JPH11127846A - Apparatus for measuring microbial cell number and measurement of microbial cell number - Google Patents

Apparatus for measuring microbial cell number and measurement of microbial cell number

Info

Publication number
JPH11127846A
JPH11127846A JP29674897A JP29674897A JPH11127846A JP H11127846 A JPH11127846 A JP H11127846A JP 29674897 A JP29674897 A JP 29674897A JP 29674897 A JP29674897 A JP 29674897A JP H11127846 A JPH11127846 A JP H11127846A
Authority
JP
Japan
Prior art keywords
microorganisms
measuring
liquid
electrodes
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29674897A
Other languages
Japanese (ja)
Other versions
JP3734123B2 (en
Inventor
Ryuichi Yatsunami
竜一 八浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29674897A priority Critical patent/JP3734123B2/en
Publication of JPH11127846A publication Critical patent/JPH11127846A/en
Application granted granted Critical
Publication of JP3734123B2 publication Critical patent/JP3734123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a maintenance-free apparatus for measuring the microbial cell number capable of simply carrying out the measurement with a high sensitivity and performing the automatic measurement without requiring an agent or a special apparatus. SOLUTION: This apparatus for measuring the microbial cell number is equipped with a cell 1 capable of introducing a microorganism-containing liquid and having plural electrodes 3 in the interior thereof, a power source circuit 8 capable of applying an AC current for causing the dielectric migration and a high-voltage pulse for destroying the microorganisms across the electrodes 3, a controlling means 11 for controlling the power source circuit 8 and a measuring means 10 capable of measuring physical properties of the liquid when the microorganisms are destroyed. The controlling means 11 is capable of flowing the AC current, making the microorganisms migrate to a prescribed position by the dielectric migration, applying the high-voltage pulse thereto and destroying the microorganisms and the measuring means 10 is capable of measuring the physical properties of the liquid after destroying the microorganisms and calculating the microbial cell number.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶液中の微生物数を
測定するための微生物数測定装置及び微生物数測定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring the number of microorganisms in a solution.

【0002】[0002]

【従来の技術】従来、溶液中の微生物数を測定する方法
として特開昭57−50652に記載されたもの等の多
数の技術が知られている。
2. Description of the Related Art Conventionally, many techniques for measuring the number of microorganisms in a solution, such as that described in JP-A-57-50652, are known.

【0003】しかし、従来の技術による微生物数の測定
方法は、試料液に専用の薬剤、例えば酵素や色素を投入
して生化学反応を起こさせ、その反応経過または結果を
蛍光や発光によって測定するものであり、測定感度は比
較的高いが微生物分野及び生化学分野に関する専門知識
が必要である。また専用で高価な大型の測定装置も必要
となり、さらには専任者による作業が必要となる等、と
ても一般的かつ簡易に微生物数を測定することができる
ものではなかった。
[0003] However, in the method of measuring the number of microorganisms according to the conventional technique, a special agent such as an enzyme or a dye is added to a sample solution to cause a biochemical reaction, and the reaction progress or the result is measured by fluorescence or luminescence. Although the measurement sensitivity is relatively high, expertise in the fields of microorganisms and biochemistry is required. In addition, a dedicated and expensive large-scale measuring device is required, and furthermore, work by a dedicated person is required. Therefore, the number of microorganisms cannot be measured very commonly and easily.

【0004】そこで、特開59−91900に記載され
たものをはじめとする、物理的手段のみを使い、薬剤を
一切用いない、小型で試料系に組み込んでの自動測定が
可能な簡易な微生物数検出装置が提案されたが、微生物
数が108cells/ml(1ml中に微生物数が1
億個)以上にならないと検出できないため、その応用範
囲に著しい制限が加えられていた。
[0004] Therefore, a simple microorganism count that can be automatically measured by incorporating it into a sample system using only physical means and not using any chemicals, such as that described in JP-A-59-91900. Although a detection device has been proposed, the number of microorganisms is 10 8 cells / ml (the number of microorganisms is 1 in 1 ml).
(Billion pieces), it cannot be detected, and therefore its application range is markedly limited.

【0005】このように、従来技術による微生物数測定
装置では測定感度を上げるためには、何らかの薬剤の使
用や、専用の測定装置,専門知識を持った専任者による
操作が必要であった。また薬剤を使用しない簡易型の装
置では、専任者を必要とせず測定が可能になるが、微生
物の数が非常に多くならないと測定が難しく、低感度の
測定器しか得られないし、微生物を移動させて局部的に
濃度を上げて感度を向上させたくても簡易でメンテナン
スフリーな手段がないという問題があった。
[0005] As described above, in order to increase the measurement sensitivity in the microorganism counting device according to the prior art, it is necessary to use some kind of drug, a dedicated measuring device, and operation by a dedicated person having specialized knowledge. In addition, with a simple device that does not use drugs, measurement can be performed without the need for dedicated personnel, but measurement is difficult if the number of microorganisms is not very large, and only low-sensitivity measuring instruments can be obtained, and microorganisms can be transferred. However, there is a problem that there is no simple and maintenance-free means even if the sensitivity is to be improved by locally increasing the density.

【0006】[0006]

【発明の解決しようとする課題】そこでこれらの問題を
解決するため本発明は、薬剤や特別な装置を必要とする
ことなく、簡易で高感度な測定ができ、自動測定が可能
でメンテナンスフリーの微生物数測定装置及び微生物数
測定方法を提供することを目的とする。
Therefore, in order to solve these problems, the present invention provides a simple and highly sensitive measurement without requiring a medicine or a special device, and is capable of automatic measurement and maintenance-free. An object of the present invention is to provide a microorganism counting device and a microorganism counting method.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の微生物数測定装置は、微生物含有の液体を
導入することができ、内部に複数の電極を備えたセル
と、前記電極間に誘電泳動を発生させるための交流電流
と微生物を破壊するための高電圧パルスを印加すること
ができる電源回路と、前記電源回路を制御するための制
御手段と、前記微生物が破壊されたとき前記液体の物性
を測定することができる測定部とを備え、前記制御手段
が前記交流電流を流して微生物を誘電泳動によって所定
位置に移動させ、これに前記高電圧パルスを印加して微
生物を破壊し、前記測定部が破壊後の前記液体の物性を
測定して微生物の数を算出することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a microbial count measuring apparatus, comprising: a cell capable of introducing a liquid containing microorganisms; A power supply circuit capable of applying an alternating current for generating dielectrophoresis and a high-voltage pulse for destroying microorganisms, control means for controlling the power supply circuit, and when the microorganisms are destroyed A measurement unit capable of measuring the physical properties of the liquid, wherein the control means applies the alternating current to move the microorganism to a predetermined position by dielectrophoresis, and applies the high voltage pulse thereto to destroy the microorganism. The measuring unit measures the physical properties of the liquid after destruction and calculates the number of microorganisms.

【0008】これにより、薬剤や特別な装置を必要とす
ることなく、簡易で高感度な測定ができ、自動測定が可
能でメンテナンスフリーの微生物数測定装置を提供する
ことができる。
[0008] This makes it possible to provide a maintenance-free microbial count device which can perform simple and highly sensitive measurement without requiring a drug or a special device, can perform automatic measurement, and is maintenance-free.

