ramen structure composed of columns and beams made of general steel for construction is used as shown in FIG.
As shown in FIG. 2, a seismic strengthening member such as a stud or a bracing member is disposed between the upper and lower beams, and a small strength member having a lower strength than the seismic strengthening member main body is incorporated in an intermediate portion of the seismic strengthening member. In this earthquake-resistant structure, the vibration energy of the building due to the earthquake and the small-capacity members are used for an earthquake in which the columns and beams are in the elastic region and the small-capacity members such as studs and bracing are in the plastic region. Consumed as historical energy to attenuate building vibrations early. Also, in the case of a conventional structure, for earthquakes with large vibrations such that seismic strengthening members such as studs are significantly plastically deformed, small bearing members are sufficiently plastically deformed first and absorb vibration energy, Prevents plasticization of seismic retrofitting members and prevents damage to finishing materials.

【0004】しかしながら、柱や梁よりも剛性・耐力が
低い小耐力部材を耐震補強部材として組み込む耐震補強
方法は、鉄骨造の建物には適しているが、RC造やSR
C造の建物では、上下の梁の途中に耐震補強部材を接合
することによって、梁のせん断スパン比が小さくなり、
梁にせん断破壊が生じやすくなるので、構造力学的には
望ましくない。
[0004] However, the seismic retrofitting method in which a small strength member having lower rigidity and proof strength than columns and beams is incorporated as a seismic retrofitting member is suitable for a steel-framed building.
In a C-shaped building, the shear span ratio of the beam is reduced by joining the seismic strengthening members in the middle of the upper and lower beams,
This is not desirable in structural mechanics because shear failure is likely to occur in the beam.

【0005】また、柱と梁で囲まれた空間の内側には通
常、窓やサッシ等が設けられているから、既存の建物に
対してこの耐震補強方法を適用するには、これらを取り
除く必要があり、取り除きの手間と費用がかさむ。さら
に、柱・梁と耐震補強部材とを一体化させるためには、
柱・梁に後施工アンカーというスタッドを打ち込む必要
があり、その打ち込み手間と費用がかさむとともに躯体
の損傷問題があり、また、工事に伴う居住者や周辺住民
に対する騒音・振動問題も長期にわたる。また、窓等の
開口部の途中に耐震補強部材が現れることによって、採
光や通風が妨げられ、開放感も低下するため、居住性が
悪化するという問題もある。
[0005] Further, since windows and sashes are usually provided inside the space surrounded by columns and beams, it is necessary to remove them in order to apply this seismic retrofitting method to existing buildings. There is a lot of trouble and cost of removal. Furthermore, in order to integrate the columns / beams with the seismic reinforcement members,
It is necessary to drive studs called post-installed anchors to columns and beams, which increases the labor and cost of driving the studs, causes damage to the frame, and causes long-term noise and vibration problems for residents and nearby residents involved in the construction. In addition, the appearance of the seismic retrofitting member in the middle of an opening such as a window hinders lighting and ventilation, and reduces the sense of openness.

【0006】[0006]

【発明が解決しようとする課題】 したがって本発明の
目的は、構造力学的に無理なくRC造やSRC造の既存
建物にも適用することができ、手間と費用を節減して補
強工事を実施でき、居住者や周辺住民への騒音・振動問
題が大幅に軽減され、採光や通風を阻害することなく、
従来の居住性を維持できるが既存建物の耐震補強構造を
提供することである。
Therefore, the object of the present invention can be applied to existing RC and SRC buildings without difficulty in terms of structural mechanics, and it is possible to carry out reinforcement work with reduced labor and cost. , Noise and vibration problems for residents and surrounding residents have been greatly reduced, without obstructing lighting and ventilation.
An object of the present invention is to provide a seismic reinforcement structure for an existing building that can maintain the conventional livability.

