JPH11128730A - Ceramic fine particle production - Google Patents

Ceramic fine particle production

Info

Publication number
JPH11128730A
JPH11128730A JP9295116A JP29511697A JPH11128730A JP H11128730 A JPH11128730 A JP H11128730A JP 9295116 A JP9295116 A JP 9295116A JP 29511697 A JP29511697 A JP 29511697A JP H11128730 A JPH11128730 A JP H11128730A
Authority
JP
Japan
Prior art keywords
ceramic
amorphous
wavelength
particle
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9295116A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Kenji Iijima
賢二 飯島
Masatoshi Kitagawa
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9295116A priority Critical patent/JPH11128730A/en
Publication of JPH11128730A publication Critical patent/JPH11128730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively form a ceramic into a ultrafine particle by radiating pulsed laser light with a specified pulse width to an amorphous ceramic. SOLUTION: At the time when a ceramic fine particle is dispersed in a ceramic or glass material as to form a three dimensional region with extremely high dielectric constant and produce a non linear optical element, or a high frequency filter employing a dielectric material and a piezoelectric material, pulsed laser light with pulse width 1 μsec or shorter is radiated to an amorphous ceramic to make the ceramic into a ultrafine particle. Further, at least oxygen or nitrogen is added to the amorphous ceramic. The wavelength of the laser is preferably set to be 500 nm or shorter. At the time of practical execution, a 0.2 μm thick amorphous film 2 of titanium oxide is deposited on, for example, a glass substrate 1 by magnetic sputtering and then 5, 000 pulses 3 of KrF excimer laser with 248 nm wavelength are radiated to grow crystalline TiO2 particle of about 0.01 μm diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信機器などに広
く用いられている圧電体、誘電体等のセラミックス素
子、非線形光学材料等の光学素子を構成する材料の作製
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of materials for optical elements, such as ceramic elements such as piezoelectrics and dielectrics, and nonlinear optical materials, which are widely used in communication equipment and the like.

【0002】[0002]

【従来の技術】最近、セラミックスの超微粒子化の技術
開発が進められている。この種の超微粒子は、セラミッ
クスあるいは、ガラス材料中に、三次元的に極端に誘電
率の高い領域を分布させ、非線形光学素子や、誘電体、
圧電体を用いた高周波フィルターとして期待されてい
る。従来、セラミックスの超微粒子化は、焼結した結晶
性圧電体(強誘電体)等のセラミックスを、粉砕して、
微粒子化し、分布させる材料(ガラス、他のセラミック
ス)と混ぜて、さらに焼成することが行われていた。
2. Description of the Related Art Recently, technology development for making ceramics ultrafine particles has been advanced. This kind of ultrafine particles distributes a region with extremely high dielectric constant three-dimensionally in a ceramic or glass material, and allows a nonlinear optical element, a dielectric,
It is expected as a high frequency filter using a piezoelectric material. Conventionally, ceramics are made into ultrafine particles by crushing ceramics such as sintered crystalline piezoelectrics (ferroelectrics),
Mixing with a material (glass, other ceramics) to be atomized and distributed, and then firing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
セラミックス超微粒子の作製では、一度焼成し、結晶化
させたセラミックスを媒体攪拌ミルなどで粉砕する。し
かしながら、このような方法では、0.1μmが限界で
あり、さらに小さくするためには、膨大な時間(100
0時間以上)が必要であった。しかも、この微粒子を分
散させ、例えば薄膜内に均一に分布させようとしても、
微粒子化したセラミックスが、分布させるための再焼成
段階で、さらに粒径成長したり、ガラス材料などの他の
材料と反応して、所望の材料、素子特性が得られなかっ
た。
However, in the production of conventional ceramic ultrafine particles, ceramics once fired and crystallized are ground by a medium stirring mill or the like. However, in such a method, the limit is 0.1 μm, and it takes an enormous amount of time (100
0 hours or more). Moreover, even if these fine particles are dispersed, for example, evenly distributed in a thin film,
In the refiring stage for distributing the finely divided ceramics, the particle diameter further increased or reacted with another material such as a glass material, so that desired materials and element characteristics could not be obtained.

