JPH11129092A - Flux cored wire for gas shield arc welding - Google Patents

Flux cored wire for gas shield arc welding

Info

Publication number
JPH11129092A
JPH11129092A JP29741697A JP29741697A JPH11129092A JP H11129092 A JPH11129092 A JP H11129092A JP 29741697 A JP29741697 A JP 29741697A JP 29741697 A JP29741697 A JP 29741697A JP H11129092 A JPH11129092 A JP H11129092A
Authority
JP
Japan
Prior art keywords
flux
wire
iron
alloy powder
cored wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29741697A
Other languages
Japanese (ja)
Other versions
JP3717644B2 (en
Inventor
Koichi Aoki
宏一 青木
Atsuo Onoda
敦夫 小埜田
Masao Kamata
政男 鎌田
Hitoshi Nishimura
均 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP29741697A priority Critical patent/JP3717644B2/en
Publication of JPH11129092A publication Critical patent/JPH11129092A/en
Application granted granted Critical
Publication of JP3717644B2 publication Critical patent/JP3717644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flux cored wire, wherein the segregation of component and unevenness of thickness at a skin part are eliminated as much as possible and excellent welding performance is obtained with a high efficient continuous manufacturing method to seam weld the juncture of belt steels by reviewing source powder of Si, Mn, and Ni, which the flux contains as an essential component at a large amount. SOLUTION: The flux composed of ferrous base Si-Mn alloy powder with a particle diameter of 212 μm or the source powder with relative permeability of 1.10 μ or less, is fulfilled in the skin of the manufactured steel. The source powder comprises, at weight %, 0.40-1.20% C, 5-12% Si, 19-42% Mn, and the balance of Fe. Also, Si satisfies a formula (I): Si>=11.89-2.92C-0.077 Mn, or additionally satisfies a formula (II): Si>=8.3C+0.14 Mn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼構造物の製造に
使用するガスシールドアーク溶接用フラックス入りワイ
ヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux-cored wire for gas shielded arc welding used for manufacturing a steel structure.

【0002】[0002]

【従来の技術】近年、船舶、橋梁、圧力容器等を初めと
する溶接鋼構造物の製造分野においては、ガスシールド
アーク溶接用フラックス入りワイヤ(以下、フラックス
入りワイヤという。)の使用量が増加している。図4に
市販フラックス入りワイヤの代表的な断面構造例を示し
たが、外皮部に隙間がないシームレスタイプ(図4
(a)、(b))と外皮部1に隙間3がある巻き締めタ
イプ(図4(c)、(d))とに大別できる。特にシー
ムレスタイプのものは、製造過程で高温度で行う脱水素
処理が出来、また使用中にも吸湿しないのでワイヤの持
つ水素量が低く、耐割れ性や耐気孔性に優れている。外
皮素材は伸線加工性が良好な軟鋼が一般的であり、内部
のフラックスはその使用目的、用途に応じてスラグ形成
剤、脱酸剤、合金剤、鉄粉及びその他アーク安定剤等種
々の原料粉からなる。ワイヤ径は溶接能率及び溶接作業
性の観点から細径(ワイヤ径:2.0mm以下)のもの
が使用されている。
2. Description of the Related Art In recent years, in the field of manufacturing welded steel structures such as ships, bridges, pressure vessels, etc., the use of flux-cored wires for gas shielded arc welding (hereinafter referred to as flux-cored wires) has increased. doing. FIG. 4 shows an example of a typical cross-sectional structure of a commercially available flux cored wire.
(A), (b)) and a tightening type (FIG. 4 (c), (d)) having a gap 3 in the outer skin portion 1. In particular, the seamless type can be dehydrogenated at a high temperature in the manufacturing process and does not absorb moisture during use, so that the wire has a low hydrogen content and is excellent in crack resistance and porosity resistance. The outer shell material is generally mild steel with good wire drawability, and the inner flux is made of various materials such as slag forming agent, deoxidizing agent, alloying agent, iron powder and other arc stabilizers depending on the purpose of use and application. Consists of raw material powder. As the wire diameter, a wire having a small diameter (wire diameter: 2.0 mm or less) is used from the viewpoint of welding efficiency and welding workability.

【0003】フラックス入りワイヤは、軟鋼及び490
N/mm2 級高張力鋼用、590N/mm2 級高張力鋼
用、低温用鋼用など種々市販されている。さらに、これ
らフラックス入りワイヤは全姿勢用、すみ肉用、高溶着
用など用途に応じて組成の異なるフラックスが充填され
ている。全姿勢用は良好な溶接作業性が得られるように
TiO2 を主体とするスラグ系、高溶着用は鉄粉を主体
とするメタル系、すみ肉用は耐プライマ性向上を考慮し
てスラグ形成剤をやや少な目にした中間タイプのものが
一般的である。これら充填フラックスに共通する点は軟
鋼外皮を用いているために、フラックス中に溶接金属の
機械的性質を確保するために必要な多量のSi、Mnの
原料粉を含有していることにある。Si、Mnの原料粉
の割合が多いことは、それら原料粉の特性がフラックス
入りワイヤの生産性及び溶接性能に重要な影響をおよぼ
す。
[0003] The flux cored wire is made of mild steel and 490.
N / mm for 2 class high strength steel, 590N / mm for 2 class high strength steel, have been variously marketed such a low temperature steel. Further, these flux-cored wires are filled with fluxes having different compositions depending on applications such as for all postures, for fillets, and for high welding. All-position for the slag system that good weldability TiO 2 -based so as to obtain the metal system for high deposition mainly composed of iron powder, corner for meat in consideration of the resistance to primer improve slag formation An intermediate type in which the agent is slightly reduced is generally used. The common feature of these filling fluxes is that the use of a mild steel sheath makes the flux contain a large amount of raw material powders of Si and Mn necessary for securing the mechanical properties of the weld metal. When the ratio of the raw material powders of Si and Mn is large, the characteristics of the raw material powders have an important influence on the productivity and welding performance of the flux-cored wire.

【0004】フラックス入りワイヤに含有されるSi、
Mnは脱酸剤及び合金剤として必須の成分であり、溶接
金属の機械的性質(強度、靱性等)の確保とともに、脱
酸反応で生成したSiO2 、MnOは溶融スラグ組成の
主要成分となりビード形成にも寄与する。仮にワイヤ長
手方向にSi、Mnの偏析があると、溶接金属中への歩
留まりが変化して強度、靱性にばらつきが生じるばかり
でなく、ビード形状やスラグ剥離性などの溶接作業性が
劣化する。
[0004] Si contained in the flux-cored wire,
Mn is an essential component as a deoxidizing agent and an alloying agent. While securing the mechanical properties (strength, toughness, etc.) of the weld metal, SiO 2 and MnO generated by the deoxidizing reaction become the main components of the molten slag composition and bead. Also contributes to formation. If there is segregation of Si and Mn in the longitudinal direction of the wire, not only the yield in the weld metal changes, causing variations in strength and toughness, but also deteriorates welding workability such as bead shape and slag removability.

【0005】また、Si、Mnの原料粉の特性はワイヤ
の製造工程における伸線加工性にも影響し、後記するよ
うに原料粉の影響で外皮部肉厚の均一性が損なわれた場
合には断線発生の原因となる他、溶接中、アークが不安
定になりスパッタが多発するなど溶接作業性が劣化す
る。即ち、本来均一であるべき外皮部肉厚の変動が大き
くなったり、フラックス原料が外皮部に噛み込んでいる
と、ワイヤの溶融状態(溶滴移行性)が乱れ、アーク不
安定やスパッタの発生量が多くなる。
[0005] The properties of the raw material powders of Si and Mn also affect the drawability in the wire manufacturing process, and as described later, when the uniformity of the outer wall thickness is impaired by the influence of the raw material powders. In addition to causing wire breakage, the welding workability is deteriorated, for example, the arc becomes unstable during welding and spatters are frequently generated. In other words, if the thickness of the outer skin portion, which should be uniform, becomes large, or if the flux material is stuck in the outer skin portion, the molten state (droplet transferability) of the wire is disturbed, causing arc instability and spatter generation. The amount increases.