【0007】[0007]

【課題を解決するための手段】 以下、添付図面中の参
照符号を用いて説明すると、本発明の既存建物の耐震補
強構造では、RC造またはSRC造の既存建物1におい
て、柱2と梁3で囲まれた空間4の外側であって窓等の
開口部を実質的に閉塞しない部位にて、耐震補強部材5
を上下階の床スラブ6,6間に接合する。
Means for Solving the Problems Hereinafter, a description will be given using reference numerals in the accompanying drawings. In the seismic retrofitting structure of an existing building of the present invention, a column 2 and a beam 3 in an existing building 1 of RC or SRC structure. Outside the space 4 surrounded by the square and not substantially blocking the opening such as a window,
Between the floor slabs 6 and 6 on the upper and lower floors.

【0008】この耐震補強部材5としては、極低降伏点
鋼材5aの上下端部に普通鋼材5b,5bを接合したサ
ンドイッチ構成のものが使用できる。また、普通鋼材5
bの端部を広げることによって、床スラブ6との接合部
の固定度を上げることが望ましい。
As the earthquake-resistant reinforcing member 5, a sandwich structure in which ordinary steel materials 5b, 5b are joined to upper and lower ends of an extremely low yield point steel material 5a can be used. In addition, ordinary steel 5
It is desirable to increase the degree of fixation of the joint with the floor slab 6 by expanding the end of b.

【0009】この耐震補強構造では、柱2と梁3で包囲
された空間4の外側、例えば柱2または袖壁7の正面側
に配設された耐震補強部材5は、柱2および梁3ととも
に地震の振動エネルギーを受ける。耐震補強部材5の剛
性・耐力の高い普通鋼材5bは、建物の層間変形による
せん断力を耐力の小さい極低降伏点鋼材5aに集中さ
せ、地震エネルギーの吸収効率を高め、地震の揺れを低
減させる。降伏時の層間変形角は約1/1000程度で
あり、柱2や梁3がせん断破壊するよりも前に地震エネ
ルギーを吸収する。端部が広げられた普通鋼材5bによ
れば、床スラブ6との接合部の固定度が上がるため、建
物の層間変形を極低降伏点鋼材5aにより集中させ、地
震エネルギーの吸収効率を高めることができる。
In this aseismic reinforcement structure, the aseismic reinforcement member 5 disposed outside the space 4 surrounded by the columns 2 and the beams 3, for example, on the front side of the columns 2 or the sleeve walls 7, together with the columns 2 and the beams 3. Receives vibration energy from earthquakes. The ordinary steel material 5b having high rigidity and proof strength of the seismic strengthening member 5 concentrates the shear force due to the interlayer deformation of the building to the extremely low yield point steel material 5a having a small proof strength, increases the absorption efficiency of seismic energy, and reduces the shaking of the earthquake. . The interlayer deformation angle at the time of yielding is about 1/1000, and absorbs seismic energy before the columns 2 and the beams 3 are subjected to shear failure. According to the ordinary steel material 5b having an expanded end, the degree of fixation of the joint with the floor slab 6 is increased, so that the interlayer deformation of the building is concentrated by the extremely low yield point steel material 5a, and the efficiency of seismic energy absorption is increased. Can be.

【0010】[0010]