【0009】[0009]

【発明の実施の形態】請求項1に記載された発明は、微
生物含有の液体を導入することができ、内部に複数の電
極を備えたセルと、前記電極間に誘電泳動を発生させる
ための交流電流と微生物を破壊するための高電圧パルス
を印加することができる電源回路と、前記電源回路を制
御するための制御手段と、前記微生物が破壊されたとき
前記液体の物性を測定することができる測定部とを備
え、前記制御手段が前記交流電流を流して微生物を誘電
泳動によって所定位置に移動させ、これに前記高電圧パ
ルスを印加して微生物を破壊し、前記測定部が破壊後の
前記液体の物性を測定して微生物の数を算出することを
特徴とする微生物数測定装置であるから、微生物数の少
ない試料においても微生物を電極付近に集中するように
移動させることができ、かつ微生物の破壊による液体の
物性変化を高濃度で測定することができるため、薬剤や
特別な装置を必要とすることなく、簡易で高感度な測定
ができ、自動測定が可能でメンテナンスフリーの微生物
数測定装置を提供することができる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a liquid containing microorganisms can be introduced, and a cell having a plurality of electrodes therein and a cell for generating dielectrophoresis between the electrodes are provided. A power supply circuit capable of applying an alternating current and a high-voltage pulse for destroying microorganisms, control means for controlling the power supply circuit, and measuring physical properties of the liquid when the microorganisms are destroyed. A measuring unit capable of moving the microorganism to a predetermined position by dielectrophoresis by passing the alternating current, applying the high-voltage pulse thereto to destroy the microorganism, and the measuring unit after the destruction. Since the microorganism count measuring device is characterized by calculating the number of microorganisms by measuring the physical properties of the liquid, even in a sample with a small number of microorganisms, it is possible to move the microorganisms to concentrate near the electrode. In addition, since the change in physical properties of liquid due to microbial destruction can be measured at high concentration, simple and highly sensitive measurement can be performed without the need for chemicals or special equipment, and automatic measurement is possible and maintenance-free. An apparatus for measuring the number of microorganisms can be provided.

【0010】請求項2に記載された発明は、前記セルに
は前記電極間に電界を集中させる電界集中部が設けられ
ていることを特徴とするから、電界をセル内の広範な範
囲に及ぼすことが出来ると同時に微生物を電極上最も電
界が集中する電界集中部の位置に効率良く濃縮すること
ができる為、簡易で高感度な測定ができる微生物数測定
装置を提供することができる。
[0010] The invention described in claim 2 is characterized in that the cell is provided with an electric field concentrating portion for concentrating the electric field between the electrodes, so that the electric field is applied to a wide range in the cell. At the same time, the microorganisms can be efficiently concentrated at the position of the electric field concentration portion where the electric field is most concentrated on the electrode. Therefore, it is possible to provide a microorganism counting device capable of performing simple and highly sensitive measurement.

【0011】請求項3に記載された発明は、前記測定部
が、前記電極間に高電圧パルスを印加して所定位置に移
動した微生物を破壊する前と後でそれぞれ測定を行な
い、その二つの測定値から試料液体内の微生物数を算出
することを特徴とするから、微生物濃度が低く、また不
純物を含む液体であっても容易に高精度の測定を行なう
ことが出来、薬剤や特別な装置を必要とすることなく、
簡易で高感度な測定ができる微生物数測定装置を提供す
ることができる。
According to a third aspect of the present invention, the measuring unit performs a measurement before and after applying a high-voltage pulse between the electrodes to destroy microorganisms that have moved to a predetermined position, respectively. The feature is that the number of microorganisms in the sample liquid is calculated from the measured values, so that even if the concentration of microorganisms is low and the liquid contains impurities, high-precision measurement can be easily performed. Without the need for
It is possible to provide a microorganism counting device capable of performing simple and highly sensitive measurement.

【0012】請求項4に記載された発明は、前記測定部
が前記電極間の電気伝導率を測定するものであることを
特徴とするから、簡易な測定系でありながら高精度の測
定をすることが出来、自動測定が可能な微生物数測定装
置を提供することができる。
[0012] The invention described in claim 4 is characterized in that the measuring section measures the electric conductivity between the electrodes, so that a high-precision measurement can be performed with a simple measuring system. Thus, it is possible to provide a microorganism counting device capable of automatic measurement.

【0013】請求項5に記載された発明は、前記セル内
に陰イオン交換樹脂および陽イオン交換樹脂を備えるこ
とを特徴とするから、電気伝導率測定を行なう前に試料
液内に当初より溶解している電解質濃度を下げ、測定時
のバックグラウンドの電解質濃度を低下させることがで
きるため、簡易な測定系でありながら高精度の測定をす
ることができる微生物数測定装置を提供することができ
る。
[0013] The invention described in claim 5 is characterized in that the cell is provided with an anion exchange resin and a cation exchange resin, so that the cell is initially dissolved in the sample liquid before the electric conductivity measurement is performed. It is possible to provide an apparatus for measuring the number of microorganisms which can perform high-precision measurement with a simple measurement system because the concentration of the electrolyte used can be lowered and the background electrolyte concentration at the time of measurement can be reduced. .

【0014】請求項6に記載された発明は、前記測定部
が前記電極近傍の吸光度を測定するものであることを特
徴とするから、簡易な測定系でありながら高精度の測定
をすることができ、自動測定が可能な微生物数測定装置
を提供することができる。
The invention described in claim 6 is characterized in that the measuring section measures the absorbance in the vicinity of the electrode, so that a high-precision measurement can be performed with a simple measuring system. It is possible to provide a microorganism counting device capable of automatic measurement.

【0015】請求項7に記載された発明は、微生物含有
の液体を導入することができ、内部に複数の電極を備え
たセルと、前記電極間に誘電泳動を発生させるための交
流電流と微生物を破壊するための高電圧パルスと電極洗
浄の為の直流電流を印加することができる電源回路と、
前記電源回路を制御するための制御手段と、前記微生物
が破壊されたとき前記液体の物性を測定することができ
る測定部とを備え、前記制御手段が前記交流電流を流し
て微生物を誘電泳動によって所定位置に移動させ、これ
に前記高電圧パルスを印加して微生物を破壊し、前記測
定部が破壊後の前記液体の物性を測定して微生物の数を
算出した後に、前記制御手段が前記電極間に直流電流を
印加して前記液体を電気分解し、ガスを発生させること
により前記電極の表面を洗浄することを特徴とするか
ら、測定終了後に電極表面を正常な状態に復帰させるこ
とができ、次回の測定時への影響を残すことがないた
め、薬剤や特別な装置を必要とすることなく、簡易で高
感度な測定ができ、自動測定が可能でメンテナンスフリ
ーの微生物数測定装置を提供することができる。
According to a seventh aspect of the present invention, there is provided a cell into which a liquid containing microorganisms can be introduced, and a cell having a plurality of electrodes therein, an alternating current for generating dielectrophoresis between the electrodes, and a microorganism. A power supply circuit capable of applying a high voltage pulse for destroying the electrode and a DC current for electrode cleaning,
Control means for controlling the power supply circuit, comprising a measuring unit capable of measuring the physical properties of the liquid when the microorganisms are destroyed, the control means flows the AC current, the microorganisms by dielectrophoresis After being moved to a predetermined position, the high voltage pulse is applied thereto to destroy the microorganisms, and the measuring unit measures the physical properties of the liquid after the breakdown to calculate the number of microorganisms, and then the control means controls the electrode. Since the surface of the electrode is washed by applying a direct current during the electrolysis of the liquid and generating gas, the electrode surface can be returned to a normal state after the measurement is completed. Since there is no effect on the next measurement, simple and highly sensitive measurement can be performed without the need for chemicals or special equipment, and automatic measurement is possible and a maintenance-free microbial count system. It is possible to provide.