【0006】さらに、低水素化に有利なシームレスタイ
プのフラックス入りワイヤを、特公平4−72640号
公報、特公平4−62838号公報及び特開平5−31
594号公報等の提案に見られるように、帯鋼を管状体
に成形する段階でフラックスを充填した後、帯鋼の合わ
せ目のシーム溶接を行い連続的に能率よく製造しようと
した場合、フラックス中に磁性を持つ原料粉が含有され
ているとシーム溶接部に融合不良や溶接スパッタ(この
時のスパッタはフラックス中にも落下混入する)等が発
生しやすくなり、フラックス入りワイヤの製造歩留まり
の低下のみならずワイヤ溶接中に安定した溶融状態が得
られにくくなる。従って、Si、Mnの原料粉はSi、
Mnの偏析や外皮部肉厚の均一性を損なうことなく、か
つ、非磁性であることが好ましい。
Further, a seamless type flux-cored wire advantageous for low hydrogenation is disclosed in Japanese Patent Publication Nos. 4-72640, 4-62838 and 5-31.
As shown in the proposal of Japanese Patent No. 594, etc., when the flux is filled at the stage of forming the steel strip into a tubular body, the seam welding at the joint of the steel strip is performed to continuously and efficiently manufacture the flux. If magnetic material powder is contained in the seam, poor fusion and welding spatter (spatter at this time will also fall into the flux) will easily occur in the seam welded part, and the production yield of flux cored wire will be reduced. In addition to the decrease, it becomes difficult to obtain a stable molten state during wire welding. Therefore, the raw material powders of Si and Mn are Si,
It is preferable that it is nonmagnetic without deteriorating Mn segregation or uniformity of the outer wall thickness.

【0007】また、高張力鋼用や低温用鋼用のフラック
ス入りワイヤなどのようにフラックス中にSi、Mnと
ともにNiが含有されている場合、Niの偏析があると
Si、Mnとの相乗作用により溶接金属の顕著な強度変
化や靱性低下をもたらす。しかも、Niが強磁性体であ
ることは帯鋼の合わせ目のシーム溶接性を損ない生産性
低下とともに、フラックス入りワイヤとしての溶接性能
を悪くする。従って、Niの原料粉についても生産性及
び溶接性能に充分に配慮したものを用いる必要がある。
しかしながら、従来のフラックス入りワイヤにおいて
は、基本的なワイヤ成分として必須のSi、Mnの原料
粉及び溶接金属の強度、靱性の確保に有効なNiの原料
粉の影響に着目して溶接性能の一層の向上を図った検討
が充分になされていないのが現状である。
In addition, when Ni is contained together with Si and Mn in a flux, such as a flux-cored wire for high-strength steel or low-temperature steel, if Ni is segregated, a synergistic action with Si and Mn is caused. This causes a remarkable change in strength and a decrease in toughness of the weld metal. In addition, the fact that Ni is a ferromagnetic material impairs the seam weldability of the joint of the steel strip, lowers productivity, and deteriorates the welding performance as a flux-cored wire. Therefore, it is necessary to use a Ni raw material powder that takes into account the productivity and welding performance.
However, in the conventional flux-cored wire, the welding performance is further improved by focusing on the effects of the Si and Mn raw powders, which are essential as basic wire components, and the Ni raw powder that is effective in securing the strength and toughness of the weld metal. At present, there has not been enough studies to improve the quality.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、フ
ラックス中に必須成分として多量に含有させるSi、M
nの原料粉及びNiの原料粉についても見直し、成分の
偏析や外皮部肉厚の不均一が極力なく、さらには帯鋼の
合わせ目のシーム溶接を行う高能率な連続的製造方法に
よっても優れた溶接性能が得られるフラックス入りワイ
ヤを提供することを目的とする。
Accordingly, the present invention provides a method for producing Si, M, which is contained in a flux as an essential component in a large amount.
The raw material powder of n and the raw material powder of Ni have also been reviewed, and segregation of components and uneven thickness of the outer shell have been minimized. An object of the present invention is to provide a flux-cored wire capable of obtaining excellent welding performance.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、 (1) 重量%で、C :0.40〜1.20%、S
i:5〜12%、Mn:19〜42%、残部Feからな
り、かつ、Si≧11.89−2.92C−0.077
Mnを満たし、粒径が212μm以下の鉄系Si−Mn
合金粉を含むフラックスを鋼製外皮内に充填してなるこ
とを特徴とするガスシールドアーク溶接用フラックス入
りワイヤ。
The gist of the present invention is as follows: (1) C: 0.40 to 1.20% by weight;
i: 5 to 12%, Mn: 19 to 42%, balance Fe, and Si ≧ 11.8-9.92C-0.077
Fe-containing Si-Mn that satisfies Mn and has a particle size of 212 μm or less.
A flux-cored wire for gas shielded arc welding, characterized in that a flux containing an alloy powder is filled in a steel sheath.

【0010】(2) 重量%で、C :0.40〜1.
20%、Si:5〜12%、Mn:19〜42%、残部
Feからなり、かつ、Si≧11.89−2.92C−
0.077Mn及びSi≦8.3C+0.14Mnを満
たし、粒径が212μm以下の鉄系Si−Mn合金粉を
含み、比透磁率(μ)≦1.10の原料からなるフラッ
クスを鋼製外皮内に充填してなることを特徴とするガス
シールドアーク溶接用フラックス入りワイヤ。
(2) C: 0.40-1.
20%, Si: 5 to 12%, Mn: 19 to 42%, the balance being Fe, and Si ≧ 11.8-9.92C−
A flux made of a material satisfying 0.077Mn and Si ≦ 8.3C + 0.14Mn, containing an iron-based Si—Mn alloy powder having a particle size of 212 μm or less, and having a relative magnetic permeability (μ) ≦ 1.10. A flux-cored wire for gas shielded arc welding, characterized by being filled with a flux.

【0011】(2) 重量%で、C :0.30〜1.
20%、Si:5〜12%、Mn:19〜42%、N
i:30%以下、残部Feからなり、かつ、Si≧1
1.89−2.92C−0.077Mn−0.062N
iを満たし、粒径が212μm以下の鉄系Si−Mn−
Ni合金粉を含むフラックスを、鋼製外皮内に充填して
なることを特徴とするガスシールドアーク溶接用フラッ
クス入りワイヤ。
(2) C: 0.30-1.
20%, Si: 5 to 12%, Mn: 19 to 42%, N
i: 30% or less, the balance being Fe, and Si ≧ 1
1.89-2.92C-0.077Mn-0.062N
i, and the particle diameter is 212 μm or less.
A flux-cored wire for gas shielded arc welding, characterized in that a flux containing Ni alloy powder is filled in a steel sheath.

【0012】(4) 重量%で、C :0.30〜1.
20%、Si:5〜12%、Mn:19〜42%、N
i:30%以下、残部Feからなり、かつ、Si≧1
1.89−2.92C−0.077Mn−0.062N
i及びSi≦8.3C+0.14(Mn+Ni)を満た
し、粒径が212μm以下の鉄系Si−Mn−Ni合金
粉を含み、比透磁率(μ)≦1.10の原料粉からなる
フラックスを鋼製外皮内に充填してなることを特徴とす
るガスシールドアーク溶接用フラックス入りワイヤにあ
る。
(4) C: 0.30-1.
20%, Si: 5 to 12%, Mn: 19 to 42%, N
i: 30% or less, the balance being Fe, and Si ≧ 1
1.89-2.92C-0.077Mn-0.062N
i and Si ≦ 8.3C + 0.14 (Mn + Ni), a flux comprising iron-based Si—Mn—Ni alloy powder having a particle size of 212 μm or less and a relative magnetic permeability (μ) ≦ 1.10. A flux-cored wire for gas shielded arc welding characterized by being filled in a steel sheath.

【0013】[0013]

【発明の実施の形態】本発明は、上記限定した組成及び
粒径の鉄系Si−Mn合金粉または鉄系Si−Mn−N
i合金粉をフラックス原料として用いることを基本とす
る。フラックス入りワイヤに含有させるSi、Mnの原
料としては、従来よりJIS規格に規定されたSi粉、
Mn粉、フェロシリコン、フェロマンガン、シリコマン
ガンなどの合金粉が主に用いられている。フラックス入
りワイヤの製造時、入手した各原料の成分、粒度構成は
厳密に管理されるが、原料種類毎、また原料の製造ロッ
ト単位毎にその成分範囲及び粒度構成には差異が生じて
いる。従って、上記数種類のSi、Mnの原料粉を組み
合わせて配合するよりも、目標成分と同じ成分を持った
単一の鉄系Si−Mn合金粉を予め用意して、これをS
i、Mnの原料として配合する方がワイヤ中のフラック
ス成分及びフラックス充填率が安定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an iron-based Si-Mn alloy powder or an iron-based Si-Mn-N having the above-defined composition and particle size.
Basically, i-alloy powder is used as a flux material. As raw materials of Si and Mn to be contained in the flux-cored wire, Si powder conventionally specified in JIS standards,
Alloy powders such as Mn powder, ferrosilicon, ferromanganese, and silicomanganese are mainly used. At the time of manufacturing the flux-cored wire, the components and the particle size composition of each raw material obtained are strictly controlled, but there are differences in the component ranges and the particle size configurations for each raw material type and each raw material production lot unit. Therefore, a single iron-based Si-Mn alloy powder having the same component as the target component is prepared in advance and mixed with the S / Mn raw material powder.
Mixing as a raw material of i and Mn stabilizes the flux component and the flux filling rate in the wire.