【発明の実施の形態】 図1と図2に示した第1実施例
では、耐震補強部材5はH形鋼よりなる上下の普通鋼材
5b,5bの端部間に、H型鋼よりなる極低降伏点鋼材
5a(降伏点8.0Kg/mm2〜24Kg/mm2程度の鋼材)を
挿入し、両者の一対のフランジおよびウェブに添接した
連結プレート8とボルト・ナット9により連結したもの
である。普通鋼材5bの他方の端部に溶接されたベース
プレート10の左右端部は普通鋼材5bの左右両側面か
ら張り出し、普通鋼材5bと該張り出し端部間にはリブ
プレート11が溶接されている。これによって普通鋼材
5bの床スラブ6との接合側の端部が広げられている。
ベースプレート10と床スラブ6の間には、ベースプレ
ート10と床スラブ6の隙間を埋めるためのグラウト材
(エポキシ系など)22を使用し、ベースプレート10
と床スラブ6の一体化を図る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first embodiment shown in FIGS. 1 and 2, an earthquake-resistant reinforcing member 5 is provided between an end of upper and lower ordinary steel members 5b, 5b made of an H-shaped steel. Yield point steel material 5a (steel material having a yield point of about 8.0 kg / mm 2 to 24 kg / mm 2 ) is inserted and connected by a bolt and nut 9 to a connection plate 8 attached to a pair of flanges and a web of the two. is there. The left and right ends of the base plate 10 welded to the other end of the ordinary steel 5b project from the left and right sides of the ordinary steel 5b, and a rib plate 11 is welded between the ordinary steel 5b and the overhanging end. Thereby, the end of the joint side of the ordinary steel material 5b with the floor slab 6 is widened.
Between the base plate 10 and the floor slab 6, a grout material (epoxy type or the like) 22 for filling a gap between the base plate 10 and the floor slab 6 is used.
And the floor slab 6 are integrated.

【0011】本実施例では、図10に示したように上下
各階の耐震補強部材5,5の設置位置は縦方向に連続し
ており、上階側の耐震補強部材5のベースプレート10
と下階側の耐震補強部材5のベースプレート10は、高
力ボルト・ナット12によって床スラブ6,6に接合さ
れる。この高力ボルト12は鉄筋コンクリートの床スラ
ブ6にアンカーボルトとして植設されている。耐震補強
部材5の設置箇所は建物1の共用廊下部分の床スラブ6
であり、耐震補強部材5は通行の障害とならないように
柱2の真正面に柱2に近接させて配置されている。その
ため、柱2,2間に設けられる窓等の開口部の途中に耐
震補強部材5が現れることがなく、採光や通風を阻害す
ることがない。
In this embodiment, as shown in FIG. 10, the installation positions of the seismic reinforcement members 5 and 5 on the upper and lower floors are continuous in the vertical direction, and the base plate 10 of the seismic reinforcement members 5 on the upper floor side.
And the base plate 10 of the seismic retrofitting member 5 on the lower floor side are joined to the floor slabs 6 and 6 by high strength bolts and nuts 12. The high-strength bolts 12 are installed as anchor bolts on the reinforced concrete floor slab 6. The place where the seismic reinforcement member 5 is installed is the floor slab 6 in the common corridor of the building 1.
The seismic reinforcement member 5 is arranged in front of the column 2 and close to the column 2 so as not to obstruct the passage. Therefore, the earthquake-resistant reinforcing member 5 does not appear in the middle of an opening such as a window provided between the columns 2 and 2, and does not hinder lighting or ventilation.

【0012】図3と図4に示した第2実施例では、図9
に示したように上下各階の耐震補強部材5,5の設置位
置は縦方向に連続しておらず、1階毎に食い違ってい
る。当該階の床スラブ6の下面と上階側の床スラブ6の
上面には接合プレート13が添接され、該接合プレート
13と耐震補強部材5のベースプレート10が高力ボル
ト・ナット12によって床スラブ6,6に接合される。
この耐震補強部材5の設置箇所は建物1の通路部分の床
スラブ6であり、建物1には袖壁7が設けられているの
で、耐震補強部材5は柱2から遠い方の袖壁7の端部正
面に近接配置されている。これによって通路部分への耐
震補強部材5のはみ出し量を抑制している。ベースプレ
ート10と床スラブ6の間には、ベースプレート10と
床スラブ6の隙間を埋めるためのグラウト材(エポキシ
系など)22を使用し、ベースプレート10と床スラブ
6の一体化を図る。また、接合プレート13と床スラブ
6の間にも、接合プレート13と床スラブ6の隙間を埋
めるためのグラウト材(エポキシ系など)22を使用
し、接合プレート10と床スラブ6の一体化を図る。そ
の他の構成は第1実施例と共通しているので説明を省略
する。
In the second embodiment shown in FIGS. 3 and 4, FIG.
As shown in the figure, the installation positions of the seismic retrofitting members 5 and 5 on the upper and lower floors are not continuous in the vertical direction and are different for each floor. A joint plate 13 is attached to the lower surface of the floor slab 6 on the floor and the upper surface of the floor slab 6 on the upper floor, and the joint plate 13 and the base plate 10 of the earthquake-resistant reinforcing member 5 are fixed to each other by the high-strength bolts and nuts 12. 6 and 6.
The place where the seismic retrofitting member 5 is installed is the floor slab 6 in the passage section of the building 1, and the building 1 is provided with the sleeve wall 7. It is located close to the front of the end. As a result, the amount of protrusion of the earthquake-resistant reinforcing member 5 into the passage portion is suppressed. Between the base plate 10 and the floor slab 6, a grout material (epoxy or the like) 22 for filling the gap between the base plate 10 and the floor slab 6 is used to integrate the base plate 10 and the floor slab 6. Also, a grout material (epoxy or the like) 22 for filling the gap between the joining plate 13 and the floor slab 6 is used between the joining plate 13 and the floor slab 6 to integrate the joining plate 10 and the floor slab 6. Aim. The other configuration is common to that of the first embodiment, and thus the description is omitted.