【0016】請求項8に記載された発明は、液体中の微
生物を誘電泳動力によって所定位置に移動させ、所定位
置に移動した微生物に高電圧パルスを印加して破壊し、
破壊した後に液体の物性を測定することにより対応する
微生物数を算出することを特徴とする微生物数測定方法
であるから、微生物破壊によって生じる液体の物性変化
を測定することにより容易に微生物数を算出することが
でき、薬剤や特別な装置を必要とすることなく、簡易で
高感度な測定ができる微生物数測定方法を提供すること
ができる。
According to the present invention, the microorganisms in the liquid are moved to a predetermined position by dielectrophoretic force, and the microorganisms moved to the predetermined position are destroyed by applying a high voltage pulse.
The microorganism count method is characterized by calculating the number of corresponding microorganisms by measuring the physical properties of the liquid after destruction, so the number of microorganisms can be easily calculated by measuring the change in physical properties of the liquid caused by microbial destruction Thus, it is possible to provide a method for measuring the number of microorganisms, which can perform simple and highly sensitive measurement without requiring a drug or a special device.

【0017】請求項9に記載された発明は、液体中の微
生物を誘電泳動力によって所定位置に移動させ、所定位
置に移動した微生物に高電圧パルスを印加して破壊する
前に液体の物性を測定することを特徴とする微生物数測
定方法であるから、微生物破壊の前後で生じる、微生物
のみに起因する液体の物性変化を測定することができ、
不純物の影響を受けないため、簡易で高感度な測定がで
きる微生物数測定方法を提供することができる。
According to the ninth aspect of the present invention, the microorganisms in the liquid are moved to a predetermined position by dielectrophoretic force, and the physical properties of the liquid are destroyed by applying a high-voltage pulse to the microorganisms moved to the predetermined position. Because it is a method for measuring the number of microorganisms characterized by measuring, it can be measured before and after the destruction of microorganisms, the change in physical properties of the liquid caused only by microorganisms,
Since it is not affected by impurities, it is possible to provide a method for measuring the number of microorganisms which can perform simple and highly sensitive measurement.

【0018】請求項10に記載された発明は、測定され
る物性が液体の電気伝導率であることを特徴とする微生
物数測定方法であるから、微生物濃度の低い試料であっ
ても簡易な測定系でありながら高精度の測定を行なうこ
とが出来、簡易で高感度な測定ができ、自動測定が可能
な微生物数測定方法を提供することができる。
[0018] The invention described in claim 10 is a method for measuring the number of microorganisms, wherein the physical property to be measured is the electric conductivity of a liquid. It is possible to provide a method for measuring the number of microorganisms which can perform high-precision measurement in a system, can perform simple and high-sensitivity measurement, and can perform automatic measurement.

【0019】請求項11に記載された発明は、測定され
る物性が液体の250〜300nm間の吸光度であるこ
とを特徴とする微生物数測定方法であるから、微生物破
壊によって液体中に放出される核酸の濃度を効率良く測
定することにより、簡易で高感度な測定ができる微生物
数測定方法を提供することができる。
The invention according to claim 11 is a method for measuring the number of microorganisms, wherein the physical property to be measured is the absorbance of the liquid between 250 and 300 nm, and is released into the liquid by microbial destruction. By efficiently measuring the concentration of a nucleic acid, it is possible to provide a method for measuring the number of microorganisms, which can perform simple and highly sensitive measurement.

【0020】以下、本発明の実施の形態について、図1
〜図3を用いて説明する。 (実施の形態1)本発明の微生物数測定装置及び微生物
数測定方法における実施の形態1について図面を参照し
ながら詳細に説明する。図1は本発明の実施の形態1に
おける微生物数測定装置の全体構成図であり、図2は実
施の形態1における電極の詳細説明図である。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. (Embodiment 1) Embodiment 1 of the microorganism counting apparatus and the microorganism counting method of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall configuration diagram of a microorganism counting apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a detailed explanatory view of an electrode according to Embodiment 1.

【0021】図1および図2において、1はセル、2は
電磁弁、3は電極、8は電源回路、10は測定手段、1
1は制御手段、12は試料系、14はメモリ、21は電
極底部、22は針状突起、23はギャップ、30はイオ
ン交換樹脂である。図1および図2に示すように、電極
3は、誘電泳動によって試料液体中の微生物を所定位置
(この場合ギャップ23近傍)に移動させるために、微
小なギャップ23を介して対向して設けられている。実
施の形態1においては、電極3はいずれも円錐状の電極
底部21と円錐先端から鋭く突き出した針状突起22と
から構成されている。この針状突起22は白金で構成さ
れており、一直線上で対向するように設けられている。
ここではギャップ23の間隔は100μmに設定されて
いるが、ギャップ23の間隔は測定対象となる微生物の
大きさ等の影響を受けるため必要に応じて調節されるも
のである。例えば、酵母のような大きなものでは広く、
リケッチアのように小さなものについては狭くする必要
がある。また、ギャップ23の間隔は、広いほど大量の
微生物を濃縮することができ、測定のダイナミックレン
ジも広くなるが、測定までの時間が長くなり、誘電泳動
のために必要な電力も大きくなる。逆にギャップ23を
狭くすると、電力と測定のために必要となる時間は少な
くなるが、測定のダイナミックレンジは狭くなってしま
うものである。以上の理由から本実施の形態1において
は、ギャップ23の間隔を100μmとしているが、こ
の値は微生物の大きさ等を考慮して10〜300μmの
範囲で適宜調節されることが望ましい。さらに図示され
てはいないが、電極底部21には絶縁性でかつ疎水性の
フッソ系薄膜コーティングが施されている。
1 and 2, 1 is a cell, 2 is a solenoid valve, 3 is an electrode, 8 is a power supply circuit, 10 is a measuring means,
1 is a control means, 12 is a sample system, 14 is a memory, 21 is an electrode bottom, 22 is a needle-like projection, 23 is a gap, and 30 is an ion exchange resin. As shown in FIGS. 1 and 2, the electrodes 3 are provided to face each other via a minute gap 23 in order to move microorganisms in the sample liquid to a predetermined position (in this case, near the gap 23) by dielectrophoresis. ing. In the first embodiment, each of the electrodes 3 includes a conical electrode bottom 21 and a needle-like projection 22 that protrudes sharply from the tip of the cone. The needle-like projections 22 are made of platinum, and are provided so as to face each other on a straight line.
Here, the interval between the gaps 23 is set to 100 μm, but the interval between the gaps 23 is adjusted as necessary because it is affected by the size of the microorganism to be measured. For example, for large things like yeast,
Small things like rickettsia need to be narrowed. The larger the gap 23 is, the larger the amount of microorganisms can be concentrated and the wider the dynamic range of the measurement is. However, the time required for the measurement is longer and the electric power required for dielectrophoresis is larger. Conversely, when the gap 23 is narrowed, the power and the time required for the measurement are reduced, but the dynamic range of the measurement is narrowed. For the above reason, in the first embodiment, the interval between the gaps 23 is set to 100 μm, but it is desirable that this value is appropriately adjusted in the range of 10 to 300 μm in consideration of the size of microorganisms and the like. Although not shown, the electrode bottom 21 is coated with an insulating and hydrophobic fluorine-based thin film.

【0022】電源回路8は、電極3に誘電泳動の為の交
流電流と、微生物細胞破壊の為の高電圧パルス、電極洗
浄のための直流電流を供給する為のものであり、試料系
12を遮断するための電磁弁2等と共に制御手段11に
よって制御されている。制御手段11は、図示しないマ
イクロプロセッサと、予め設定されたプログラムを保存
するためのメモリ、タイマー、さらに測定手段10との
信号の伝送路から構成され、前記プログラムにしたがっ
て電磁弁2の開閉、電源回路8を制御し、電極3への特
定の周波数と電圧を持った交流電流の印加、同じく電極
3への高電圧パルスの印加、測定手段11との信号の送
受信等を行なう。
The power supply circuit 8 is for supplying an alternating current for dielectrophoresis, a high voltage pulse for destroying microbial cells, and a direct current for washing the electrodes to the electrode 3. It is controlled by the control means 11 together with the solenoid valve 2 for shutting off. The control means 11 comprises a microprocessor (not shown), a memory for storing a preset program, a timer, and a signal transmission path with the measuring means 10. The circuit 8 is controlled to perform application of an alternating current having a specific frequency and voltage to the electrode 3, application of a high-voltage pulse to the electrode 3, transmission and reception of a signal to and from the measurement unit 11, and the like.