【0014】さらに、本発明で用いる鉄系Si−Mn合
金粉はSi及びMnの含有量を、従来一般的に用いられ
ているシリコマンガン(JIS G2304−198
6)の組成に比較して格段に少なくし、かつ、その粒径
も細粒のものにした。これによりSi、Mnの品位の低
い粒子がフラックス中に充分均一に分布出来るようにし
た。これらによりワイヤ長手方向のSi、Mnの分布が
非常に均一になったことは溶着金属試験(JIS Z
3313)及び溶接作業性試験により充分に確認出来
た。
Further, the iron-based Si-Mn alloy powder used in the present invention has a content of Si and Mn which is controlled by the conventionally used silicomanganese (JIS G2304-198).
Compared with the composition of 6), the composition was remarkably reduced, and the particle size was fine. Thus, low-grade particles of Si and Mn can be sufficiently uniformly distributed in the flux. The fact that the distribution of Si and Mn in the longitudinal direction of the wire became very uniform due to these factors was confirmed by the weld metal test (JIS Z).
3313) and welding workability test.

【0015】なお、ワイヤ成分としてSiとMnの含有
量の関係が常に一定であることは、特に低温用鋼用ワイ
ヤによる溶接金属の機械的性質やすみ肉用ワイヤによる
水平すみ肉溶接のスラグ被包性の安定化をもたらした。
また、鉄系Si−Mn合金粉のFe成分を高くしたこと
は、溶接金属の機械的性質面から同一のSi、Mn含有
量のワイヤを設計する場合、そのFe成分の割合だけフ
ラックス充填率を高くすることが出来るようになり、溶
着速度やアーク安定性の向上という効果をもたらした。
この高充填率化による効果は、特に非磁性のフラックス
原料が必要な帯鋼の合わせ目のシーム溶接を行う高能率
な連続的製造方法によるフラックス入りワイヤにおいて
発揮された。
The fact that the relationship between the contents of Si and Mn as wire components is always constant is particularly the fact that the mechanical properties of the weld metal by the low-temperature steel wire and the slag encapsulation in horizontal fillet welding by the fillet wire. Sexual stabilization.
In addition, increasing the Fe component of the iron-based Si-Mn alloy powder means that when designing a wire having the same Si and Mn content in terms of the mechanical properties of the weld metal, the flux filling rate is increased by the proportion of the Fe component. As a result, the welding speed and the arc stability can be improved.
The effect of increasing the filling rate was particularly exhibited in a flux-cored wire by a highly efficient continuous production method of seam welding a joint of a steel strip requiring a nonmagnetic flux material.

【0016】Niの原料粉としては、従来からJIS規
格に規定されたフェロニッケル粉、またはNi粉などが
一般的に用いられている。本発明ではフラックス入りワ
イヤに必須成分であるSi、Mnを含む上記限定した単
一の鉄系Si−Mn−Ni合金粉を用いる。これにより
フラックス中及び溶接金属のSi、Mn及びNiの関係
にばらつきがなくなり、溶接金属の機械的性質が安定し
た。また、鉄系Si−Mn−Ni合金粉についても非磁
性化の面から限定した組成のものを用いることにより、
従来困難であった帯鋼の合わせ目のシーム溶接を行う高
能率な連続的製造方法により製造するフラックス入りワ
イヤにNiを含有させることが出来るようになった。
As a raw material powder of Ni, ferronickel powder or Ni powder specified in JIS has conventionally been generally used. In the present invention, the above-described single iron-based Si-Mn-Ni alloy powder containing Si and Mn as essential components for the flux cored wire is used. As a result, the relationship between Si, Mn, and Ni in the flux and the weld metal did not vary, and the mechanical properties of the weld metal were stabilized. In addition, by using an iron-based Si-Mn-Ni alloy powder having a composition limited in terms of demagnetization,
A flux-cored wire manufactured by a high-efficiency continuous manufacturing method of performing seam welding at a joint of a strip, which has been difficult in the past, can contain Ni.

【0017】次に、図5に模式的に拡大して示したよう
なワイヤ長手方向断面の観察で見られる外皮部1の肉厚
減少部分5やフラックス原料粉6が外皮部に噛み込んだ
部分7は、フラックス部が伸線加工の進行にともない外
皮部から連続的な押し圧力を受け、順次圧縮され堅く締
まった状態となり、フラックス原料の個々の粒子の自由
な移動が妨げられ、外皮部の延びに対するフラックス部
の追従性を保持出来なくなったことによって生じる。こ
のような外皮部肉厚の変化は、シームレスタイプでフラ
ックス充填率が高くなったり、金属粉の含有量の多いメ
タル系ワイヤにおいて特に生じやすい。
Next, a portion 5 where the thickness of the outer skin portion 1 is reduced and a portion where the flux raw material powder 6 is caught in the outer skin portion as observed by observing a longitudinal section of the wire as schematically shown in FIG. 7, the flux portion receives a continuous pressing force from the outer skin portion as the wire drawing progresses, is sequentially compressed and becomes tightly tightened, and the free movement of the individual particles of the flux raw material is hindered. This is caused by failure to maintain the ability of the flux portion to follow the elongation. Such a change in the outer wall thickness is particularly likely to occur in a metal-type wire which is a seamless type and has a high flux filling rate or a high content of metal powder.

【0018】これに対し、本発明で用いる鉄系Si−M
n合金粉及び鉄系Si−Mn−Ni合金粉には、フラッ
クス部の追従性を良好にして外皮部肉厚の均一性を高め
るために伸線加工中に破砕しやすくなる特性を与えた。
Si、Mn及びCの下限設定とともに、特にSiの下限
をC、Mnとの関係で規制した組成に限定することによ
って非常に脆い鉄合金となり、しかも、原料製造中の通
常の機械的粉砕の衝撃により個々の粒子に微小な亀裂
(ひび割れ)が生じるようになり、伸線加工中の破砕性
が容易になることを見いだした。
On the other hand, the iron-based Si-M used in the present invention
The n-alloy powder and the iron-based Si-Mn-Ni alloy powder were given such a property that they could be easily crushed during wire drawing in order to improve the followability of the flux portion and increase the uniformity of the outer cover wall thickness.
By setting the lower limits of Si, Mn, and C, and particularly by limiting the lower limit of Si to a composition regulated by the relationship with C and Mn, a very brittle iron alloy is obtained, and the impact of ordinary mechanical pulverization during raw material production As a result, it has been found that minute cracks (cracks) are generated in individual particles, and the friability during wire drawing is facilitated.

【0019】図1に本発明によるフラックス入りワイヤ
を伸線加工の中間段階で採取して観察したワイヤ長手方
向断面のフラックス充填状態を模式的に示した。外皮部
肉厚の均一性は良好で、フラックス原料の噛み込みは見
られない。フラックス部2に分布する鉄系Si−Mn合
金粉または鉄系Si−Mn−Ni合金粉8(拡大図)に
注目すると、その大部分の粒子が破砕された状態、或い
は粒子に亀裂が見られ、この破砕性が外皮部1の伸びに
対するフラックス部2の追従性を良好にするように作用
する。
FIG. 1 schematically shows a state in which a flux-filled wire according to the present invention is filled in a longitudinal section of the wire when the flux-cored wire is sampled at an intermediate stage of wire drawing. The uniformity of the outer wall thickness is good, and no bite of the flux material is observed. When attention is paid to the iron-based Si-Mn alloy powder or the iron-based Si-Mn-Ni alloy powder 8 (enlarged view) distributed in the flux portion 2, most of the particles are in a crushed state, or cracks are observed in the particles. This friability acts to improve the followability of the flux portion 2 with respect to the elongation of the outer skin portion 1.