【0004】[0004]

【課題を解決するための手段】本発明のセラミックス微
粒子の製造方法では、パルス幅1μsec以下のレーザ
ーパルス光を非晶質セラミックスに照射する。
In the method for producing ceramic fine particles of the present invention, the amorphous ceramic is irradiated with a laser pulse light having a pulse width of 1 μsec or less.

【0005】また、前記方法において、非晶質セラミッ
クスに、少なくとも酸素もしくは窒素がふくまれている
ことが望ましい。
In the above method, it is preferable that the amorphous ceramic contains at least oxygen or nitrogen.

【0006】また、前記方法において、レーザーの波長
が500nm以下であることが望ましい。
In the above method, it is preferable that the wavelength of the laser is not more than 500 nm.

【0007】[0007]

【発明の実施の形態】本発明の、実験概念図を図1に示
す。本実施例では、ガラス基板1上に、酸化チタン(T
i−O)のアモルファス膜2を0.2μmマグネトロン
スパッタで堆積した。その後、波長248nmのKrF
エキシマレーザーパルス3を5000発照射した。その
あと、薄膜2を透過型電子顕微鏡(TEM)で観察した
ところ、直径が約0.01μmの結晶性TiO2粒子が
生成されていることがわかった。すなわち、本発明で、
極短時間で、直径0.1μm以下の超微粒子を、容易に
形成できた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram of an experiment according to the present invention. In this embodiment, a titanium oxide (T
An i-O) amorphous film 2 was deposited by magnetron sputtering of 0.2 μm. After that, KrF of wavelength 248 nm
Excimer laser pulse 3 was irradiated 5000 times. After that, when the thin film 2 was observed with a transmission electron microscope (TEM), it was found that crystalline TiO 2 particles having a diameter of about 0.01 μm were generated. That is, in the present invention,
Ultra-fine particles having a diameter of 0.1 μm or less could be easily formed in an extremely short time.

【0008】このような効果を示すために、水晶単結晶
基板上に、アルミニウムの電極が形成された315MH
zのSAW素子上に、アモルファスのTi−O膜を10
Å(1nm)、20Å(2nm)堆積して、エキシマレ
ーザーパルスを照射したときの、SAW素子の中心周波
数の変化を示す。材料が微粒子化されると、その材料中
を伝搬する弾性波の音速が低下するので、SAW素子の
中心周波数が低下する。このように、本発明の方法によ
ると、容易にセラミックスの超微粒子を得ることがで
き、素子の特性を、容易に調整することが可能であるこ
とが示された。
In order to exhibit such an effect, a 315 MH having an aluminum electrode formed on a quartz single crystal substrate is used.
An amorphous Ti—O film is formed on the SAW element of
The graph shows the change in the center frequency of the SAW element when {(1 nm) and 20} (2 nm) are deposited and irradiated with an excimer laser pulse. When the material is made finer, the acoustic velocity of the elastic wave propagating through the material is reduced, so that the center frequency of the SAW element is reduced. As described above, according to the method of the present invention, it was shown that ultrafine particles of ceramics can be easily obtained, and the characteristics of the element can be easily adjusted.

【0009】[0009]

【発明の効果】以上のように本発明のよれば、0.1μ
m以下のセラミック微粒子を得ることが出来、この微粒
子を用いることで弾性表面波の伝搬速度を高精度に調整
することができ、デバイスとして設計通りのものを製造
することができる。
As described above, according to the present invention, 0.1 μm
m or less can be obtained, and by using the fine particles, the propagation speed of the surface acoustic wave can be adjusted with high accuracy, and a device as designed can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザーを用いたセラミックス超微粒子作製の
概念図
FIG. 1 is a conceptual diagram of the production of ceramic ultrafine particles using a laser.

【図2】照射レーザーパルス数に対するSAW素子の中
心周波数変化を示す図
FIG. 2 is a diagram showing a change in the center frequency of a SAW element with respect to the number of irradiation laser pulses.

【符号の説明】[Explanation of symbols]

1 基板 2 アモルファス薄膜 3 レーザーパルス光 1 substrate 2 amorphous thin film 3 laser pulse light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パルス幅1μsec以下のレーザーパル
ス光を非晶質セラミックスに照射するセラミックス微粒
子の製造方法。
1. A method for producing ceramic fine particles, comprising irradiating amorphous ceramics with a laser pulse light having a pulse width of 1 μsec or less.
【請求項2】 非晶質セラミックスに、少なくとも酸素
もしくは窒素がふくまれている請求項1に記載のセラミ
ックス微粒子の製造方法。
2. The method for producing fine ceramic particles according to claim 1, wherein the amorphous ceramic contains at least oxygen or nitrogen.
【請求項3】 レーザーの波長が500nm以下である
請求項1に記載のセラミックス微粒子の製造方法。
3. The method for producing ceramic fine particles according to claim 1, wherein the wavelength of the laser is 500 nm or less.
JP9295116A 1997-10-28 1997-10-28 Ceramic fine particle production Pending JPH11128730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9295116A JPH11128730A (en) 1997-10-28 1997-10-28 Ceramic fine particle production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9295116A JPH11128730A (en) 1997-10-28 1997-10-28 Ceramic fine particle production

Publications (1)

Publication Number Publication Date
JPH11128730A true JPH11128730A (en) 1999-05-18

Family

ID=17816506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9295116A Pending JPH11128730A (en) 1997-10-28 1997-10-28 Ceramic fine particle production

Country Status (1)

Country Link
JP (1) JPH11128730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512792A (en) * 2001-12-12 2005-05-12 ドゥ−コープ テクノロジーズ リミテッド Thermal process using cold RF-irradiated liquid as a basic method for producing nano-sized particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512792A (en) * 2001-12-12 2005-05-12 ドゥ−コープ テクノロジーズ リミテッド Thermal process using cold RF-irradiated liquid as a basic method for producing nano-sized particles

Similar Documents

Publication Publication Date Title
JP4949668B2 (en) Manufacturing method of ceramic film and structure including ceramic film
US5401544A (en) Method for manufacturing a surface acoustic wave device
US4952832A (en) Surface acoustic wave device
JP4682054B2 (en) Alignment film manufacturing method and liquid discharge head manufacturing method
JPS62205266A (en) Ferroelectric thin film element and its production
JPH05257024A (en) Formation of optical thin-layer film waveguide of tio2
DE112007002881T5 (en) A method of producing a thin film and a hexagonal piezoelectric thin film produced by the method
GB1582317A (en) Piezoelectric crystalline films
JPH11128730A (en) Ceramic fine particle production
JP2008291291A (en) Brittle material film structure
JP2005181995A (en) Optical element, optical integrated device, optical information propagation system and method for manufacturing molded body
JPH11335199A (en) Production of single crystal membrane
JP4092900B2 (en) Diamond substrate on which piezoelectric thin film is formed and method for manufacturing the same
JPS59121119A (en) Production of thin film of ferroelectric material
EP0590148B1 (en) Method and apparatus for thin film formation, device, electro-magnetic apparatus, data recording/reproduction apparatus and signal processor
JP2007006542A (en) Piezoelectric thin film vibrator and resonant frequency adjusting method therefor
JP2006297270A (en) Method and apparatus for fabricating structure and structure
Dawar et al. Optical and acousto-optical properties of Nd: phosphate glasses
JPS6058609A (en) Manufacture of semiconductor thin film crystal layer
JPH04132615A (en) Thin film of bismuth compound having laminar structure and its production
JPH11136069A (en) Piezoelectric module element and its production
JPH09315896A (en) Method for synthesizing oxide single crystal thin film
JPS636519B2 (en)
CN116113308A (en) Piezoelectric film, piezoelectric device, preparation method of piezoelectric device and electronic equipment
US7467448B2 (en) Method of manufacturing a piezoelectric ceramic