【0023】測定手段10は、図示しないマイクロプロ
セッサ、電極3間の電気伝導率を検出する検出回路、制
御手段11との間の信号を伝える伝送路から構成され、
誘電泳動で捕捉され、その後高電圧パルスで破壊された
微生物から放出される電解質に起因する電気伝導率変化
を測定し、演算結果をメモリ14に格納したり、予め保
存されているデータを読み出して比較を行なったりし
て、試料系12に含まれている微生物数を算出する。な
お、このマイクロプロセッサは制御手段11と測定手段
10とで共用することができる。また測定手段10と制
御手段11は、互いに通信することにより、予め設定さ
れたプログラムに従って一連の測定動作を連携して円滑
に進めることができる。
The measuring means 10 comprises a microprocessor (not shown), a detecting circuit for detecting electric conductivity between the electrodes 3, and a transmission line for transmitting a signal between the measuring means 10 and the control means 11.
The change in electrical conductivity caused by the electrolyte released from the microorganisms captured by dielectrophoresis and subsequently destroyed by the high-voltage pulse is measured, and the calculation result is stored in the memory 14 or the data stored in advance is read out. For example, the number of microorganisms contained in the sample system 12 is calculated by comparison. This microprocessor can be shared by the control means 11 and the measurement means 10. In addition, by communicating with each other, the measuring unit 10 and the control unit 11 can smoothly advance a series of measuring operations in cooperation with each other according to a preset program.

【0024】イオン交換樹脂30は陽イオン交換樹脂お
よび陰イオン交換樹脂からなる。イオン交換樹脂30は
導入される試料液体の陰イオンを水酸化物イオンに、陽
イオンを水素イオンにそれぞれ交換することにより試料
液体の電気伝導率を低下させる働きをする。
The ion exchange resin 30 comprises a cation exchange resin and an anion exchange resin. The ion exchange resin 30 functions to lower the electrical conductivity of the sample liquid by exchanging anions of the sample liquid to be introduced with hydroxide ions and cations with hydrogen ions.

【0025】次に実施の形態1において、試料の導入か
らセル内の微生物所定位置への移動、測定、洗浄にいた
るまでの一連の流れを説明する。初期状態では試料系1
2とセル1を遮断するための電磁弁2は開放状態にあ
り、試料系12の液体はセル1内を自由に通過してい
る。所定のタイミングで、予めプログラムによって設定
された測定動作に入ると、制御手段11は電磁弁2を閉
状態にしてセル1を試料系から遮断し、セル1内のみの
閉鎖系を構成する。セル1内に保持された液体中の電解
質すなわち陽イオンおよび陰イオンはイオン交換樹脂3
0の作用によって陰イオンは水酸化物イオンに、陽イオ
ンは水素イオンにそれぞれ交換され、過剰な水酸化物イ
オンと水素イオンは結合して水となる。その結果、測定
初期の試料液体の電気伝導率はきわめて低下する。
Next, in the first embodiment, a series of flows from the introduction of the sample to the movement of the microorganism to a predetermined position in the cell, the measurement, and the washing will be described. Sample system 1 in the initial state
The electromagnetic valve 2 for shutting off the cell 2 from the cell 1 is in an open state, and the liquid of the sample system 12 freely passes through the cell 1. At a predetermined timing, when a measurement operation set by a program is started, the control means 11 closes the solenoid valve 2 to shut off the cell 1 from the sample system, thereby forming a closed system only in the cell 1. The electrolytes, ie, cations and anions, in the liquid held in the cell 1
By the action of 0, anions are exchanged for hydroxide ions and cations are exchanged for hydrogen ions, respectively, and excess hydroxide ions and hydrogen ions combine to form water. As a result, the electrical conductivity of the sample liquid at the initial stage of measurement is extremely reduced.

【0026】この後測定手段10は試料導入時から電極
3間の電気伝導率の測定を開始するが、イオン交換樹脂
30の作用によって液体中のイオンが除去されるに従い
電気伝導率は低下し、やがて一定の値に落ち着く。電気
伝導率が一定値になったところで測定手段10は制御手
段11に信号を送り、測定準備が整ったことを知らせ
る。制御手段11は測定手段10から信号を受けると、
電源回路8を制御して電極3に周波数1MHz、電圧1
00Vの正弦波の交流電流を連続的に印加する。なお、
ここで交流というは、正弦波に限らず、ほぼ一定の周期
で流れの向きを変える電流のことであり、しかも両方向
の電流の平均値が等しいもののことである。
Thereafter, the measuring means 10 starts measuring the electric conductivity between the electrodes 3 from the time of introducing the sample, but as the ions in the liquid are removed by the action of the ion exchange resin 30, the electric conductivity decreases. Eventually it settles down to a certain value. When the electric conductivity reaches a constant value, the measuring means 10 sends a signal to the control means 11 to notify that the measurement preparation is ready. When the control means 11 receives a signal from the measurement means 10,
The power supply circuit 8 is controlled to apply a frequency of 1 MHz and a voltage of 1
A sine wave alternating current of 00 V is continuously applied. In addition,
Here, the alternating current is not limited to a sine wave, but refers to a current that changes the direction of flow at a substantially constant cycle, and an average value of the currents in both directions is equal.

【0027】さて、印加される電界の作用でセル内の微
生物はその誘電的な性質によって最も電場が強くかつ不
均一な部分、即ち電界集中部としての電極3のギャップ
23近傍に誘電泳動される。なお、この電解集中部は強
い電場を不均一にするものであれば壁面等どのような構
成のものでもよい。当初からギャップ23近傍に浮遊し
ていた微生物は直ちにギャップ23部分へ泳動され、ギ
ャップ23から離れたところに浮遊していた微生物は距
離に応じて所定時間経過後にギャップ23部に至るた
め、一定時間後にギャップ23近傍の所定領域に集まっ
た微生物の数はセル1内の微生物数に比例する。これは
当然のことながら試料系12に存在する微生物数に比例
するものである。
By the action of an applied electric field, microorganisms in the cell are dielectrophoretically migrated to a portion where the electric field is strongest and non-uniform due to their dielectric properties, that is, in the vicinity of the gap 23 of the electrode 3 as an electric field concentration portion. . The electrolytic concentration portion may have any configuration such as a wall surface as long as it makes a strong electric field nonuniform. Microorganisms that floated near the gap 23 from the beginning are immediately migrated to the gap 23 portion, and microorganisms that floated away from the gap 23 reach the gap 23 portion after a predetermined time elapses according to the distance. The number of microorganisms that later collect in a predetermined area near the gap 23 is proportional to the number of microorganisms in the cell 1. This is, of course, proportional to the number of microorganisms present in the sample system 12.