【0020】即ち、フラックス充填後、一般にダイス群
あるいはロール群により伸線加工されるが、ワイヤが縮
径される毎にフラックス部は押し圧力を受け、このとき
非常に脆い鉄合金粉であればその粒子は押し圧力に抗し
きれず破砕される。また、粒子に元々亀裂が入っている
原料粉であることは、さらに破砕性に効果的である。伸
線加工中、縮径毎にこの破砕挙動が繰り返される結果、
鉄合金粉自身及び周囲近傍のフラックス粒子を移動しや
すくし、細径段階まで外皮部1の延びに対するフラック
ス部2の追従性が良好となり、外皮部肉厚の均一性が保
たれる。
That is, after the flux is filled, the wire is generally drawn by a die group or a roll group. Each time the wire is reduced in diameter, the flux portion is subjected to a pressing force. The particles are crushed because they cannot withstand the pressing force. Further, the fact that the raw material powder has cracks originally in the particles is more effective for crushing. During wire drawing, this crushing behavior is repeated for each diameter reduction,
The iron alloy powder itself and the flux particles near the periphery are easily moved, the followability of the flux portion 2 with respect to the extension of the outer skin portion 1 up to the small diameter stage is improved, and the uniformity of the thickness of the outer skin portion is maintained.

【0021】さらに、本発明では実質的に非磁性の鉄系
Si−Mn合金粉及び鉄系Si−Mn−Ni合金粉を用
いることにより、前記各公報の提案に記載された帯鋼の
合わせ目のシーム溶接に係わる問題点を解決した。伸線
加工中の破砕性に対しては、上記鉄合金粉のSi、Mn
を増加させること、特にSiの増加が有効であったが、
Siの増加は非磁性化には相反する作用を持つために、
破砕性と非磁性という両特性を備えた組成範囲に限定し
た。
Further, in the present invention, by using substantially nonmagnetic iron-based Si-Mn alloy powder and iron-based Si-Mn-Ni alloy powder, the joints of the strips described in the proposals of the above publications can be obtained. Solved the problems related to seam welding. Regarding the friability during wire drawing, Si, Mn of the above iron alloy powder
Increased, especially the increase of Si was effective,
Since the increase of Si has a contradictory effect on demagnetization,
The composition range was limited to those having both friability and non-magnetic properties.

【0022】なお、前記特公平4−62838号公報及
び特開平5−31594号公報には非磁性で鉄含有量の
多いFe−Mn系合金粉を用いたフラックス入りワイヤ
が記載されている。しかし、その実施例からも明らかな
ようにフラックス入りワイヤに必要な所定量のSiは、
別種の原料粉から含有させるものであり、本発明による
フラックス入りワイヤのように単一の鉄系Si−Mn合
金粉を用いることによりフラックス成分の偏析防止及び
伸線加工中の破砕効果による溶接性能改善という技術思
想は何等開示されていない。
The above-mentioned Japanese Patent Publication No. 4-62838 and Japanese Patent Application Laid-Open No. 5-31594 disclose a flux-cored wire using a nonmagnetic Fe-Mn alloy powder having a high iron content. However, as is clear from the example, the predetermined amount of Si required for the flux-cored wire is:
It is contained from different kinds of raw material powders, and by using a single iron-based Si-Mn alloy powder like the flux-cored wire according to the present invention, the segregation of flux components is prevented and the welding performance due to the crushing effect during wire drawing is performed. No technical idea of improvement is disclosed.

【0023】以下に、本発明のフラックス入りワイヤに
含有させる鉄系Si−Mn合金粉及び鉄系Si−Mn−
Ni合金粉の限定理由について説明する。Cは鉄合金粉
の伸線加工中の破砕性を良好にし、また非磁性化にも有
効に作用する成分である。鉄系Si−Mn合金粉のCが
0.40%未満では伸線加工中に破砕しにくく外皮部肉
厚が不均一になりやすく溶接作業性が劣化する。一方、
Cが1.20%を超えても鉄合金粉の破砕性及び非磁性
化に対する効果はほとんど変わらず、むしろフラックス
入りワイヤのC含有量が過剰になり、スパッタ発生や溶
接金属の強度過大などの悪影響が出るので上限を1.2
0%に限定した。なお、鉄系Si−Mn−Ni合金粉に
おいては、Niにより破砕性及び非磁性化が促進される
ので、Cの下限を0.30%にまで拡大することが出来
る。
Hereinafter, the iron-based Si—Mn alloy powder and the iron-based Si—Mn—
The reason for limiting the Ni alloy powder will be described. C is a component that improves the friability of the iron alloy powder during wire drawing and also effectively acts on demagnetization. If the iron-based Si-Mn alloy powder has a C content of less than 0.40%, it is difficult to fracture during wire drawing, and the thickness of the outer skin is likely to be non-uniform, thus deteriorating welding workability. on the other hand,
Even if C exceeds 1.20%, the effect on the friability and demagnetization of the iron alloy powder hardly changes, but rather the C content of the flux-cored wire becomes excessive, causing spatter generation and excessive strength of the weld metal. The upper limit is set to 1.2 because of adverse effects
Limited to 0%. In the case of iron-based Si-Mn-Ni alloy powder, Ni promotes friability and demagnetization, so that the lower limit of C can be increased to 0.30%.

【0024】Siは脱酸剤及び合金剤としての役割以外
に、鉄系Si−Mn合金粉及び鉄系Si−Mn−Ni合
金粉の伸線加工中の破砕性を良好にするために不可欠
で、5%以上必要である。Siが5%未満では破砕効果
が充分に発揮されず外皮部肉厚が不均一になる。一方、
Siが12%を超えても破砕性に対する効果はほとんど
変わらないことと、フラックス入りワイヤのSi含有量
が過剰になり、溶接金属の強度過大や靱性低下の原因と
なるので上限を12%に限定した。なお、Siは破砕性
及び非磁性化の面からC、Mn及びNiの含有量との関
係において規制される。
In addition to the role of Si as a deoxidizing agent and an alloying agent, Si is indispensable for improving the friability of iron-based Si-Mn alloy powder and iron-based Si-Mn-Ni alloy powder during wire drawing. 5% or more is required. If the content of Si is less than 5%, the crushing effect is not sufficiently exerted, and the thickness of the outer skin becomes uneven. on the other hand,
Even if the Si content exceeds 12%, the effect on the friability hardly changes, and the Si content of the flux-cored wire becomes excessive, which causes excessive strength and reduced toughness of the weld metal, so the upper limit is limited to 12%. did. Note that Si is regulated in relation to the contents of C, Mn, and Ni in terms of friability and demagnetization.

【0025】鉄系Si−Mn合金粉の場合、Si≧1
1.89−2.92C−0.077Mn(式)を満た
す組成であれば、その溶解製造過程における粉砕工程の
衝撃により大部分が粒子状に粉砕され、かつ、各粒子に
亀裂(ひび割れ)が生じることになり、伸線加工中の破
砕性が良好で、外皮部肉厚が不均一にならず、アークが
安定しスパッタ発生量も低減する。
In the case of iron-based Si—Mn alloy powder, Si ≧ 1
If the composition satisfies 1.89-2.92C-0.077Mn (formula), most of the particles are pulverized into particles by the impact of the pulverization step in the melt production process, and cracks (cracks) occur in each particle. As a result, the friability during wire drawing is good, the thickness of the outer skin is not uneven, the arc is stabilized, and the amount of spatter generated is reduced.

【0026】他方、鉄系Si−Mn合金粉が非磁性であ
るためには、Si≦8.3C+0.14Mn(式)に
より規制される。つまり、C、Mnの増加は鉄合金粉の
オーステナイト化傾向を高めるが、Siはフェライト形
成能が高い成分であり磁性化の方に働く。この式を満
たすSiの範囲においては、フェライト量がほとんど消
失し、振動試料型磁力計により測定した非透磁率(μ)
が1.10以下となった。比透磁率(μ)が1.10以
下という値は磁性を僅かに帯びる性質を有する限界値で
あって実質的に非磁性と言える。前記帯鋼の合わせ目の
シーム溶接をともなうフラックス入りワイヤの製造に用
いてもシーム溶接部に溶接欠陥が全く発生しないで、良
好な溶接結果が得られる。即ち、本発明によるフラック
ス入りワイヤに用いる鉄系Si−Mn合金粉が伸線加工
中の破砕性が良好で、かつ非磁性という特性を持つため
には、C及びMnの含有量によって適正なSiの範囲の
ものを選択しなければならない。
On the other hand, in order for the iron-based Si—Mn alloy powder to be nonmagnetic, it is regulated by Si ≦ 8.3C + 0.14Mn (formula). That is, the increase of C and Mn increases the austenitizing tendency of the iron alloy powder, but Si is a component having a high ferrite forming ability and works toward magnetization. In the range of Si that satisfies this equation, the amount of ferrite almost disappears, and the non-magnetic permeability (μ) measured by a vibrating sample magnetometer
Became 1.10 or less. A value where the relative magnetic permeability (μ) is 1.10 or less is a limit value having a property of slightly imparting magnetism, and can be said to be substantially non-magnetic. Even when used in the production of a flux-cored wire with seam welding at the seam of the strip, no welding defect is generated at the seam weld portion, and a good welding result can be obtained. That is, in order for the iron-based Si-Mn alloy powder used in the flux-cored wire according to the present invention to have good friability during wire drawing and to have the property of being non-magnetic, appropriate Si and Mn contents should be used. Must be selected.