【0013】図5と図6に示した第3実施例では、耐震
補強部材5の設置箇所は建物1の通路部分の床スラブ6
であり、耐震補強部材5は柱2の正面位置から横にずら
して配置されている。普通鋼材5bの床スラブ6側の端
部には前記ベースプレート10に加えて、溝型鋼よりな
る接合金物15がボルト・ナット17によって連結され
ており、接合金物15を高力ボルト・ナット16によっ
て梁3に固着することによって、耐震補強部材5は梁3
にも補助的に接合されている。接合金物15と梁3の間
には、接合金物15と梁3の隙間を埋めるためのグラウ
ト材(エポキシ系など)22を使用し、接合金物15と
梁3の一体化を図る。接合金物15の空所にはコンクリ
ート充填23が行われる。その他の構成は第1実施例と
共通しているので説明を省略する。
In the third embodiment shown in FIGS. 5 and 6, the place where the seismic retrofitting member 5 is installed is the floor slab 6 in the passage of the building 1.
The seismic reinforcement member 5 is arranged to be shifted laterally from the front position of the column 2. At the end of the ordinary steel material 5b on the floor slab 6 side, in addition to the base plate 10, a metal joint 15 made of channel steel is connected by bolts and nuts 17, and the metal joint 15 is beamed by high strength bolts and nuts 16. 3, the seismic strengthening member 5 is connected to the beam 3.
It is also auxiliaryly joined. A grout material (epoxy or the like) 22 for filling the gap between the joint hardware 15 and the beam 3 is used between the joint hardware 15 and the beam 3 to integrate the joint hardware 15 and the beam 3. Concrete filling 23 is performed in the voids of the joining hardware 15. The other configuration is common to that of the first embodiment, and thus the description is omitted.

【0014】図7と図8に示した第4実施例では、耐震
補強部材5の設置箇所は建物1の通路部分の床スラブ6
であり、耐震補強部材5は柱2の真正面位置に配置され
ている。図9に示したように上下各階の耐震補強部材
5,5の設置位置は縦方向に連続しておらず、1階毎に
食い違っている。普通鋼材5bと極低降伏点鋼材5aの
各ウェブの中央部分には縦リブプレート18が溶接され
ている。極低降伏点鋼材5aの各端部には連結プレート
19が溶接され、普通鋼材5bの端部には連結プレート
20が溶接され、連結プレート19,20はボルト・ナ
ット21によって接合されている。その他の構成は前記
実施例と共通しているので説明を省略する。
In the fourth embodiment shown in FIGS. 7 and 8, the place where the seismic retrofitting member 5 is installed is the floor slab 6 in the passage of the building 1.
The seismic strengthening member 5 is disposed at a position directly in front of the column 2. As shown in FIG. 9, the installation positions of the seismic strengthening members 5 and 5 on the upper and lower floors are not continuous in the vertical direction, and are different for each floor. A longitudinal rib plate 18 is welded to the central portion of each web of the ordinary steel 5b and the extremely low yield point steel 5a. A connection plate 19 is welded to each end of the extremely low yield point steel material 5a, a connection plate 20 is welded to an end of the ordinary steel material 5b, and the connection plates 19, 20 are joined by bolts and nuts 21. Other configurations are the same as those of the above-described embodiment, and the description is omitted.