【0028】予めプログラムされた所定時間経過後に、
制御手段11は測定手段10に信号を送り測定開始を指
令する。この時点には試料系12内の微生物数に比例し
た数の微生物が電極3のギャップ23近傍に移動されて
きている。制御手段11からの測定開始の信号を受ける
と、測定手段10は電極3間の電気伝導率を測定を開始
し、この値を初期値としてメモリ14に格納する。格納
が終了すると測定手段10は、制御手段11に初期値の
取得が終了したことを通知する。これを受けると、制御
手段11は電源回路8を制御して電極3間にピーク電圧
10kVの高電圧パルスを印加する。高電圧パルスの印
加によって、ギャップ23近傍に移動していた微生物は
破壊され、細胞内物質である蛋白質、糖、核酸等を液体
中に放出する。細胞内物質はそのほとんどが電解質であ
るためギャップ23近傍では一時的に電解質濃度が上昇
する。またこのとき放出される電界質量はギャップ23
近傍に移動してきた微生物の数に比例し、更に電気伝導
率は電解質の濃度に比例する。
After the elapse of a predetermined period of time,
The control means 11 sends a signal to the measurement means 10 to instruct the start of measurement. At this time, the number of microorganisms proportional to the number of microorganisms in the sample system 12 has been moved to the vicinity of the gap 23 of the electrode 3. Upon receiving a signal to start measurement from the control means 11, the measuring means 10 starts measuring the electric conductivity between the electrodes 3 and stores this value in the memory 14 as an initial value. When the storage is completed, the measuring unit 10 notifies the control unit 11 that the acquisition of the initial value has been completed. Upon receiving this, the control means 11 controls the power supply circuit 8 to apply a high voltage pulse having a peak voltage of 10 kV between the electrodes 3. By the application of the high-voltage pulse, the microorganisms that have moved to the vicinity of the gap 23 are destroyed, and release proteins, sugars, nucleic acids, and the like, which are intracellular substances, into the liquid. Since most of the intracellular substances are electrolytes, the concentration of the electrolyte temporarily increases near the gap 23. The electric field mass emitted at this time is the gap 23.
The electrical conductivity is proportional to the number of microorganisms that have moved to the vicinity, and the electrical conductivity is proportional to the concentration of the electrolyte.

【0029】微生物が破壊された直後に、制御手段11
は電気伝導率を測定するよう測定手段10に信号を送
る。これを受けると、測定手段10は直ちに電極3間の
電気伝導率を測定する。このようにして測定手段10は
微生物破壊前後の電気伝導率変化を算出した後、予めメ
モリ14に記憶されている変換式を用いて試料系12に
存在する微生物数を換算、算出する。この変換式は微生
物数が明らかな校正用試料を用意して、これを本実施の
形態1で説明した微生物数測定装置の測定系を用いて測
定し、その時の微生物数と電気伝導率の相関関係からバ
ラツキを回帰分析して得られる曲線を示す関数に従って
算出して求めたものである。この変換式をメモリ14に
記憶させ、微生物数が未知の試料からの電気伝導率変化
の値を代入することにより試料系の微生物数を算出す
る。
Immediately after the microorganism is destroyed, the control means 11
Sends a signal to the measuring means 10 to measure the electrical conductivity. Upon receiving this, the measuring means 10 immediately measures the electric conductivity between the electrodes 3. After calculating the change in electrical conductivity before and after the destruction of the microorganisms, the measuring means 10 converts and calculates the number of microorganisms present in the sample system 12 using the conversion formula stored in the memory 14 in advance. In this conversion formula, a calibration sample having a clear microbial count is prepared and measured using the measuring system of the microbial count measuring apparatus described in the first embodiment, and the correlation between the microbial count and the electrical conductivity at that time is measured. It is obtained by calculating according to a function showing a curve obtained by regression analysis of the variation from the relationship. This conversion formula is stored in the memory 14, and the number of microorganisms in the sample system is calculated by substituting the value of the change in electrical conductivity from the sample whose number of microorganisms is unknown.

【0030】ここで実施の形態1の試料系としては、例
えば酵母の培養液等の単一微生物系を想定しているが、
混合微生物系であっても、微生物の種類とその構成比が
大きく変化しない限り、前もって同様の変換式を算出し
ておくことが可能である。
Here, as the sample system of the first embodiment, a single microorganism system such as a culture solution of yeast is assumed.
Even in the case of a mixed microorganism system, it is possible to calculate the same conversion formula in advance as long as the type of microorganism and its composition ratio do not greatly change.

【0031】測定が終了すると、制御手段11は電磁弁
2を開放して洗浄に入る。ギャップ23近傍に局在する
微生物は、電磁弁2の開放により流入する液体によって
洗い流され、一連の動作が終了する。しかしながら、微
生物が強く濃縮されていたため針状突起22には微生物
の破壊後の付着物が残留する。この残留物を除去するた
めに制御手段11は電源回路8を制御して電極3間に電
圧20Vで直流電流を印加する。直流電圧の印加によっ
て一対の針状突起22では強い電気分解を生じ、例えば
水溶液系では主に水の電気分解反応が生じて、酸素と水
素のガスが発生する。針状突起22に付着した微生物破
壊の際の残留物は、発生するガスの気泡によって電極3
表面から剥ぎとられ、試料系12から流入する液体とと
もに洗い流され洗浄作業が進行する。なお、電極底部2
1には図示されない絶縁性でかつ疎水性のフッソ系薄膜
コーティングが施されているため電気分解反応が生じる
ことはない。このようにして予めプログラムされた所定
の時間が経過すると、制御手段11は通電を停止し、す
べての動作が終了する。
When the measurement is completed, the control means 11 opens the solenoid valve 2 and starts washing. Microorganisms located near the gap 23 are washed away by the liquid that flows in by opening the solenoid valve 2, and a series of operations ends. However, since the microorganisms are strongly concentrated, the debris after the microorganisms are destroyed remains on the needle-like projections 22. In order to remove the residue, the control means 11 controls the power supply circuit 8 to apply a DC current between the electrodes 3 at a voltage of 20V. By applying a DC voltage, strong electrolysis occurs at the pair of needle-like projections 22, for example, in an aqueous solution system, an electrolysis reaction of water mainly occurs, and oxygen and hydrogen gases are generated. Residue from the destruction of microorganisms attached to the needle-like projections 22 is generated by gas bubbles generated by the electrode 3.
It is peeled off from the surface and washed away together with the liquid flowing from the sample system 12, and the washing operation proceeds. The electrode bottom 2
1 is coated with an insulating and hydrophobic fluorine-based thin film (not shown), so that no electrolysis reaction occurs. When a predetermined time period programmed in advance in this way elapses, the control means 11 stops the energization, and all operations are terminated.

【0032】実施の形態1においては、セル1内に保持
される試料液体は測定開始前にイオン交換樹脂30によ
って電気伝導率を低下させられるので、試料系12の液
体の電解質濃度の濃淡にかかわらずバックグラウンドの
電解質の電気伝導率を小さく安定化でき、高精度の測定
が可能となる。
In the first embodiment, the electric conductivity of the sample liquid held in the cell 1 is reduced by the ion-exchange resin 30 before the start of the measurement, and therefore, regardless of the concentration of the electrolyte in the liquid of the sample system 12. In addition, the electrical conductivity of the background electrolyte can be stabilized to be small, and highly accurate measurement can be performed.

【0033】また、本実施の形態1において、セル1は
円錐状の電極底部21と円錐先端から鋭く突き出した針
状突起22からなる一対の電極3を備えているため、微
生物を効率良くギャップ23に集中させることができ
る。そしてこれにより検出感度を向上させることができ
る。
In the first embodiment, the cell 1 is provided with the pair of electrodes 3 including the conical electrode bottom 21 and the needle-like projections 22 that protrude sharply from the tip of the cone. You can concentrate on As a result, the detection sensitivity can be improved.

【0034】さらに、ギャップ23近傍に誘電泳動によ
って移動した微生物は、高電圧パルスによって破壊され
る前と後に電気伝導度を測定されるため、簡易な測定系
でありながら検出の精度が高い微生物数測定装置にする
ことができる。
Furthermore, the microorganisms that have moved by dielectrophoresis to the vicinity of the gap 23 are measured for electrical conductivity before and after being destroyed by the high-voltage pulse. It can be a measuring device.