【0027】図2に鉄系Si−Mn合金粉を用いて試作
した軟鋼及び490N/mm2 級鋼用の全姿勢用フラッ
クス入りワイヤに含有させた鉄系Si−Mn合金粉のS
i含有量が、外皮部肉厚の均一性に及ぼす影響について
調査結果を示した。フラックス中に含有させた鉄系Si
−Mn合金粉の割合は45%で、その組成はC:0.5
6〜0.60%、Mn:31.5〜32.5%で、Si
は3.2〜13.0%の範囲で変化させた。フラックス
は充填率15%、ワイヤ径は1.2mmである。ワイヤ
の試作方法、外皮部肉厚の均一性の測定方法は、後記実
施例1の場合に同じで、ワイヤ断面構造はシームレスタ
イプである。
FIG. 2 shows the S of the iron-based Si-Mn alloy powder contained in the flux-cored wire for mild steel and the 490 N / mm class 2 steel for all postures, which were manufactured using the iron-based Si-Mn alloy powder.
Investigation results were shown on the effect of the i content on the uniformity of the skin thickness. Iron-based Si contained in flux
-The proportion of the Mn alloy powder was 45%, and the composition was C: 0.5.
6 to 0.60%, Mn: 31.5 to 32.5%, and Si
Was changed in the range of 3.2 to 13.0%. The flux has a filling rate of 15%, and the wire diameter is 1.2 mm. The method for producing the wire and the method for measuring the uniformity of the outer wall thickness are the same as in Example 1 described later, and the wire cross-sectional structure is a seamless type.

【0028】本発明のフラックス入りワイヤに用いる鉄
系Si−Mn合金粉のSi含有量は図中の斜線部に限定
される。式は伸線加工中の破砕性を良好にするSiの
下限を求めたものであり、これよりもSiの含有量を多
くすることにより外皮部肉厚が非常に均一になる。な
お、式は非磁性にするためのSiの上限を求めたもの
である。図3は後記実施例における本発明を含む全姿勢
用フラックス入りワイヤによる外皮部肉厚の均一性とス
パッタ発生量の関係を示した図である。外皮部肉厚の均
一性が損なわれる(測定したT2/T1の最小値が小さ
くなること)とスパッタ発生量が多くなることがわか
る。
The Si content of the iron-based Si—Mn alloy powder used in the flux-cored wire of the present invention is limited to the hatched portion in the figure. The formula determines the lower limit of Si for improving the friability during wire drawing. By increasing the Si content more than this, the thickness of the outer skin becomes very uniform. Note that the expression is obtained by determining the upper limit of Si for making it nonmagnetic. FIG. 3 is a view showing the relationship between the uniformity of the outer wall thickness and the amount of spatters generated by the flux-cored wire for all postures including the present invention in Examples described later. It can be seen that when the uniformity of the outer wall thickness is impaired (the minimum value of T2 / T1 measured becomes smaller), the amount of spatter generated increases.

【0029】Mnは脱酸剤及び合金剤として含有させる
が、鉄系Si−Mn合金粉及びSi−Mn−Ni合金粉
の伸線加工中の破砕性及び非磁性化のために19%以上
必要である。Mnが42%を超えても破砕性及び非磁性
化への効果が変わらないことと、鉄合金中の残部として
のFe成分を多くして高充填率のフラックス入りワイヤ
設計が可能なように上限を42%に限定した。Niは特
に溶接金属の強度及び低温靱性向上に効果的な成分であ
る。また、上記C、Si及びMnを限定した鉄系Si−
Mn合金粉の組成に、Niを30%以下の範囲で含有さ
せた鉄系Si−Mn−Ni合金粉は伸線加工中の破砕性
が良好で、かつ、実質的な非磁性化も確保出来る。これ
を用いたフラックス入りワイヤは外皮部肉厚の均一性及
び帯鋼の合わせ目のシーム溶接性が良好であることを確
認した。
Mn is contained as a deoxidizing agent and an alloying agent, but is required to be 19% or more for crushability and non-magnetization during drawing of iron-based Si-Mn alloy powder and Si-Mn-Ni alloy powder. It is. Even if Mn exceeds 42%, the effect on the friability and demagnetization remains unchanged, and the upper limit is set so that the flux-cored wire with a high filling factor can be designed by increasing the Fe component as the balance in the iron alloy. Was limited to 42%. Ni is a component particularly effective for improving the strength and low-temperature toughness of the weld metal. In addition, the iron-based Si- in which C, Si and Mn are limited.
An iron-based Si-Mn-Ni alloy powder containing Ni in the composition of the Mn alloy powder in a range of 30% or less has good crushability during wire drawing and can also substantially secure demagnetization. . It was confirmed that the flux-cored wire using this had good outer wall thickness uniformity and good seam weldability at the joint of the steel strip.

【0030】なお、Niは合金粉の伸線加工中の破砕性
及び非磁性化にも有効に作用し、上記鉄系Si−Mn合
金粉において破砕性が良好になるために規制した式
は、Si≧11.89−2.92C−0.077Mn−
0.062Ni(式)となり、また、非磁性化のため
に規制した式は、Si≦8.3C+0.14(Mn+
Ni)(式)となり、Si量の範囲を拡大出来る。鉄
系Si−Mn−Ni合金粉または鉄系Si−Mn−Ni
合金粉の残部は、実質的にFeからなる。このFe成分
はフラックス中に鉄粉を含有させた場合と同様に溶着速
度やアーク安定性の向上効果をもたらす。
Note that Ni effectively acts on the friability and demagnetization during the wire drawing of the alloy powder, and the expression regulated to improve the friability in the above-mentioned iron-based Si—Mn alloy powder is as follows: Si ≧ 11.89−2.92C−0.077Mn−
0.062Ni (formula), and the formula regulated for demagnetization is as follows: Si ≦ 8.3C + 0.14 (Mn +
Ni) (expression), and the range of the amount of Si can be expanded. Iron-based Si-Mn-Ni alloy powder or iron-based Si-Mn-Ni
The balance of the alloy powder substantially consists of Fe. This Fe component brings about the effect of improving the welding speed and arc stability as in the case where the iron powder is contained in the flux.

【0031】なお、鉄合金粉の伸線加工中の破砕性に効
果を示すP(溶接金属を脆化させる危険性があるので、
0.4%以下が好ましい)、また、通常の溶接金属の脱
酸あるいは機械的性質の調整成分としてのAl、Ti、
B、Mo、Cr、V及びNbなどを破砕性及び非磁性化
を損なわない範囲で含有させることが出来る。また、S
やNについては溶接金属の耐割れ性あるいは靱性面から
は出来るだけ少ない方がよいが、硬化肉盛用フラックス
入りワイヤに用いる場合のN、あるいは水平すみ肉溶接
におけるスラグ剥離性やビード形状の改善に効果的なS
の積極的な添加も可能である。
In addition, P which has an effect on the friability during wire drawing of the iron alloy powder (because there is a risk of embrittlement of the weld metal,
0.4% or less is preferable), and Al, Ti, and the like as deoxidizing components of ordinary weld metal or components for adjusting mechanical properties.
B, Mo, Cr, V, Nb, and the like can be contained in a range that does not impair friability and demagnetization. Also, S
As for N and N, it is better to be as small as possible from the viewpoint of crack resistance or toughness of the weld metal. However, when used for flux cored wire for hardfacing, improvement of slag peeling and bead shape in N or horizontal fillet welding. Effective for S
Aggressive addition of is also possible.