【0015】いずれの実施例においても必要に応じて、
耐震補強部材5と柱2の間または耐震補強部材5と梁3
の間に別途補強を行うことによって床スラブ6の破壊を
防止することができる。各実施例においてベースプレー
ト10、接合プレート13、高力ボルト・ナット12,
14は建物の床スラブからのせん断力を摩擦力によって
耐震補強部材5の普通鋼材5bに伝達する。
In each embodiment, if necessary,
Between the seismic reinforcement member 5 and the column 2 or between the seismic reinforcement member 5 and the beam 3
The reinforcement of the floor slab 6 can be prevented by separately reinforcing the space between them. In each embodiment, the base plate 10, the joining plate 13, the high-strength bolts / nuts 12,
Numeral 14 transmits the shearing force from the floor slab of the building to the ordinary steel member 5b of the earthquake-resistant reinforcing member 5 by frictional force.

【0016】[0016]

【発明の効果】 以上のように請求項1の発明の耐震補
強構造では、柱2と梁3で囲まれた空間4の外側であっ
て窓等の開口部を閉塞しない部位にて耐震補強部材5を
上下階の床スラブ6,6に接合するため、構造力学的に
無理を生ずることなく、RC造またはSRC造の既存建
物にも適用することができる。また、柱2と梁3に囲ま
れた壁部分を取り壊して耐震補強部材を埋め込むもので
はなく、高力ボルト等でコンクリートの床スラブに耐震
補強部材5を接合するだけでよいから、躯体の損傷は必
要最小限に抑制され、手間と費用を削減して補強工事を
能率よく進めることができる。そのため、工事に伴う居
住者や周辺住民への騒音・振動問題が大幅に軽減され
る。居住者は住んだまま工事ができる。
As described above, in the seismic retrofit structure according to the first aspect of the present invention, the seismic retrofit member is provided outside the space 4 surrounded by the columns 2 and the beams 3 and does not block the opening such as the window. Since 5 is joined to floor slabs 6 and 6 on the upper and lower floors, the present invention can be applied to an existing RC or SRC building without causing any structural mechanics. In addition, since the wall part surrounded by the pillar 2 and the beam 3 is not demolished and the seismic reinforcement member is embedded, it is only necessary to join the seismic reinforcement member 5 to the concrete floor slab with high-strength bolts or the like. Can be reduced to the minimum necessary, and labor and cost can be reduced and reinforcement work can be performed efficiently. For this reason, noise and vibration problems for residents and nearby residents due to the construction are greatly reduced. Residents can work while living.

【0017】耐震補強部材5は窓等の開口部の途中に現
れることがないので、採光や通風を阻害することなく、
従来の居住性を維持することができる。請求項2の発明
の耐震補強構造では、耐震補強部材5を剛性・耐力の高
い上下の普通鋼材5b,5bの間に耐力の低い極低降伏
点鋼材5aを挿入したサンドイッチ構成としたので、一
定レベル以上の地震時には極低降伏点鋼材5aのみがせ
ん断変形を生じることになり、柱2や梁3がせん断破壊
するよりも前に地震エネルギーを的確に吸収し、地震の
揺れを確実に抑えることができる。
Since the earthquake-resistant reinforcing member 5 does not appear in the middle of an opening such as a window, it does not obstruct lighting and ventilation.
The conventional livability can be maintained. In the seismic retrofit structure of the second aspect of the present invention, the seismic retrofit member 5 has a sandwich structure in which a very low yield strength steel material 5a having a low strength is inserted between upper and lower ordinary steel materials 5b, 5b having high rigidity and strength. In the event of an earthquake above the level, only the extremely low yield point steel material 5a will cause shear deformation, and the seismic energy will be properly absorbed before the columns 2 and beams 3 are subjected to shear failure, and the shaking of the earthquake will be reliably suppressed. Can be.

【0018】請求項3の発明では、上下の普通鋼材5
b,5bの端部を広げて床スラブ6との接合部の固定度
を上げたので、建物の層間変形を極低降伏点鋼材5aを
一層集中させることができ、地震エネルギーの吸収効率
を向上させることができる。
In the invention of claim 3, the upper and lower ordinary steel materials 5
Since the degree of fixation of the joint with the floor slab 6 is increased by widening the ends of the b and 5b, the ultra-low yield point steel material 5a can be further concentrated on the interlayer deformation of the building, and the seismic energy absorption efficiency is improved. Can be done.

【0019】図13は耐震補強部材5の極低降伏点鋼材
5a部分を取り出した形での曲げせん断実験の例を示し
たものであるが、同図右側のグラフが示すように、せん
断ひずみ5%に対しても非常に安定した復元力特性を示
す。このグラフの囲む面積はエネルギー吸収量を表わす
ものであるが、本発明によればエネルギー吸収量がきわ
めて大きい。
FIG. 13 shows an example of a bending-shear test in which the extremely low yield point steel material 5a of the seismic strengthening member 5 is taken out. As shown in the graph on the right side of FIG. % Shows very stable restoring force characteristics. The area surrounded by this graph represents the amount of energy absorption. According to the present invention, the amount of energy absorption is extremely large.

【0020】図14において曲線0→1→2→3は、耐
震補強前の地震応答特性を示したものである。地震時に
1で建物にひび割れが生じ、2で柱、梁、壁などにせん
断破壊が生じ、せん断耐力を急激に失い、3に至る。こ
れに対して耐震補強後の建物の地震応答特性は曲線0→
4→5に示されている。4で建物にひび割れが生じるあ
たりで、耐震補強部材の極低降伏点鋼材が降伏し、地震
エネルギーを吸収する。この耐震補強部材の効果によ
り、せん断破壊までの変形に至らず、5までの変形にと
どめることができるため、建物の被害を最少限にとどめ
ることが可能となる。予期せぬような巨大地震動を受け
た場合においては、耐震補強後の建物でも、2と同じ変
位に達した場合、6で柱、梁、壁などがせん断破壊す
る。しかしながら、耐震補強部材が柱の代わりにある程
度建物重量を支える働きを持つため、万が一の場合に対
しても建物の倒壊を避けることができる。
In FIG. 14, curves 0 → 1 → 2 → 3 show seismic response characteristics before seismic reinforcement. At the time of the earthquake, 1 causes cracks in the building, 2 causes shear failure in columns, beams, walls, etc., rapidly losing shear strength, and reaches 3. On the other hand, the seismic response characteristic of the building after the seismic reinforcement is curve 0 →
4 → 5. When the building is cracked in 4, the extremely low yield point steel material of the seismic strengthening member yields and absorbs seismic energy. Due to the effect of the seismic reinforcement member, deformation up to 5 can be achieved without causing deformation until shear failure, so that damage to the building can be minimized. In the case of an unexpected huge earthquake motion, even in the building after the seismic reinforcement, if the same displacement as 2 is reached, the columns, beams, walls, etc. are sheared and damaged in 6. However, since the seismic retrofitting member has a function of supporting the building weight to some extent instead of the pillar, the collapse of the building can be avoided even in case of emergency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の耐震補強構造の平面図
である。
FIG. 1 is a plan view of an earthquake-resistant reinforcement structure according to a first embodiment of the present invention.

【図2】 図1の耐震補強構造の正面図である。FIG. 2 is a front view of the seismic retrofit structure of FIG.

【図3】 本発明の第2実施例の耐震補強構造の平面図
である。
FIG. 3 is a plan view of an earthquake-resistant reinforcement structure according to a second embodiment of the present invention.

【図4】 図3の耐震補強構造の正面図である。FIG. 4 is a front view of the earthquake-resistant reinforcement structure of FIG.

【図5】 本発明の第3実施例の耐震補強構造の平面図
である。
FIG. 5 is a plan view of a seismic retrofit structure according to a third embodiment of the present invention.

【図6】 図5の耐震補強構造の正面図である。FIG. 6 is a front view of the seismic retrofit structure of FIG.

【図7】 本発明の第4実施例の耐震補強構造の平面図
である。
FIG. 7 is a plan view of a seismic retrofit structure according to a fourth embodiment of the present invention.

【図8】 図5の耐震補強構造の正面図である。FIG. 8 is a front view of the seismic retrofit structure of FIG.

【図9】 本発明の耐震補強構造を適用した建物の一例
の模式的な正面図である。
FIG. 9 is a schematic front view of an example of a building to which the seismic retrofit structure of the present invention is applied.

【図10】 本発明の耐震補強構造を適用した建物の別
例の模式的な正面図である。
FIG. 10 is a schematic front view of another example of a building to which the earthquake-resistant reinforcement structure of the present invention is applied.

【図11】 地震による建物の層間変形を示す模式的な
正面図である。
FIG. 11 is a schematic front view showing interlayer deformation of a building due to an earthquake.

【図12】 耐震補強部材のない場合のモーメント分布
と上下梁の中間部分に耐震補強部材を設置した場合のモ
ーメント分布を示す概念図である。
FIG. 12 is a conceptual diagram showing a moment distribution in the case where no seismic reinforcement member is provided and a moment distribution in a case where the seismic reinforcement member is installed at an intermediate portion between the upper and lower beams.

【図13】 耐震補強部材の極低降伏点鋼材部分の曲げ
せん断実験例に用いた試験体形状と水平荷重・水平変位
関係を示す図である。
FIG. 13 is a diagram showing the relationship between the shape of a test piece and a horizontal load / horizontal displacement used in a bending-shear test example of an extremely low yield point steel part of an earthquake-resistant reinforcing member.

【図14】 耐震性能のない建物の耐震補強前と後の地
震応答特性を示すグラフである。
FIG. 14 is a graph showing seismic response characteristics of a building without seismic performance before and after seismic reinforcement.

【符号の説明】[Explanation of symbols]

1 建物 2 柱 3 梁 4 柱と梁に囲まれた空間 5 耐震補強部材 5a 耐震補強部材の極低降伏点鋼材 5b 耐震補強部材の普通鋼材 6 床スラブ 7 袖壁 8 連結プレート 9 ボルト・ナット 10 ベースプレート 11 リブプレート 12 高力ボルト・ナット 13 接合プレート 14 高力ボルト・ナット 15 接合金物 16 高力ボルト・ナット 17 ボルト・ナット 18 縦リブプレート 19 連結プレート 20 連結プレート 21 ボルト・ナット 22 グラウト材 23 コンクリート充填 DESCRIPTION OF SYMBOLS 1 Building 2 Column 3 Beam 4 Space surrounded by column and beam 5 Seismic reinforcement member 5a Extremely low yield point steel material of seismic reinforcement member 5b Ordinary steel material of seismic reinforcement member 6 Floor slab 7 Sleeve wall 8 Connecting plate 9 Bolt / nut 10 Base plate 11 Rib plate 12 High-strength bolt / nut 13 Joint plate 14 High-strength bolt / nut 15 Joint hardware 16 High-strength bolt / nut 17 Bolt / nut 18 Vertical rib plate 19 Connection plate 20 Connection plate 21 Bolt / nut 22 Grout material 23 Concrete filling

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 柱と梁で囲まれた空間の外側であって窓
等の開口部を閉塞しない部位にて耐震補強部材を上下階
の床スラブに接合することを特徴とする、RC造または
SRC造の既存建物の耐震補強構造
An RC building or an RC building characterized in that an earthquake-resistant reinforcing member is joined to floor slabs of upper and lower floors at a portion outside a space surrounded by columns and beams and which does not block openings such as windows. Seismic reinforcement structure of existing SRC building
【請求項2】 耐震補強部材を極低降伏点鋼材の上下端
部に普通鋼材を接合したサンドイッチ構成としたことを
特徴とする請求項1に記載の耐震補強構造
2. The seismic strengthening structure according to claim 1, wherein the seismic strengthening member has a sandwich structure in which ordinary steel is joined to upper and lower ends of an extremely low yield point steel.
【請求項3】 普通鋼材の端部を広げて床スラブとの接
合部の固定度を上げたことを特徴とする請求項2に記載
の耐震補強構造
3. The seismic reinforcement structure according to claim 2, wherein the end of the ordinary steel material is widened to increase the degree of fixation of the joint with the floor slab.
JP31000297A 1997-10-24 1997-10-24 Earthquake resistant reinforcing structure for existing building Pending JPH11131693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31000297A JPH11131693A (en) 1997-10-24 1997-10-24 Earthquake resistant reinforcing structure for existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31000297A JPH11131693A (en) 1997-10-24 1997-10-24 Earthquake resistant reinforcing structure for existing building

Publications (1)

Publication Number Publication Date
JPH11131693A true JPH11131693A (en) 1999-05-18

Family

ID=17999972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31000297A Pending JPH11131693A (en) 1997-10-24 1997-10-24 Earthquake resistant reinforcing structure for existing building

Country Status (1)

Country Link
JP (1) JPH11131693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344387A (en) * 2004-06-03 2005-12-15 Shimizu Corp Stud and composite wall using the same
KR100739449B1 (en) * 2006-06-12 2007-07-16 쌍용건설 주식회사 Method for installation of new column in remodeling apartment house

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344387A (en) * 2004-06-03 2005-12-15 Shimizu Corp Stud and composite wall using the same
JP4552114B2 (en) * 2004-06-03 2010-09-29 清水建設株式会社 Synthetic wall
KR100739449B1 (en) * 2006-06-12 2007-07-16 쌍용건설 주식회사 Method for installation of new column in remodeling apartment house

Similar Documents

Publication Publication Date Title
KR101920417B1 (en) Seismic retrofit structure
JPH10131516A (en) Reinforcing structure of existing building
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP4621072B2 (en) Seismic structure
JP2003097057A (en) Earthquake resistant reinforcing structure and method for existing building
JP3170535B2 (en) Damping structure
JPH11131693A (en) Earthquake resistant reinforcing structure for existing building
JP3124515B2 (en) Building seismic reinforcement structure
KR20190123025A (en) Beam-girder joint of prefabricated steel assembly
JP2001248331A (en) Installation structure and installation method for vibration control damper
JP2002317498A (en) Framework structure of multistory building
JPH10331437A (en) Earthquake resistant reinforcing construction for existing beam and column
JP4071192B2 (en) Damping structure of building structure
JP2002309680A (en) Reinforced concrete framework corresponding to skeleton in-fill
JP2000017849A (en) Vibration control reinforcing structure of existing building
JPH10184031A (en) Method of earthquake-proof reinforcing for already constructed pillar beam construction
JP3418681B2 (en) Installation method of ultra mild steel panel damper in precast RC building structure
JPH1162265A (en) Aseismatic reinforcing method of existing building
JP7435979B2 (en) Earthquake reinforcement structure for existing buildings using CLT
CN219100441U (en) Connection structure of filling wallboard and main structure
JP2000291289A (en) Joining structure of earthquake resistant member
JPH0932311A (en) Reinforcement structure of existing building
JP2023150444A (en) Attachment structure for additional reinforcement frame structure and construction method thereof
KR100323774B1 (en) Adjustable beam/slab hanging form system
JP2002303050A (en) Seismic reinforcing strut and seismic strengthening frame using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125