【0035】ところで誘電泳動は液体内に浮遊する誘電
性の物質を泳動させるものであるため、試料液体中に浮
遊する微生物を含めた全ての微粒子をギャップ23近傍
に移動させることができるものである。しかしながら、
高電圧パルスの印加によって破壊され、液体の物性を変
化させることができるのは微生物のみであり、ギャップ
23近傍にある無機粒子等は影響を受けないため、これ
らは測定値に何等影響を与えることはない。そして測定
時には高電圧パルスの印加前後の値を調べているため、
演算によって微生物に起因する影響のみを抽出すること
が容易である。
By the way, since dielectrophoresis is a technique in which a dielectric substance floating in a liquid is electrophoresed, all particles including microorganisms floating in a sample liquid can be moved to the vicinity of the gap 23. . However,
Only microorganisms can be destroyed by the application of a high-voltage pulse and change the physical properties of the liquid, and inorganic particles near the gap 23 are not affected. There is no. And at the time of measurement, since the value before and after the application of the high voltage pulse is checked,
It is easy to extract only the influence caused by the microorganism by the calculation.

【0036】さらに本実施の形態1においては測定終了
後に電極3に直流電流を印加する。この時、針状突起2
2部で発生する電気分解に伴うガスの気泡により、針状
突起22に付着した微生物破壊後の残留物は、電極表面
から剥ぎとられ試料系12から流入する液体とともに洗
い流されるため、残留物が次回の測定時に影響を及ぼす
ことがない。また、電極底部21については絶縁性かつ
疎水性のフッソ系薄膜がコーティングされている為、微
生物やその破壊物も電極表面とほとんど相互作用するこ
とがなく、洗浄がきわめて容易である。
Further, in the first embodiment, a DC current is applied to the electrode 3 after the measurement is completed. At this time, the needle-like projection 2
Due to gas bubbles accompanying the electrolysis generated in the two parts, the residue after microbial destruction attached to the needle-like projections 22 is peeled off from the electrode surface and washed away together with the liquid flowing from the sample system 12, so that the residue is removed. It has no effect on the next measurement. Further, since the electrode bottom 21 is coated with an insulating and hydrophobic fluorine-based thin film, microorganisms and their destruction hardly interact with the electrode surface, and cleaning is extremely easy.

【0037】(実施の形態2)本発明の微生物数測定装
置における実施の形態2ついて図面を参照しながら詳細
に説明する。図3は本発明の実施の形態2における微生
物数測定装置の全体構成図である。電極の詳細は実施の
形態1と同じく図2が示す。実施の形態2において実施
の形態1と重複する説明は、その説明を実施の形態1に
譲って省略する。
(Embodiment 2) Embodiment 2 of the microorganism counting apparatus of the present invention will be described in detail with reference to the drawings. FIG. 3 is an overall configuration diagram of a microorganism counting apparatus according to Embodiment 2 of the present invention. FIG. 2 shows the details of the electrodes as in the first embodiment. In the second embodiment, the description overlapping with the first embodiment will be omitted by replacing the description with the first embodiment.

【0038】図3において1はセル、4は光源、5は受
光部、6は光源光学系、7は受光部光学系、13は測定
窓である。
In FIG. 3, 1 is a cell, 4 is a light source, 5 is a light receiving section, 6 is a light source optical system, 7 is a light receiving section optical system, and 13 is a measurement window.

【0039】図3において、セル1は測定用に光束を導
入するためと検出光取り出しのための2つの測定窓13
を備えている。光源4としては250nm〜280nm
の波長領域を含む紫外域に発光波長を持つ重水素ランプ
が用いられている。受光部5は光源4からの光を捉える
ために設けられており、実施の形態2ではフォトダイオ
ードが使用されている。6,7は複数のレンズや偏向板
等で構成された光学系である。光源4と受光部5は光学
系6,7、更にはセル1両端に備えられた測定窓13を
介して光学的に向き合っており、これによって光源4か
らの光束が電極3のギャップ23近傍を通過するように
配置されている。実施の形態2においては光学系6,
7、更に測定窓13等は250nm〜300nmの波長
領域を効率良く透過するシリカガラスによって構成され
ている。
In FIG. 3, a cell 1 has two measurement windows 13 for introducing a light beam for measurement and for extracting detection light.
It has. 250 nm to 280 nm as the light source 4
A deuterium lamp having an emission wavelength in the ultraviolet region including the above wavelength region is used. The light receiving section 5 is provided for catching light from the light source 4, and the second embodiment uses a photodiode. Reference numerals 6 and 7 denote optical systems composed of a plurality of lenses, deflection plates, and the like. The light source 4 and the light receiving unit 5 are optically opposed to each other through the optical systems 6 and 7 and the measurement windows 13 provided at both ends of the cell 1. It is arranged to pass through. In the second embodiment, the optical system 6
7. Further, the measurement window 13 and the like are made of silica glass that efficiently transmits the wavelength region of 250 nm to 300 nm.

【0040】次に実施の形態2において、試料の導入か
らセル内の微生物の所定位置への移動、測定、洗浄にい
たるまでの一連の流れを説明する。実施の形態1と重複
する部分の説明は省略する。セル1内に保持された液体
中の微生物は、実施の形態1と同様に電極3のギャップ
23近傍に誘電泳動される。予めプログラムされた所定
時間経過後に、測定手段10は光源4を点灯させ、受光
部5から得られる測定値を初期値としてメモリ14に格
納する。次いで、制御手段11は電源回路8を制御して
電極3間にピーク電圧10kVの高電圧パルスを印加す
る。高電圧パルスの印加によって、電界集中部としての
ギャップ23近傍に集中するように移動していた微生物
は破壊され、細胞内物質を液体中に放出する。細胞内物
質には微生物活動に起因する蛋白質、糖類等とともに核
酸、すなわちDNAとRNAが含まれている。核酸は2
50nm〜300nm間に特異的な吸収を持ち、またこ
の吸収は核酸濃度に比例する。
Next, in the second embodiment, a series of flows from introduction of a sample to movement of microorganisms in a cell to a predetermined position, measurement, and washing will be described. Description of the same parts as in the first embodiment will be omitted. Microorganisms in the liquid held in the cell 1 are subjected to dielectrophoresis near the gap 23 of the electrode 3 as in the first embodiment. After a lapse of a predetermined time programmed in advance, the measuring means 10 turns on the light source 4 and stores the measured value obtained from the light receiving section 5 in the memory 14 as an initial value. Next, the control means 11 controls the power supply circuit 8 to apply a high voltage pulse having a peak voltage of 10 kV between the electrodes 3. The application of the high-voltage pulse destroys the microorganisms that have moved so as to concentrate near the gap 23 as the electric field concentration part, and releases intracellular substances into the liquid. Intracellular substances include nucleic acids, that is, DNA and RNA, together with proteins, sugars, and the like resulting from microbial activity. Nucleic acid is 2
It has a specific absorption between 50 nm and 300 nm, and this absorption is proportional to the nucleic acid concentration.