【0032】鉄系Si−Mn合金粉及び鉄系Si−Mn
−Ni合金粉の粒径は212μm以下に限定した。粒径
が212μm以下の細粒であれば、フラックス中に粒子
が充分均一に分布しフラックス成分の偏析防止に効果的
で、溶接時のSi、Mnの作用及び溶接金属への歩留り
が安定する。また、このような細粒にすることによって
合金粉の溶解製造時の機械的粉砕による衝撃によって個
々の粒子に十分な亀裂(ひび割れ)を与えることが出来
るようになり、伸線加工時の破砕性が良好になる。一
方、粒径が212μmを超えて粗粒のものを用いた場
合、フラックス中に粒子を充分に均一に分布させること
が出来ず偏析しやすくなり、また伸線加工の縮径1回毎
の破砕効果が小さくなりフラックス部の追従性が不充分
で外皮部肉厚の不均一が生じやすくなる。なお、粒径2
12μm以下において、仕上がりワイヤ径、充填フラッ
クス中の含有量及びフラックス充填率、フラックスの充
填方式などを考慮して最適な粒径のものを選択すること
が好ましい。
Iron-based Si-Mn alloy powder and iron-based Si-Mn
-The particle size of the Ni alloy powder was limited to 212 µm or less. If the fine particles have a particle size of 212 μm or less, the particles are sufficiently uniformly distributed in the flux, which is effective in preventing the segregation of the flux components, and the effects of Si and Mn during welding and the yield to the weld metal are stabilized. In addition, by making such fine particles, sufficient cracks (cracks) can be given to individual particles by the impact due to mechanical pulverization during melting and manufacturing of the alloy powder, and the crushing property during wire drawing is improved. Becomes better. On the other hand, when a coarse particle having a particle size exceeding 212 μm is used, the particles cannot be sufficiently uniformly distributed in the flux, so that segregation is likely to occur. The effect is reduced, the followability of the flux portion is insufficient, and the thickness of the outer skin portion tends to be uneven. In addition, particle size 2
When the diameter is 12 μm or less, it is preferable to select an optimum particle diameter in consideration of the finished wire diameter, the content in the filling flux, the flux filling rate, the flux filling method, and the like.

【0033】本発明によるフラックス入りワイヤは、上
記限定した鉄系Si−Mn合金粉または鉄系Si−Mn
−Ni合金粉を、ワイヤ成分として必要なSi、Mnの
所定量を満足するように含有させるが、伸線加工中の破
砕効果により外皮部肉厚の均一化を充分に図るためには
概略、フラックス中に10%以上含有することが好まし
い。この場合、ワイヤに必要なSi、Mn及びNiの所
定量の大部分を前記限定した鉄系Si−Mn合金粉また
は鉄系Si−Mn−Ni合金粉から含有させ、他のS
i、Mn及びNiの原料を少量合わせて用いたフラック
ス入りワイヤ、鉄系Si−Mn合金粉と鉄系Si−Mn
−Ni合金粉の両方を用いたフラックス入りワイヤにお
いても本発明の効果は充分に発揮できる。
[0033] The flux-cored wire according to the present invention may be any one of the above-described iron-based Si-Mn alloy powder or iron-based Si-Mn.
-Ni alloy powder is contained so as to satisfy the predetermined amounts of Si and Mn required as wire components, but in order to sufficiently uniform the outer skin wall thickness by the crushing effect during wire drawing, It is preferable to contain 10% or more in the flux. In this case, most of the predetermined amounts of Si, Mn and Ni necessary for the wire are contained from the above-mentioned iron-based Si-Mn alloy powder or iron-based Si-Mn-Ni alloy powder,
Flux-cored wire using a small amount of raw materials of i, Mn and Ni, iron-based Si-Mn alloy powder and iron-based Si-Mn
The effect of the present invention can be sufficiently exerted even with a flux-cored wire using both the -Ni alloy powder.

【0034】本発明によるフラックス入りワイヤは、鉄
系Si−Mn合金粉または鉄系Si−Mn−Ni合金粉
以外に、TiO2 、SiO2 、ZrO2 及びAl23
などのスラグ形成剤、NaやKなどのアーク安定剤、A
l、Ti、Mg、Cr、Mo及びCuなどの脱酸剤、あ
るいは合金剤、鉄粉(帯鋼の合わせ目のシーム溶接を行
う連続的製造方法においては不可)などをフラックス入
りワイヤの用途に応じて含有する。フラックス充填率は
10〜25%の範囲が好ましい。フラックス充填率が1
0%未満では目的とする溶接性能や高溶着性が得られに
くく、一方、25%を超えると外皮部の肉厚が薄くなり
過ぎて細径化が困難となる。鋼製外皮は、フラックス充
填後の伸線加工性の点からフラックス入りワイヤに一般
的に用いられている軟鋼が好ましいが、C、Si、Mn
の調整やAl、Ti、B、Ni、Moなどを含む合金鋼
を用いることも可能である。以下に、実施例により本発
明をさらに詳細に説明する。
The flux-cored wire according to the present invention is not limited to iron-based Si—Mn alloy powder or iron-based Si—Mn—Ni alloy powder, but also TiO 2 , SiO 2 , ZrO 2 and Al 2 O 3.
Slag forming agent, arc stabilizer such as Na or K, A
1, deoxidizing agents such as Ti, Mg, Cr, Mo, and Cu, or alloying agents, iron powder (not possible in the continuous manufacturing method of seam welding of steel strips), etc., for the use of flux cored wire It contains according to. The flux filling rate is preferably in the range of 10 to 25%. Flux filling rate is 1
If it is less than 0%, it is difficult to obtain the desired welding performance and high weldability, while if it exceeds 25%, the thickness of the outer skin portion becomes too thin, making it difficult to reduce the diameter. As the steel sheath, mild steel generally used for flux-cored wires is preferred from the viewpoint of wire drawing workability after flux filling, but C, Si, Mn
It is also possible to use alloy steel containing Al, Ti, B, Ni, Mo and the like. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0035】[0035]

【実施例1】表1に示した軟鋼製鋼管(S1、S2)を
所定の充填率が得られる充填径にまで縮径して、これに
振動充填方式で一方の端口からフラックスを充填後、ロ
ール群及び孔ダイス群により伸線を行った。ワイヤ径
3.5mmで脱水素処理及び加工硬化緩和のための中間
焼鈍と銅めっき処理を行い、表5に示した組成のシーム
レスタイプのフラックス入りワイヤ(記号:W1〜W
9、W13、W14、ワイヤ径1.2mm)を試作し
た。また、表1に示した軟鋼製帯鋼(S3)をU形に成
形し、このU形内にフラックスを供給した後、両端部を
突き合わせて管状体にし、引き続きロール群及び孔ダイ
ス群により伸線を行い、図4(d)に示したワイヤ断面
構造で表5に示した組成のフラックス入りワイヤ(記
号:W10〜W12、ワイヤ径1.2mm)を試作し
た。
Example 1 Mild steel pipes (S1, S2) shown in Table 1 were reduced in diameter to a filling diameter at which a predetermined filling rate was obtained, and this was filled with flux from one end by a vibration filling method. Wire drawing was performed by a roll group and a hole die group. A 3.5 mm wire diameter was subjected to dehydrogenation treatment and intermediate annealing and copper plating treatment for work hardening relaxation, and a seamless type flux-cored wire having the composition shown in Table 5 (symbols: W1 to W
9, W13, W14, wire diameter 1.2 mm). Also, the mild steel strip steel (S3) shown in Table 1 was formed into a U shape, and after supplying a flux into the U shape, both ends were butted into a tubular body, and then stretched by a roll group and a hole die group. The wire was drawn, and a flux-cored wire (symbol: W10 to W12, wire diameter 1.2 mm) having the composition shown in Table 5 was produced with the wire cross-sectional structure shown in FIG.

【0036】[0036]

【表1】 [Table 1]

【0037】フラックスのSi、Mn及びNiの原料粉
を表2、表3及び表4に示した。表6に試作ワイヤの長
手方向断面観察による外皮部肉厚の均一性の調査結果及
び溶接試験結果を示した。外皮部肉厚の均一性は、図5
に示したようにワイヤ長さ20mm(任意の連続しない
3箇所から採取)について連続的に50倍で写真撮影
し、この観察写真を用いて平均的な肉厚T1に対する肉
厚が最も薄くなっている部分の肉厚T2の比率(T2/
T1の最小値)によって評価した。フラックス原料の噛
み込みについても同様にT1とT2を測定し、(T2/
T1)が0.90未満の場合をフラックス原料の噛み込
み発生有りとした。溶接試験は下向溶接と水平すみ肉溶
接でアーク状態を観察し、下向溶接でスパッタ発生量を
測定した。溶接条件は溶接電流260A、アーク電圧3
0V、溶接速度40cm/min、チップ・母材間距離
25mm、シールドガスCO2 ガス(流量20L/mi
n)である。
Tables 2, 3 and 4 show the raw material powders of fluxes of Si, Mn and Ni. Table 6 shows the results of an examination of the uniformity of the outer wall thickness by observing the cross section in the longitudinal direction of the prototype wire and the results of the welding test. The uniformity of the outer wall thickness is shown in FIG.
As shown in, photographs were taken continuously at a magnification of 50 times for a wire length of 20 mm (taken from any three non-consecutive places), and using this observation photograph, the thickness with respect to the average thickness T1 became the thinnest. Ratio of the thickness T2 (T2 /
(Minimum value of T1). T1 and T2 were measured in the same manner for the bite of the flux material, and (T2 /
When T1) was less than 0.90, the occurrence of biting of the flux material occurred. In the welding test, the arc state was observed in downward welding and horizontal fillet welding, and the amount of spatter generated was measured in downward welding. The welding conditions were welding current 260A, arc voltage 3
0 V, welding speed 40 cm / min, tip-base metal distance 25 mm, shielding gas CO 2 gas (flow rate 20 L / mi)
n).

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】試作ワイヤはW1〜W7が全姿勢用、W8
とW9がすみ肉用、W10〜W14が高溶着用で、それ
ぞれ本発明と比較例とを対比させた。全姿勢用ワイヤの
場合、本発明のW1とW2及びW5とW6は外皮部肉厚
の変動が小さく、アークが安定し、スパッタ発生量も少
ない。W3は用いた鉄系Si−Mn合金粉(SM10)
のC及びSiが低過ぎるために、W4及びW7は従来原
料(Fe−Si粉、Fe−Mn粉、シリコマンガン、N
i粉)を用いたために、それぞれ伸線加工中の破砕効果
がなく、外皮部肉厚が不均一で本発明ワイヤに比較して
アークの安定性が劣り、スパッタ発生量が多い。すみ肉
用ワイヤの場合、本発明のW8は外皮部肉厚の変動が小
さく、アークが安定し、スパッタ発生量も少ない。
The test wires W1 to W7 are for all postures,
And W9 are for fillet, and W10 to W14 are for high welding. In the case of a wire for all postures, W1 and W2 and W5 and W6 of the present invention have a small variation in the outer wall thickness, a stable arc, and a small amount of spatter. W3 is the iron-based Si-Mn alloy powder used (SM10)
C and Si are too low, W4 and W7 are the same as conventional materials (Fe-Si powder, Fe-Mn powder, silicomanganese, N
Because of the use of (i-powder), there is no crushing effect during wire drawing, and the outer wall thickness is not uniform, the arc stability is inferior to the wire of the present invention, and the amount of spatter generated is large. In the case of a fillet wire, W8 of the present invention has a small variation in the outer wall thickness, a stable arc, and a small amount of spatter.

【0044】W9は用いた鉄系Si−Mn合金粉(SM
12)のMn及びSiが低過ぎるために、外皮部肉厚が
不均一で本発明ワイヤに比較してアークの安定性が劣
り、スパッタ発生量が多い。高溶着用ワイヤの場合、本
発明のW10は外皮部肉厚の変動が小さく、アークが安
定し、スパッタ発生量も少ない。W11は用いた鉄系S
i−Mn合金粉(SM11)のSiが低過ぎるために、
W12及びW14は従来原料(Fe−Si粉、Fe−M
n粉、Ni粉)を用いたために、それぞれ伸線加工中の
破砕効果がなく、外皮部肉厚が不均一で本発明ワイヤに
比較してアークの安定性が劣り、スパッタ発生量が多
い。
W9 is the iron-based Si-Mn alloy powder (SM
Since Mn and Si of 12) are too low, the thickness of the outer skin is not uniform, the arc stability is inferior to that of the wire of the present invention, and the amount of spatter generated is large. In the case of a high welding wire, the W10 of the present invention has a small variation in the outer wall thickness, a stable arc, and a small amount of spatter. W11 is the iron-based S used
Since the Si of the i-Mn alloy powder (SM11) is too low,
W12 and W14 are conventional raw materials (Fe-Si powder, Fe-M
Since n powder and Ni powder were used, there was no crushing effect during wire drawing, and the outer cover had a nonuniform thickness, the arc stability was inferior to that of the wire of the present invention, and the amount of spatter generated was large.

【0045】[0045]

【実施例2】表1に示した軟鋼製帯鋼を管状体に成形す
る段階でフラックスを供給した後、管状体の相対するエ
ッジ面を高周波誘導加熱によりシーム溶接して、引き続
き連続的にロール群によりワイヤ径3.5mmまで縮
径、銅めっき処理した。以後、孔ダイス群により伸線を
行い、表7に示した組成のシームレスタイプのフラック
ス入りワイヤ(記号:W15〜W26、ワイヤ径1.2
mm)を試作した。シーム溶接は管状体の外径21.7
mm、入熱量140KVA、周波数520KHZ、溶接
速度30m/min、また途中で加工硬化緩和のための
中間焼鈍を実施した。フラックスのSi、Mn及びNi
の原料粉は表3及び表4に示した。
Example 2 After flux was supplied at the stage of forming a mild steel strip steel shown in Table 1 into a tubular body, the opposite edge surfaces of the tubular body were seam-welded by high-frequency induction heating and then continuously rolled. The diameter of the wire was reduced to 3.5 mm and copper plating was performed. Thereafter, wire drawing was performed using a group of hole dies, and a seamless type flux-cored wire having the composition shown in Table 7 (symbol: W15 to W26, wire diameter 1.2)
mm). Seam welding has an outer diameter of 21.7 of the tubular body
mm, a heat input of 140 KVA, a frequency of 520 KHZ, a welding speed of 30 m / min, and intermediate annealing for relaxing work hardening was performed on the way. Flux Si, Mn and Ni
Are shown in Tables 3 and 4.

【0046】[0046]

【表7】 [Table 7]

【0047】表8にシーム溶接時の管状体エッジ面への
フラックスの磁着状況、試作ワイヤの長手方向断面の外
皮部肉厚の均一性の調査結果及び溶接試験結果を示し
た。外皮部肉厚の均一性の測定方法、溶接試験条件は実
施例1に同じである。試作ワイヤはW15〜W21及び
W26が全姿勢用、W22〜W25がすみ肉用である。
本発明の全姿勢用ワイヤW15〜W21及びすみ肉用ワ
イヤW22〜W25は、いずれも外皮部肉厚の変動が小
さく、アークが安定し、スパッタ発生量も少ない。これ
に対し、W26は比較例で、用いた鉄系Si−Mn合金
粉(SM10)に磁性があり管状体エッジ面へのフラッ
クスの磁着が多く、また伸線加工中の破砕性も悪い組成
であるために仕上げ伸線中に断線が発生し、外皮部肉厚
の均一性、アークの安定性、スパッタ発生量とも本発明
ワイヤに比較して劣る。
Table 8 shows the results of a magnetic flux adhesion to the edge of the tubular body during seam welding, the results of an examination of the uniformity of the outer skin wall thickness in the longitudinal section of the prototype wire, and the results of welding tests. The method for measuring the uniformity of the outer wall thickness and the welding test conditions are the same as in Example 1. The prototype wires W15 to W21 and W26 are for all postures, and W22 to W25 are for fillet.
The wires W15 to W21 for all postures and the wires W22 to W25 for the fillet of the present invention all have a small variation in the outer wall thickness, a stable arc, and a small amount of spatter. On the other hand, W26 is a comparative example, in which the iron-based Si-Mn alloy powder (SM10) used is magnetic, has a high flux adhesion to the edge surface of the tubular body, and has poor friability during wire drawing. As a result, breakage occurs during finish drawing, and the uniformity of the outer wall thickness, the stability of the arc, and the amount of spatter generated are inferior to those of the wire of the present invention.

【0048】[0048]

【表8】 [Table 8]

【0049】[0049]

【発明の効果】以上説明したように、本発明のガスシー
ルドアーク溶接用フラックス入りワイヤは、組成及び粒
径を限定した鉄系Si−Mn合金粉または鉄系Si−M
n−Ni合金粉を用いることによって、ワイヤ中に充填
されたフラックス成分の偏析がなく、また、伸線加工中
の破砕効果により外皮部肉厚を極めて均一に出来るた
め、安定した溶接金属の機械的性質と共に、アーク状態
(溶滴移行性)が安定しスパッタ発生量の低減を含む溶
接作業改善が出来る。さらに、上記鉄合金粉のFe成分
の含有量を多くし、かつ非磁性となる組成に限定するこ
とは、帯鋼の合わせ目のシーム溶接を行う高能率な連続
的製造方法で製造するシームレスタイプのフラックス入
りワイヤの品質を一層高めることが出来る。
As described above, the flux-cored wire for gas shielded arc welding according to the present invention can be used as an iron-based Si-Mn alloy powder or an iron-based Si-M
By using the n-Ni alloy powder, there is no segregation of the flux component filled in the wire, and the thickness of the outer skin can be made extremely uniform due to the crushing effect during wire drawing. In addition to the stable properties, the arc state (droplet transferability) is stabilized, and the welding operation including the reduction of the amount of spatter can be improved. Further, increasing the content of the Fe component of the iron alloy powder and limiting the composition to a non-magnetic composition is a seamless type production method using a high-efficiency continuous production method that performs seam welding at the joint of the steel strip. The quality of the flux cored wire can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフラックス入りワイヤのワイヤ方向の
断面状態例を示す図である。
FIG. 1 is a diagram showing an example of a cross-sectional state in a wire direction of a flux-cored wire of the present invention.

【図2】本発明を含むフラックス入りワイヤに用いた鉄
系Si−Mn合金粉中のSi量の効果を示す図である。
FIG. 2 is a diagram showing the effect of the amount of Si in the iron-based Si—Mn alloy powder used for the flux-cored wire including the present invention.

【図3】本発明を含むフラックス入りワイヤにおける外
皮部肉厚とスパッタ発生量の関係を示す図である。
FIG. 3 is a view showing the relationship between the outer wall thickness and the amount of spatter generation in a flux-cored wire including the present invention.

【図4】フラックス入りワイヤの断面構造例を示す図で
ある。
FIG. 4 is a diagram showing an example of a cross-sectional structure of a flux-cored wire.

【図5】フラックス入りワイヤの長手方向の断面状態例
を示す図である。
FIG. 5 is a diagram illustrating an example of a cross-sectional state in the longitudinal direction of a flux-cored wire.

【符号の説明】[Explanation of symbols]

1 外皮部 2 フラックス部 3 外皮部の隙間 4 シーム溶接部 5 外皮部肉厚の減少部分 6 フラックス原料 7 フラックス原料の噛み込み部分 8 鉄系Si−Mn合金粉または鉄系Si−Mn−Ni
合金粉
DESCRIPTION OF SYMBOLS 1 Outer skin part 2 Flux part 3 Outer skin gap 4 Seam welded part 5 Outer skin part thickness reduction part 6 Flux raw material 7 Flux raw material biting part 8 Iron-based Si-Mn alloy powder or iron-based Si-Mn-Ni
Alloy powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 均 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hitoshi Nishimura 3-4-1 Tsukiji, Chuo-ku, Tokyo Nippon Steel Welding Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.40〜1.20%、 Si:5〜12%、 Mn:19〜42%、 残部Feからなり、 かつ、Si≧11.89−2.92C−0.077Mn
を満たし、 粒径が212μm以下の鉄系Si−Mn合金粉を含むフ
ラックスを鋼製外皮内に充填してなることを特徴とする
ガスシールドアーク溶接用フラックス入りワイヤ。
C .: 0.40 to 1.20% by weight, Si: 5 to 12%, Mn: 19 to 42%, the balance being Fe, and Si ≧ 11.89-1.92C -0.077Mn
A flux cored wire for gas shielded arc welding, characterized in that a flux containing an iron-based Si-Mn alloy powder having a particle size of 212 µm or less is filled in a steel sheath.
【請求項2】 重量%で、 C :0.40〜1.20%、 Si:5〜12%、 Mn:19〜42%、 残部Feからなり、 かつ、Si≧11.89−2.92C−0.077Mn
及びSi≦8.3C+0.14Mnを満たし、粒径が2
12μm以下の鉄系Si−Mn合金粉を含み、比透磁率
(μ)≦1.10の原料粉からなるフラックスを鋼製外
皮内に充填してなることを特徴とするガスシールドアー
ク溶接用フラックス入りワイヤ。
2. In% by weight, C: 0.40 to 1.20%, Si: 5 to 12%, Mn: 19 to 42%, the balance being Fe, and Si ≧ 11.8-9.92C -0.077Mn
And Si ≦ 8.3C + 0.14Mn, and the particle size is 2
A flux for gas-shielded arc welding, characterized in that a flux containing a raw material powder having a relative magnetic permeability (μ) ≦ 1.10. Cored wire.
【請求項3】 重量%で、 C :0.30〜1.20%、 Si:5〜12%、 Mn:19〜42%、 Ni:30%以下、 残部Feからなり、 かつ、Si≧11.89−2.92C−0.077Mn
−0.062Niを満たし、粒径が212μm以下の鉄
系Si−Mn−Ni合金粉を含むフラックスを鋼製外皮
内に充填してなることを特徴とするガスシールドアーク
溶接用フラックス入りワイヤ。
C .: 0.30 to 1.20% by weight, Si: 5 to 12%, Mn: 19 to 42%, Ni: 30% or less, the balance being Fe, and Si ≧ 11. .89-2.92C-0.077Mn
A flux-cored wire for gas shielded arc welding, characterized in that a flux containing iron-based Si-Mn-Ni alloy powder satisfying -0.062Ni and having a particle size of 212 µm or less is filled in a steel sheath.
【請求項4】 重量%で、 C :0.30〜1.20%、 Si:5〜12%、 Mn:19〜42%、 Ni:30%以下、 残部Feからなり、 かつ、Si≧11.89−2.92C−0.077Mn
−0.062Ni及びSi≦8.3C+0.14(Mn
+Ni)を満たし、粒径が212μm以下の鉄系Si−
Mn−Ni合金粉を含み、比透磁率(μ)≦1.10の
原料粉からなるフラックスを鋼製外皮内に充填してなる
ことを特徴とするガスシールドアーク溶接用フラックス
入りワイヤ。
C .: 0.30 to 1.20%, Si: 5 to 12%, Mn: 19 to 42%, Ni: 30% or less, the balance being Fe, and Si ≧ 11. .89-2.92C-0.077Mn
−0.062Ni and Si ≦ 8.3C + 0.14 (Mn
+ Ni), and has a particle size of 212 μm or less.
A flux-cored wire for gas shielded arc welding, characterized in that a flux made of a raw material powder containing a Mn-Ni alloy powder and having a relative magnetic permeability (μ) ≦ 1.10.
JP29741697A 1997-10-29 1997-10-29 Flux-cored wire for gas shielded arc welding Expired - Fee Related JP3717644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29741697A JP3717644B2 (en) 1997-10-29 1997-10-29 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29741697A JP3717644B2 (en) 1997-10-29 1997-10-29 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH11129092A true JPH11129092A (en) 1999-05-18
JP3717644B2 JP3717644B2 (en) 2005-11-16

Family

ID=17846234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29741697A Expired - Fee Related JP3717644B2 (en) 1997-10-29 1997-10-29 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3717644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043268A1 (en) * 2016-08-30 2018-03-08 株式会社神戸製鋼所 Seamless wire containing welding flux

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043268A1 (en) * 2016-08-30 2018-03-08 株式会社神戸製鋼所 Seamless wire containing welding flux
CN109475985A (en) * 2016-08-30 2019-03-15 株式会社神户制钢所 Seamless flux-cored wire is used in welding
KR20190035817A (en) * 2016-08-30 2019-04-03 가부시키가이샤 고베 세이코쇼 Flux Cored Seamless Wire for Welding
EP3508302A4 (en) * 2016-08-30 2020-02-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Seamless wire containing welding flux

Also Published As

Publication number Publication date
JP3717644B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
KR100335386B1 (en) Gas shield arc-welding flux cored wire
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
EP2823931B1 (en) Solid wire, and gas-shielded arc welding method using same
US4833296A (en) Consumable welding electrode and method of using same
KR20010105218A (en) Weld wire with enhanced slag removal
JP2008068274A (en) High strength weld metal having excellent low temperature toughness
JP2013220431A (en) Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
KR102675635B1 (en) Flux Cored Wire and Welding Methods
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
JPH11179590A (en) Flux-cored wire for gas shield arc welding
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP3481476B2 (en) Flux-cored wire for gas shielded arc welding and method for producing the same
JP4680082B2 (en) Flux-cored wire for gas shielded arc welding
JPH11129092A (en) Flux cored wire for gas shield arc welding
JP2003001486A (en) Flux for submerged arc welding and method for producing submerged arc welded joint
JP2001219291A (en) Weld zone of ferritic stainless steel and welding method
JPH10180488A (en) Flux cored wire for electro gas arc welding
JP3652499B2 (en) Seamless flux-cored wire for gas shielded arc welding
JP2003094196A (en) Flux cored wire for gas shielded arc welding
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JPH11151592A (en) Metal based flux cored wire for gas shielded arc welding and one side welding method
JPH1080789A (en) Welding wire for co2 gas shielded arc welding and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050831

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120909

LAPS Cancellation because of no payment of annual fees