【0041】測定手段10は高電圧パルス印加によりギ
ャップ23近傍の微生物が破壊された後に再び測定を行
い、メモリ14に格納されている初期値との比較を行っ
て、ギャップ23近傍の所定領域の核酸濃度を算出す
る。核酸濃度は微生物の数と相関を持ち、また予めプロ
グラムされた所定時間内にギャップ23近傍に移動して
くる微生物数が試料系12に存在する微生物数に比例す
るため、測定手段10は実施の形態1同様、予めメモリ
14に記憶されている変換式を読み出して試料系12に
含まれている微生物数を算出することができる。測定終
了後の洗浄動作は実施の形態1と同じである。
After the microorganisms near the gap 23 are destroyed by the application of the high voltage pulse, the measuring means 10 performs the measurement again, compares the measured values with the initial values stored in the memory 14, and performs the measurement on the predetermined region near the gap 23. Calculate the nucleic acid concentration. Since the nucleic acid concentration has a correlation with the number of microorganisms, and the number of microorganisms moving to the vicinity of the gap 23 within a predetermined time programmed in advance is proportional to the number of microorganisms present in the sample system 12, the measuring means 10 is used for the measurement. As in the first embodiment, the number of microorganisms contained in the sample system 12 can be calculated by reading the conversion formula stored in the memory 14 in advance. The cleaning operation after the end of the measurement is the same as in the first embodiment.

【0042】本実施の形態2は実施の形態1と同様に基
本的には単一微生物系を想定しているが、同じく実施の
形態1と同様に、混合系にも適用できることは言うまで
もない。実施の形態2において、ギャップ23近傍に誘
電泳動によって移動させられた微生物は、高電圧パルス
によって破壊され核酸の濃度として測定されるため、簡
易な測定系でありながら検出の精度を向上させられる。
すなわち、誘電泳動は液体内に浮遊する誘電性の物質を
泳動させるものであるため、試料液体中に浮遊する微生
物を含めた全ての微粒子をギャップ23近傍に移動させ
る。しかしながら、高電圧パルスの印加によって破壊さ
れ液体の物性を変化させるのは微生物のみであり、高電
圧パルス印加前からギャップ23近傍にある無機粒子や
250nm〜300nm間に吸収を持つ有機分子等は何
等影響を与えることはない。測定時には高電圧パルス印
加前後の値を調べるため、演算によって微生物に起因す
る影響のみを抽出することは容易である。
Although the second embodiment basically assumes a single microorganism system as in the first embodiment, it is needless to say that the second embodiment can also be applied to a mixed system similarly to the first embodiment. In the second embodiment, the microorganisms moved by the dielectrophoresis to the vicinity of the gap 23 are destroyed by the high-voltage pulse and measured as the concentration of the nucleic acid, so that the detection accuracy can be improved while using a simple measurement system.
That is, since dielectrophoresis migrates a dielectric substance floating in a liquid, all particles including microorganisms floating in a sample liquid are moved to the vicinity of the gap 23. However, only microorganisms are destroyed by the application of the high-voltage pulse and change the physical properties of the liquid, and there are no inorganic particles near the gap 23 or organic molecules having an absorption between 250 nm and 300 nm before the application of the high-voltage pulse. Has no effect. At the time of measurement, the values before and after the application of the high-voltage pulse are examined, so that it is easy to extract only the effects caused by microorganisms by calculation.

【0043】[0043]

【発明の効果】本発明によれば、薬剤や特別な装置を必
要とすることなく、簡易で高感度な測定ができ、自動測
定が可能でメンテナンスフリーの微生物数測定装置を提
供することができる。
According to the present invention, it is possible to provide a simple and highly sensitive measurement, automatic measurement and maintenance-free microbial counting apparatus without the need for drugs or special equipment. .

【0044】また、簡易で高感度な微生物数測定方法を
提供することができる。
Further, a simple and highly sensitive method for measuring the number of microorganisms can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における微生物数測定装
置の全体構成図
FIG. 1 is an overall configuration diagram of a microorganism counting apparatus according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における電極の詳細説明
FIG. 2 is a detailed explanatory view of an electrode according to the first embodiment of the present invention.

【図3】本発明の実施の形態2における微生物数測定装
置の全体構成図
FIG. 3 is an overall configuration diagram of a microorganism counting apparatus according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 セル 2 電磁弁 3 電極 4 光源 5 受光部 6 光源光学系 7 受光光学系 8 電源回路 10 測定手段 11 制御手段 12 試料系 13 測定窓 14 メモリ 21 電極底部 22 針状突起 23 ギャップ 30 イオン交換樹脂 DESCRIPTION OF SYMBOLS 1 Cell 2 Solenoid valve 3 Electrode 4 Light source 5 Light receiving part 6 Light source optical system 7 Light receiving optical system 8 Power supply circuit 10 Measurement means 11 Control means 12 Sample system 13 Measurement window 14 Memory 21 Electrode bottom 22 Needle-like projection 23 Gap 30 Ion exchange resin

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】微生物含有の液体を導入することができ、
内部に複数の電極を備えたセルと、前記電極間に誘電泳
動を発生させるための交流電流と微生物を破壊するため
の高電圧パルスを印加することができる電源回路と、前
記電源回路を制御するための制御手段と、前記微生物が
破壊されたとき前記液体の物性を測定することができる
測定手段とを備え、前記制御手段が前記交流電流を流し
て微生物を誘電泳動によって所定位置に移動させ、これ
に前記高電圧パルスを印加して微生物を破壊し、前記測
定手段が破壊後の前記液体の物性を測定して微生物の数
を算出することを特徴とする微生物数測定装置。
1. A microorganism-containing liquid can be introduced,
A cell having a plurality of electrodes therein, a power supply circuit capable of applying an alternating current for generating dielectrophoresis between the electrodes and a high voltage pulse for destroying microorganisms, and controlling the power supply circuit Control means for, comprising a measuring means capable of measuring the physical properties of the liquid when the microorganisms are destroyed, the control means flowing the AC current to move the microorganisms to a predetermined position by dielectrophoresis, A microorganism counting apparatus, wherein the microorganism is destroyed by applying the high-voltage pulse thereto, and the measuring means measures the physical properties of the liquid after the breakdown to calculate the number of microorganisms.
【請求項2】前記セルには前記電極間に電界を集中させ
る電界集中部が設けられていることを特徴とする請求項
1記載の微生物数測定装置。
2. The microorganism counting apparatus according to claim 1, wherein said cell is provided with an electric field concentration portion for concentrating an electric field between said electrodes.
【請求項3】前記測定手段が、前記電極間に高電圧パル
スを印加して所定位置に移動した微生物を破壊する前と
後でそれぞれ測定を行ない、その二つの測定値から試料
液体内の微生物数を算出することを特徴とする請求項1
記載の微生物数測定装置。
3. The method according to claim 1, wherein the measuring means applies a high-voltage pulse between the electrodes to perform measurement before and after destroying the microorganisms that have moved to a predetermined position. The number is calculated.
The microorganism counting device according to the above.
【請求項4】前記測定手段が前記電極間の電気伝導率を
測定することを特徴とする請求項1〜3記載の微生物数
測定装置。
4. An apparatus according to claim 1, wherein said measuring means measures the electric conductivity between said electrodes.
【請求項5】前記セル内に陰イオン交換樹脂および陽イ
オン交換樹脂を備えたことを特徴とする請求項4記載の
微生物数測定装置。
5. An apparatus for measuring the number of microorganisms according to claim 4, wherein said cell is provided with an anion exchange resin and a cation exchange resin.
【請求項6】前記測定手段が前記電極近傍の吸光度を測
定することを特徴とする請求項1〜3記載の微生物数測
定装置。
6. An apparatus according to claim 1, wherein said measuring means measures the absorbance near said electrode.
【請求項7】微生物含有の液体を導入することができ、
内部に複数の電極を備えたセルと、前記電極間に誘電泳
動を発生させるための交流電流と微生物を破壊するため
の高電圧パルスと電極洗浄の為の直流電流を印加するこ
とができる電源回路と、前記電源回路を制御するための
制御手段と、前記微生物が破壊されたとき前記液体の物
性を測定することができる測定手段とを備え、前記制御
手段が前記交流電流を流して微生物を誘電泳動によって
所定位置に移動させ、これに前記高電圧パルスを印加し
て微生物を破壊し、前記測定手段が破壊後の前記液体の
物性を測定して微生物の数を算出した後に、前記制御手
段が前記電極間に直流電流を印加して前記液体を電気分
解し、ガスを発生させることにより前記電極の表面を洗
浄することを特徴とする請求項1〜6記載の微生物数測
定装置。
7. A liquid containing microorganisms can be introduced,
A cell having a plurality of electrodes therein, and a power supply circuit capable of applying an alternating current for generating dielectrophoresis between the electrodes, a high voltage pulse for destroying microorganisms, and a direct current for cleaning the electrodes. And control means for controlling the power supply circuit, and measuring means capable of measuring the physical properties of the liquid when the microorganisms are destroyed, wherein the control means passes the alternating current to break down the microorganisms. After being moved to a predetermined position by electrophoresis, the high voltage pulse is applied thereto to destroy the microorganisms, and the measuring means measures the physical properties of the liquid after the destruction, calculates the number of microorganisms, and then the control means The microorganism counting apparatus according to claim 1, wherein a surface of the electrode is washed by applying a direct current between the electrodes to electrolyze the liquid and generate a gas.
【請求項8】液体中の微生物を誘電泳動力によって所定
位置に移動させ、所定位置に移動した微生物に高電圧パ
ルスを印加して破壊し、破壊した後に液体の物性を測定
することにより対応する微生物数を算出することを特徴
とする微生物数測定方法。
8. A method in which microorganisms in a liquid are moved to a predetermined position by dielectrophoretic force, the microorganisms moved to the predetermined position are destroyed by applying a high voltage pulse, and the physical properties of the liquid are measured after the microorganisms are destroyed. A method for measuring the number of microorganisms, comprising calculating the number of microorganisms.
【請求項9】液体中の微生物を誘電泳動力によって所定
位置に移動させ、所定位置に移動した微生物に高電圧パ
ルスを印加して破壊する前に液体の物性を測定すること
を特徴とする請求項8記載の微生物数測定方法。
9. The method according to claim 1, wherein the microorganisms in the liquid are moved to a predetermined position by dielectrophoretic force, and the physical properties of the liquid are measured before applying high voltage pulses to the microorganisms moved to the predetermined position to destroy the microorganisms. Item 8. The method for measuring the number of microorganisms according to Item 8.
【請求項10】測定される物性が液体の電気伝導率であ
ることを特徴とする請求項8または9記載の微生物数測
定方法。
10. The method according to claim 8, wherein the physical property to be measured is the electric conductivity of a liquid.
【請求項11】測定される物性が液体の250〜300
nm間の吸光度であることを特徴とする請求項1〜10
のいずれかに記載の微生物数測定方法。
11. The property to be measured is 250 to 300 of a liquid.
11. The absorbance between nm.
The method for measuring the number of microorganisms according to any one of the above.
JP29674897A 1997-10-29 1997-10-29 Microorganism count measuring apparatus and microorganism count measuring method Expired - Fee Related JP3734123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29674897A JP3734123B2 (en) 1997-10-29 1997-10-29 Microorganism count measuring apparatus and microorganism count measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29674897A JP3734123B2 (en) 1997-10-29 1997-10-29 Microorganism count measuring apparatus and microorganism count measuring method

Publications (2)

Publication Number Publication Date
JPH11127846A true JPH11127846A (en) 1999-05-18
JP3734123B2 JP3734123B2 (en) 2006-01-11

Family

ID=17837613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29674897A Expired - Fee Related JP3734123B2 (en) 1997-10-29 1997-10-29 Microorganism count measuring apparatus and microorganism count measuring method

Country Status (1)

Country Link
JP (1) JP3734123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241473A (en) * 2007-03-27 2008-10-09 Takashi Sugino Biosensor and method for sensing to-be-sensed object
WO2009140796A1 (en) * 2008-05-23 2009-11-26 西门子公司 A particle concentration measuring device and method
WO2010079844A1 (en) * 2009-01-09 2010-07-15 ソニー株式会社 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
JP2012034595A (en) * 2010-08-04 2012-02-23 Panasonic Corp Apparatus for counting number of microorganisms
JP2012132695A (en) * 2010-12-20 2012-07-12 Panasonic Corp Cell for measuring number of microorganisms and apparatus for measuring number of microorganisms using the same
WO2013035252A1 (en) 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same
US10684254B2 (en) 2016-02-08 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Analyte detection by dielectrophoresis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241473A (en) * 2007-03-27 2008-10-09 Takashi Sugino Biosensor and method for sensing to-be-sensed object
WO2009140796A1 (en) * 2008-05-23 2009-11-26 西门子公司 A particle concentration measuring device and method
WO2010079844A1 (en) * 2009-01-09 2010-07-15 ソニー株式会社 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
JP2010181399A (en) * 2009-01-09 2010-08-19 Sony Corp Flow path device, complex dielectric constant measuring device, and dielectric cytometry device
US10222314B2 (en) 2009-01-09 2019-03-05 Sony Corporation Flow channel device, complex permittivity measuring apparatus, and dielectric cytometry system
JP2012034595A (en) * 2010-08-04 2012-02-23 Panasonic Corp Apparatus for counting number of microorganisms
JP2012132695A (en) * 2010-12-20 2012-07-12 Panasonic Corp Cell for measuring number of microorganisms and apparatus for measuring number of microorganisms using the same
WO2013035252A1 (en) 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same
US10684254B2 (en) 2016-02-08 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Analyte detection by dielectrophoresis

Also Published As

Publication number Publication date
JP3734123B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
RU2055884C1 (en) Process of determination of rates of dielectrophoresis of collection of particles polarized dielectrically in liquid suspension and device for its realization
Lu et al. Pulsed amperometric detection of carbohydrates separated by capillary electrophoresis
US4456513A (en) Method of and apparatus for measuring electrophoretic mobility
Tao et al. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence
USRE35157E (en) Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection
JP5550729B2 (en) Proton concentration topography and method and device for producing the same
JP3011914B2 (en) On-column conductivity detector for electrokinetic separation by microcolumn
GR3029446T3 (en) Method of preparing a radioactive rhenium complex solution.
WO2017206415A1 (en) Electrophoresis system and method applicable to ion-sensitive field effect sensor
JP3734123B2 (en) Microorganism count measuring apparatus and microorganism count measuring method
Kubáň et al. A flow injection‐capillary electrophoresis system with high‐voltage contactless conductivity detection for automated dual opposite end injection
Fiedler et al. Diffusional electrotitration: generation of pH gradients over arrays of ultramicroelectrodes detected by fluorescence
WO2023221347A1 (en) Drug screening device and method based on ion channel
KR100564085B1 (en) Capillary electrophoresis probes and method
Dong et al. Monitoring diclofenac sodium in single human erythrocytes introduced by electroporation using capillary zone electrophoresis with electrochemical detection
Wang et al. Determination of glutathione in single human hepatocarcinoma cells by capillary electrophoresis with electrochemical detection
JPS638423B2 (en)
JPH06300736A (en) Method of sample analysis using capillary tube electrophoresis
CN110161106A (en) Online electrochemistry-spectroscopy monitoring device in situ of ion exchange fouling membrane during a kind of electrodialysis desalination
US9488637B2 (en) Combination of single-cell electroporation and electrical recording using the same electrode
JP3763195B2 (en) Microorganism count measuring apparatus and microorganism count measuring method
Chu et al. Fast determination of sugars in Coke and Diet Coke by miniaturized capillary electrophoresis with amperometric detection
JP2000189150A (en) Device for measuring number of microorganism and method therefor
JP3713941B2 (en) Microbe count measuring device
Zhang et al. Determination of pazufloxacin mesylas by capillary electrophoresis with electrochemiluminescence detection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees