JPH11122957A - Ultrasonic motor and manufacture thereof - Google Patents

Ultrasonic motor and manufacture thereof

Info

Publication number
JPH11122957A
JPH11122957A JP9293470A JP29347097A JPH11122957A JP H11122957 A JPH11122957 A JP H11122957A JP 9293470 A JP9293470 A JP 9293470A JP 29347097 A JP29347097 A JP 29347097A JP H11122957 A JPH11122957 A JP H11122957A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
ultrasonic motor
electrodes
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9293470A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
孝史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9293470A priority Critical patent/JPH11122957A/en
Publication of JPH11122957A publication Critical patent/JPH11122957A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic motor having small residual stresses and small warpages of a piezoelectric element and superior durability, and manufacture thereof. SOLUTION: On the surface side face of a piezoelectric element 10, a first detecting electrode 13 and a second detecting electrode 14 arranged at an angle of 180 deg. on a circumference are mounted, while electrode groups 110, 120 for driving partitioning into a plurality of drive electrodes 11, 12 are installed. The first detecting electrode 13, the second detecting electrode 14 and the electrodes 11, 12 for driving are polarization-processed in the a direction opposite to the adjacent electrodes respectively. When the wavelengths of progressive waves generated in a vibrating body are represented by λ in the circumferential direction of each electrode, the first detecting electrode 13 is set to λ/4, the second detecting electrode 14 to 3λ/4, and the electrodes 11, 12 for drive to λ/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,耐久性等に優れた超音波モータ
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor having excellent durability and a method for manufacturing the same.

【0002】[0002]

【従来技術】超音波モータは,後述する図4に示すごと
く,リング状の圧電素子10と,圧電素子10に貼設し
た振動体2と,振動体2に加圧当接させた回転体3とを
有してなる。そして,上記圧電素子10に位相が90度
異なる2種類の高周波電圧を印加することにより上記振
動体2に進行波を発生させて回転体3を摩擦駆動するタ
イプのモータである。
2. Description of the Related Art As shown in FIG. 4, which will be described later, an ultrasonic motor is composed of a ring-shaped piezoelectric element 10, a vibrating body 2 attached to the piezoelectric element 10, and a rotating body 3 pressed against the vibrating body 2. And The motor is of a type in which a traveling wave is generated in the vibrating body 2 by applying two kinds of high-frequency voltages having phases different by 90 degrees to the piezoelectric element 10 to frictionally drive the rotating body 3.

【0003】即ち,図8に示すごとく,振動体2に進行
波が発生した場合には,振動体2の表面が楕円運動をし
ながら上下動する。そのため,振動体2に接触している
回転体3は,振動体2の表面の上記楕円運動に伴って進
行波の進行方向と逆方向に進む。なお図8における符号
38は振動体2との摩擦係数を向上させるための摩擦材
であり,上記回転体3の表面に貼設されている。この進
行波は,振動体2に貼設されている圧電素子10によっ
て発生させる。
That is, as shown in FIG. 8, when a traveling wave is generated in the vibrating body 2, the surface of the vibrating body 2 moves up and down while performing an elliptical motion. Therefore, the rotating body 3 that is in contact with the vibrating body 2 travels in a direction opposite to the traveling direction of the traveling wave with the elliptical motion of the surface of the vibrating body 2. Reference numeral 38 in FIG. 8 denotes a friction material for improving the coefficient of friction with the vibrating body 2, and is attached to the surface of the rotating body 3. This traveling wave is generated by the piezoelectric element 10 attached to the vibrator 2.

【0004】具体的には,図9に示すごとく,圧電素子
10の表側面をその円周方向に細かく区画し,その区画
毎に分極用の電極11,12,91〜94を設ける。電
極の配置は,同図において左右に位置する駆動用電極群
110,120と,上下に位置する検知用電極91,9
2,93,94とに大別される。また,各電極の円周方
向の長さは,得ようとする進行波の波長をλとした場
合,駆動用電極11,12がλ/2,各検知用電極9
1,92,93はいずれもλ/4である。
More specifically, as shown in FIG. 9, the front surface of the piezoelectric element 10 is finely divided in its circumferential direction, and electrodes 11, 12, 91 to 94 for polarization are provided for each division. The arrangement of the electrodes is such that drive electrode groups 110 and 120 located on the left and right in FIG.
2,93,94. When the wavelength of the traveling wave to be obtained is λ, the driving electrodes 11 and 12 are λ / 2, and the length of each electrode in the circumferential direction is λ / 2.
1, 92 and 93 are all λ / 4.

【0005】また,各電極には,隣接する電極と逆の分
極方向となるように分極処理を施す。即ち,図9に示す
ごとく,分極方向を「+」,「−」により示すと円周方
向に交互に「+」と「−」を配置する。なお,圧電素子
10の裏側面には,図10に示すごとく,上記駆動用電
極群110,120,及び各検知用電極91〜94にそ
れぞれ対応する位置に,裏面電極15,16,95〜9
8を設けてある。
[0005] Each electrode is subjected to a polarization treatment so as to have a polarization direction opposite to that of an adjacent electrode. That is, as shown in FIG. 9, when the polarization direction is indicated by "+" and "-", "+" and "-" are alternately arranged in the circumferential direction. As shown in FIG. 10, on the back surface of the piezoelectric element 10, the back electrodes 15, 16, 95 to 9 are provided at positions corresponding to the drive electrode groups 110 and 120 and the detection electrodes 91 to 94, respectively.
8 is provided.

【0006】そして,第1の駆動用電極群110の各電
極11のみに高周波電圧を印加すると,図11(a)に
示すごとき定在波Aが発生する。一方,第2の駆動用電
極群120の各電極12のみに上記高周波電圧と位相が
90度異なる高周波電圧を印加すると,図11(b)に
示すごとき定在波Bが発生する。
When a high-frequency voltage is applied only to each electrode 11 of the first drive electrode group 110, a standing wave A as shown in FIG. 11A is generated. On the other hand, when a high-frequency voltage having a phase different from that of the high-frequency voltage by 90 degrees is applied only to each electrode 12 of the second driving electrode group 120, a standing wave B as shown in FIG. 11B is generated.

【0007】そして,上記2つの駆動用電極群110,
120に同時に位相が90度ずれた上記高周波電圧をそ
れぞれ印加すると,図12に示すごとく,定在波Aと定
在波Bとが合成されて進行波Cが発生する。一方,上記
検知用電極91〜94は,いずれも電圧を印加せず,駆
動には寄与させない。そして,これら検知用電極91〜
94のいずれかの電圧変化を測定することにより,圧電
素子10の振動状態をモニターすることができる。
The two driving electrode groups 110,
When the high-frequency voltages whose phases are shifted by 90 degrees are simultaneously applied to 120, respectively, the standing wave A and the standing wave B are combined to generate a traveling wave C as shown in FIG. On the other hand, none of the detection electrodes 91 to 94 applies a voltage and does not contribute to driving. And these detection electrodes 91 to 91
By measuring any one of the voltage changes 94, the vibration state of the piezoelectric element 10 can be monitored.

【0008】[0008]

【解決しようとする課題】しかしながら,上記従来の超
音波モータにおいては,次の問題がある。即ち,上記圧
電素子10には,上記のごとく,駆動用電極11,1
2,検知用電極91〜94を設ける。そして,これら各
電極11,12,91〜94に対して,隣接するものと
逆方向の分極方向を有するように分極処理を施す。
However, the above conventional ultrasonic motor has the following problems. That is, as described above, the driving electrodes 11, 1
2. The detection electrodes 91 to 94 are provided. Then, a polarization process is performed on each of the electrodes 11, 12, 91 to 94 so as to have a polarization direction opposite to that of an adjacent electrode.

【0009】この逆方向の分極処理がなされた電極間の
境界部分においては,残留応力が発生する。この残留応
力は,最も幅の狭い電極が3つ連続して配されている検
知用電極92〜94間において最大となる。この大きな
残留応力は,圧電素子10にそりを発生させる原因とも
なる。また,残留応力やそりの発生は,圧電素子10と
振動体2との間の接着性や,圧電素子10の耐久性の低
下に影響を及ぼす。
[0009] Residual stress is generated at the boundary between the electrodes subjected to the reverse polarization processing. This residual stress becomes maximum between the detecting electrodes 92 to 94 in which the three electrodes having the narrowest width are continuously arranged. This large residual stress also causes the piezoelectric element 10 to warp. Further, the occurrence of residual stress or warpage affects the adhesiveness between the piezoelectric element 10 and the vibrating body 2 and lowers the durability of the piezoelectric element 10.

【0010】本発明は,かかる従来の問題点に鑑みてな
されたもので,圧電素子の残留応力及びそりが小さく,
耐久性に優れた超音波モータ及びその製造方法を提供し
ようとするものである。
The present invention has been made in view of such a conventional problem, and has a small residual stress and warpage of a piezoelectric element.
An object of the present invention is to provide an ultrasonic motor having excellent durability and a method for manufacturing the same.

【0011】[0011]

【課題の解決手段】請求項1の発明は,リング状の圧電
素子と,該圧電素子の表側面又は裏側面に貼設した振動
体と,該振動体に加圧当接させた回転体とを有してな
り,上記圧電素子に位相が90度異なる2種類の高周波
電圧を印加することにより上記振動体に進行波を発生さ
せて上記回転体を摩擦駆動する超音波モータにおいて,
上記圧電素子の表側面には,円周上において180度の
角度を隔てて配された第1検知用電極及び第2検知用電
極を設けてなると共に,これら第1検知用電極と第2検
知用電極との間の2つの領域には,それぞれ複数の駆動
用電極に区分してなる駆動用電極群を設けてなり,ま
た,上記第1検知用電極,上記第2検知用電極及び上記
駆動用電極は,それぞれ隣接する電極と逆方向に分極処
理されており,かつ,上記圧電素子における各電極の円
周方向の長さは,振動体に発生させる進行波の波長をλ
とした場合に,上記第1検知用電極はλ/4,上記第2
検知用電極は3λ/4,上記駆動用電極はλ/2である
ことを特徴とする超音波モータにある。
According to a first aspect of the present invention, there is provided a ring-shaped piezoelectric element, a vibrating body attached to a front side or a back side of the piezoelectric element, and a rotating body pressed and abutted on the vibrating body. An ultrasonic motor that frictionally drives the rotating body by generating a traveling wave in the vibrating body by applying two kinds of high-frequency voltages having phases different by 90 degrees to the piezoelectric element,
A first detection electrode and a second detection electrode are provided on the front surface of the piezoelectric element at an angle of 180 degrees on the circumference, and the first detection electrode and the second detection electrode are provided. A drive electrode group divided into a plurality of drive electrodes is provided in each of the two regions between the first and second detection electrodes, the second detection electrode, and the drive electrode. Each of the electrodes is polarized in a direction opposite to that of an adjacent electrode, and the length of each electrode in the piezoelectric element in the circumferential direction is determined by the wavelength of the traveling wave generated by the vibrator.
, The first detection electrode is λ / 4, and the second detection electrode is
The ultrasonic motor is characterized in that the detecting electrode is 3λ / 4 and the driving electrode is λ / 2.

【0012】本発明において最も注目すべき点は,上記
圧電素子には,上記第1及び第2の2つの検知用電極を
設けこれらの円周方向の長さをそれぞれλ/4及び3λ
/4にしたこと,かつ,これら検知用電極も含めてすべ
ての電極に電極単位で分極処理を施してあることであ
る。
The most notable point in the present invention is that the piezoelectric element is provided with the first and second detection electrodes, and their circumferential lengths are set to λ / 4 and 3λ, respectively.
/ 4, and all electrodes, including these detection electrodes, are subjected to polarization processing in electrode units.

【0013】検知用電極は,超音波モータの駆動には寄
与しない電極であって,圧電素子の振動状態を電気信号
として取り出すための電極である。本発明においては,
検知用電極として,上記第1検知用電極と第2検知用電
極とを設けてある。なお,これら2つの検知用電極両方
から振動検出用の電気信号を取り出す構造にしても良い
し,いずれか一方から電気信号を取り出す構造にしても
良い。
The detection electrode is an electrode which does not contribute to the driving of the ultrasonic motor, and is an electrode for extracting the vibration state of the piezoelectric element as an electric signal. In the present invention,
The first detection electrode and the second detection electrode are provided as detection electrodes. It should be noted that a structure for extracting an electric signal for vibration detection from both of these two detection electrodes or a structure for extracting an electric signal from one of them may be employed.

【0014】次に,本発明の作用につき説明する。本発
明の超音波モータは,上記のごとく,第2検知用電極の
円周方向の長さを3λ/4という長さに設定してある。
即ち,上記圧電素子における電極は,λ/2の長さの複
数の駆動用電極と,λ/4の長さの1つの第1検知用電
極と,3λ/4の長さの1つの第2検知用電極とにより
構成されている。そのため,従来のようなλ/4の長さ
の電極が隣接するという部分は存在しない。
Next, the operation of the present invention will be described. As described above, in the ultrasonic motor of the present invention, the length of the second detection electrode in the circumferential direction is set to 3λ / 4.
That is, the electrodes of the piezoelectric element include a plurality of drive electrodes having a length of λ / 2, one first detection electrode having a length of λ / 4, and one second detection electrode having a length of 3λ / 4. And a detection electrode. Therefore, there is no portion in which electrodes having a length of λ / 4 are adjacent to each other as in the related art.

【0015】そのため,圧電素子に分極処理を施すこと
による残留応力は,従来よりも大幅に低減させることが
できる。また,残留応力の影響により生ずる圧電素子の
そりも従来よりも小さくすることができる。それ故,圧
電素子と振動体との接着性の向上,及び圧電素子の耐久
性の向上を図ることができる。特に,圧電素子に大振幅
を生じさせた場合等における割れ発生率を従来よりも大
幅に低減することができる。
[0015] Therefore, the residual stress due to the polarization treatment applied to the piezoelectric element can be greatly reduced as compared with the related art. Also, the warpage of the piezoelectric element caused by the influence of the residual stress can be reduced as compared with the related art. Therefore, the adhesion between the piezoelectric element and the vibrating body can be improved, and the durability of the piezoelectric element can be improved. In particular, the rate of occurrence of cracks when a large amplitude is generated in the piezoelectric element can be significantly reduced as compared with the conventional case.

【0016】従って,本発明によれば,圧電素子の残留
応力及びそりが小さく,耐久性に優れた超音波モータを
提供することができる。
Therefore, according to the present invention, it is possible to provide an ultrasonic motor having small residual stress and warpage of the piezoelectric element and excellent durability.

【0017】次に,請求項2の発明のように,上記圧電
素子の裏側面には,区画を設けることなく面全体に配設
してなるベタ電極を設けてあることが好ましい。即ち,
圧電素子への高周波電圧の印加は上記駆動用電極群毎に
行う。この場合,圧電素子の裏側面の電極を表側の各駆
動用電極群全体に対応して設け,その裏側面の電極ごと
にそれぞれ高周波電圧を印加することが一般的である。
しかしながら,この場合には,表側面の電極群と裏側面
の電極の円周方向の位置関係を正確に対応させることが
困難であるという問題がある。
Next, as in the second aspect of the present invention, it is preferable that the back surface of the piezoelectric element is provided with a solid electrode which is disposed on the entire surface without providing a partition. That is,
The application of the high-frequency voltage to the piezoelectric element is performed for each of the driving electrode groups. In this case, generally, electrodes on the back side of the piezoelectric element are provided corresponding to the entire driving electrode group on the front side, and a high-frequency voltage is applied to each electrode on the back side.
However, in this case, there is a problem that it is difficult to accurately correspond the circumferential positional relationship between the electrode group on the front surface and the electrode on the rear surface.

【0018】そこで,上記のごとく裏側面全体を上記ベ
タ電極として,表側面の電極配置のみによって高周波電
圧印加領域を規制するよう構成することにより,表側面
と裏側面の電極の円周方向の位置合わせを不要とするこ
とが好ましい。これにより,表裏の電極位置ずれによる
電圧印加時の不具合を解消することができる。
Therefore, as described above, the entire back surface is used as the solid electrode so as to regulate the high-frequency voltage application region only by the electrode arrangement on the front surface, so that the circumferential positions of the electrodes on the front and back surfaces are adjusted. Preferably, no alignment is required. As a result, it is possible to solve the problem at the time of applying a voltage due to the displacement of the front and rear electrodes.

【0019】また,請求項3の発明のように,上記振動
体は,上記圧電素子の裏側面に貼設してあることが好ま
しい。これにより,構造の簡単な超音波モータを得るこ
とができる。即ち,上記のごとく圧電素子の裏側面に上
記ベタ電極を配設した場合には,表側面に複数の配線を
行う必要がある。そのため,圧電素子の裏側面を振動体
に貼設して表側面を開放することにより,配線構造等を
簡単にすることができる。
Further, as in the third aspect of the present invention, it is preferable that the vibrating body is attached to a back side surface of the piezoelectric element. Thereby, an ultrasonic motor having a simple structure can be obtained. That is, when the solid electrode is provided on the back surface of the piezoelectric element as described above, it is necessary to perform a plurality of wirings on the front surface. Therefore, by attaching the back side surface of the piezoelectric element to the vibrator and opening the front side surface, the wiring structure and the like can be simplified.

【0020】また,請求項4の発明のように,上記圧電
素子の各駆動用電極群においては,隣接する上記駆動用
電極を互いに短絡させてあることが好ましい。これによ
り,駆動用電極に印加する電圧を,各駆動用電極群毎に
まとめて行うことができ,さらに配線構造を簡単にする
ことができる。
In the driving electrode group of the piezoelectric element, the driving electrodes adjacent to each other are preferably short-circuited to each other. Thus, the voltages applied to the driving electrodes can be collectively performed for each driving electrode group, and the wiring structure can be further simplified.

【0021】また,請求項5の発明のように,上記駆動
用電極の短絡は,隣接配置された各駆動用電極間を樹脂
Agよりなる導電層により連結することにより行ってい
ることが好ましい。これにより,容易かつ確実に駆動用
電極の短絡を行うことができる。ここで,上記樹脂Ag
とは,樹脂の中にAg粉を混入させたものをいう。
Further, as in the invention of claim 5, it is preferable that the short-circuiting of the driving electrodes is performed by connecting adjacent driving electrodes with a conductive layer made of resin Ag. As a result, the drive electrodes can be short-circuited easily and reliably. Here, the resin Ag
"A" means that Ag powder is mixed in a resin.

【0022】また,請求項6の発明のように,請求項4
又は5に記載の超音波モータを製造する方法であって,
上記駆動用電極の短絡処理は,同一駆動用電極群内の駆
動用電極間を結ぶように樹脂Agを塗布し,該樹脂Ag
を180℃以下の温度により硬化して導電層を形成する
ことにより行うことを特徴とする超音波モータの製造方
法がある。即ち,上記樹脂Agにより駆動用電極の短絡
を行う場合には,樹脂Agを180℃以下の温度により
硬化させて導電層を形成する。これにより,圧電素子の
圧電性を低下させることなく駆動用電極の短絡を行うこ
とができる。
Further, as in the invention of claim 6, claim 4
Or a method of manufacturing the ultrasonic motor according to 5, wherein
The short-circuit processing of the drive electrodes is performed by applying a resin Ag so as to connect the drive electrodes in the same drive electrode group, and applying the resin Ag.
By forming a conductive layer by curing at a temperature of 180 ° C. or less. That is, when the drive electrode is short-circuited by the resin Ag, the resin Ag is cured at a temperature of 180 ° C. or less to form a conductive layer. Thus, the drive electrodes can be short-circuited without lowering the piezoelectricity of the piezoelectric element.

【0023】また,請求項7の発明のように,請求項4
に記載の超音波モータを製造する方法であって,上記駆
動用電極の短絡処理は,上記圧電素子の表面を短絡部分
を残してマスキングし,次いで,上記圧電素子の温度上
昇が180℃以下となるように制御しながら表面処理に
より導電層を形成することにより行うことを特徴とする
超音波モータの製造方法もある。また,請求項8の発明
のように,上記表面処理としては,例えばスパッタリン
グ処理又は蒸着処理がある。
Also, as in the invention of claim 7, claim 4
2. The method of manufacturing an ultrasonic motor according to claim 1, wherein the short-circuiting of the driving electrodes is performed by masking the surface of the piezoelectric element while leaving a short-circuited portion, and then increasing the temperature of the piezoelectric element to 180 ° C. or less. There is also a method of manufacturing an ultrasonic motor, wherein the method is performed by forming a conductive layer by surface treatment while controlling so as to be as follows. Further, as in the invention of claim 8, the surface treatment includes, for example, a sputtering process or a vapor deposition process.

【0024】この場合には,上記導電層を非常に薄い膜
にすることができ,圧電素子全体の厚みをほとんど大き
くすることなく短絡処理を施すことができる。また,上
記表面処理時において圧電素子の温度を180℃以下に
保持することにより,圧電素子の圧電性低下を防止する
ことができる。
In this case, the conductive layer can be formed as a very thin film, and short-circuiting can be performed without increasing the thickness of the entire piezoelectric element. Further, by maintaining the temperature of the piezoelectric element at 180 ° C. or less during the surface treatment, it is possible to prevent the piezoelectricity of the piezoelectric element from lowering.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかる超音波モータにつき,図1
〜図4を用いて説明する。本例の超音波モータ1は,図
4に示すごとく,リング状の圧電素子10と,圧電素子
10の表側面又は裏側面に貼設した振動体2と,振動体
2に加圧当接させた回転体3とを有してなる。そして,
圧電素子10に位相が90度異なる2種類の高周波電圧
を印加することにより振動体2に進行波を発生させて回
転体3を摩擦駆動するモータである。
Embodiment 1 FIG. 1 shows an ultrasonic motor according to an embodiment of the present invention.
This will be described with reference to FIG. As shown in FIG. 4, the ultrasonic motor 1 of the present embodiment is configured such that a ring-shaped piezoelectric element 10, a vibrating body 2 attached to the front side or back side of the piezoelectric element 10, and a pressure contact with the vibrating body 2. Rotator 3. And
A motor that applies frictional drive to the rotating body 3 by applying a traveling wave to the vibrating body 2 by applying two types of high-frequency voltages having phases different by 90 degrees to the piezoelectric element 10.

【0026】圧電素子10はリング状のPZT素子より
なり,その表側面には,図1に示すごとく,円周上にお
いて180度の角度を隔てて配された第1検知用電極1
3及び第2検知用電極14を設けてなる。また,これら
第1検知用電極13と第2検知用電極14との間の2つ
の領域には,それぞれ複数の駆動用電極に11,12に
区分してなる駆動用電極群110,120を設けてあ
る。
The piezoelectric element 10 is composed of a ring-shaped PZT element, and has a first detection electrode 1 disposed on the front surface thereof at an angle of 180 degrees on the circumference as shown in FIG.
3 and the second detection electrode 14. In two regions between the first detection electrode 13 and the second detection electrode 14, a plurality of driving electrodes are provided with driving electrode groups 110 and 120, which are divided into 11 and 12, respectively. It is.

【0027】また,第1検知用電極13,第2検知用電
極14及び駆動用電極11,12は,それぞれ隣接する
電極と逆分極方向に分極処理されている。かつ,圧電素
子10における各電極の円周方向の長さは,振動体に発
生させる進行波の波長をλとした場合に,第1検知用電
極13はλ/4,第2検知用電極14は3λ/4,駆動
用電極11,12はλ/2である。
The first detecting electrode 13, the second detecting electrode 14, and the driving electrodes 11, 12 are polarized in the direction opposite to that of the adjacent electrodes. When the wavelength of the traveling wave generated in the vibrating body is λ, the first detection electrode 13 is λ / 4, and the second detection electrode 14 is a circular length of each electrode in the piezoelectric element 10. Is 3λ / 4, and the driving electrodes 11 and 12 are λ / 2.

【0028】図1には,圧電素子10の表側面における
電極の配置状態と分極方向の分布を示してある。同図に
おいて中央上部に第1検知用電極13,中央下部に第2
検知用電極14を配置してあり,同図の左右にそれぞれ
8つの駆動用電極11,12よりなる駆動用電極群11
0,120を配置してある。そして,各電極の分極方向
を「+」,「−」により示してある。同図より知られる
ように隣接する電極はいずれも逆方向の分極がなされて
いる。
FIG. 1 shows the arrangement of the electrodes on the front surface of the piezoelectric element 10 and the distribution of the polarization directions. In the figure, the first detection electrode 13 is located at the upper center and the second electrode 13 is located at the lower center.
A detection electrode 14 is disposed, and a driving electrode group 11 including eight driving electrodes 11 and 12 on the left and right sides of FIG.
0 and 120 are arranged. The polarization direction of each electrode is indicated by “+” and “−”. As is known from the figure, the adjacent electrodes are all polarized in opposite directions.

【0029】また,図2に示すごとく,圧電素子10の
裏側面には,駆動用電極110,120に対応する電極
15,16と,第1検知用電極,第2検知用電極に対応
する電極17,18を設けてある。なお,これらすべて
の電極は,スクリーン印刷によりAgを塗布し,これを
硬化させて形成してある。
As shown in FIG. 2, electrodes 15 and 16 corresponding to the driving electrodes 110 and 120, and electrodes corresponding to the first and second detecting electrodes are provided on the back side surface of the piezoelectric element 10. 17 and 18 are provided. In addition, all these electrodes are formed by applying Ag by screen printing and curing it.

【0030】また,本例の圧電素子10は,その表側面
を振動体2に接着すると共に,裏側面の電極15,16
に駆動用の高周波電圧を印加するための配線を,電極1
7に振動検知用の配線を行っている(図示略)。また,
接地電極は上記振動体2からとってある。
The piezoelectric element 10 of this embodiment has its front side adhered to the vibrating body 2 and the electrodes 15 and 16 on the back side.
Wiring for applying a driving high-frequency voltage to the electrode 1
7, a wiring for vibration detection is provided (not shown). Also,
The ground electrode is taken from the vibrator 2.

【0031】また,図4に示すごとく,圧電素子10を
接着してなる振動体2は,その内周部21を下部ハウジ
ング5に固定してある。また,振動体2の上面には,回
転体3の外周部31を加圧当設させてある。また,外周
部31の当設面には,回転体3と振動体2との間の摩擦
係数を上げるための摩擦材38を配設してある。また,
振動体2の上面には,溝25を多数設けて回転体3との
接触面を細かく区分してある。
As shown in FIG. 4, the vibrating body 2 to which the piezoelectric element 10 is adhered has its inner peripheral portion 21 fixed to the lower housing 5. An outer peripheral portion 31 of the rotating body 3 is provided on the upper surface of the vibrating body 2 under pressure. In addition, a friction material 38 for increasing a friction coefficient between the rotating body 3 and the vibrating body 2 is provided on the contact surface of the outer peripheral portion 31. Also,
A large number of grooves 25 are provided on the upper surface of the vibrating body 2 so that the contact surface with the rotating body 3 is finely divided.

【0032】また,下部ハウジング5の中央部には,回
転軸6をベアリング58を解して回転可能に保持してい
る。回転軸6は,下部ハウジング5の下方に突出してい
ると共に,その上部を上記回転体3の内周部に固着して
ある。また,回転軸6には,皿バネ66を配設してあ
り,これにより回転軸3を振動体2に向けて加圧してあ
る。また,下部ハウジング5には,図3,図4に示すご
とく,カップ状の上部ケース7を被せてある。
In the center of the lower housing 5, the rotating shaft 6 is rotatably held by a bearing 58. The rotating shaft 6 protrudes below the lower housing 5 and has an upper portion fixed to the inner peripheral portion of the rotating body 3. Further, a disc spring 66 is provided on the rotating shaft 6, whereby the rotating shaft 3 is pressed toward the vibrating body 2. The lower housing 5 is covered with a cup-shaped upper case 7, as shown in FIGS.

【0033】そして,このような構成の超音波モータ1
においては,従来例にも示したごとく,各駆動用電極群
110,120に位相が90度異なる高周波電圧を印加
することにより,振動体2に進行波Cが発生し(図1
2),これにより,回転体3が摩擦駆動される。
Then, the ultrasonic motor 1 having such a configuration
In this case, as shown in the conventional example, a traveling wave C is generated in the vibrating body 2 by applying a high-frequency voltage having a phase difference of 90 degrees to each of the driving electrode groups 110 and 120 (FIG. 1).
2) Due to this, the rotating body 3 is driven by friction.

【0034】次に,本例の作用につき説明する。本例の
超音波モータ1における,第2検知用電極14の円周方
向の長さは,3λ/4という長さに設定してある。即
ち,圧電素子10における電極は,λ/2の長さの16
個の駆動用電極11,12と,λ/4の長さの1つの第
1検知用電極13と,3λ/4の長さの1つの第2検知
用電極14とにより構成されている。そのため,従来の
ようなλ/4の長さの電極が隣接するという部分は存在
しない。
Next, the operation of this embodiment will be described. The circumferential length of the second detection electrode 14 in the ultrasonic motor 1 of the present embodiment is set to 3λ / 4. That is, the electrode of the piezoelectric element 10 has a length of 16
It is composed of driving electrodes 11 and 12, one first detecting electrode 13 having a length of λ / 4, and one second detecting electrode 14 having a length of 3λ / 4. Therefore, there is no portion in which electrodes having a length of λ / 4 are adjacent to each other as in the related art.

【0035】そのため,圧電素子10に分極処理を施す
ことによる残留応力は,従来よりも小さく,圧電素子1
0のそりも従来よりも小さくなる。それ故,圧電素子1
0と振動体2との接着性の向上,及び圧電素子の耐久性
の向上を図ることができる。
For this reason, the residual stress due to the polarization treatment applied to the piezoelectric element 10 is smaller than in the prior art.
The warp of 0 is also smaller than before. Therefore, the piezoelectric element 1
It is possible to improve the adhesiveness between the vibration element 2 and the piezoelectric element 2 and the durability of the piezoelectric element.

【0036】実施形態例2 本例においては,実施形態例1の超音波モータ1(本発
明品)の耐久性の向上効果及び圧電素子10のそり減少
効果を定量的に求めるべく試験を行った。また,比較の
ため,従来例に示した圧電体90(図9,図10)を用
いると共に,その他は実施形態例1と同様にした超音波
モータ(比較品)を準備し,同様に試験した。
Embodiment 2 In this embodiment, a test was conducted to quantitatively determine the effect of improving the durability of the ultrasonic motor 1 (product of the present invention) of Embodiment 1 and the effect of reducing the warpage of the piezoelectric element 10. . For comparison, an ultrasonic motor (comparative product) was prepared using the same piezoelectric body 90 (FIGS. 9 and 10) shown in the conventional example as in the first embodiment, and the same test was conducted. .

【0037】まず,圧電体10,90を分極処理した後
のそり量を測定した。ここで,そり量とは,圧電体1
0,90(PZT素子)を鉛直方向に対して垂直な平面
上に置いた場合の,PZT素子の内周端と外周端との落
差をいう。測定結果を表1に示す。表1より知られるご
とく,本発明品における圧電素子10は,従来よりも大
幅にそりが低減されていることが分かる。
First, the amount of warpage of the piezoelectric bodies 10 and 90 after the polarization treatment was measured. Here, the amount of warpage means the piezoelectric body 1
The drop between the inner and outer peripheral ends of the PZT element when 0, 90 (PZT element) is placed on a plane perpendicular to the vertical direction. Table 1 shows the measurement results. As can be seen from Table 1, the warpage of the piezoelectric element 10 of the present invention is significantly reduced as compared with the conventional one.

【0038】[0038]

【表1】 [Table 1]

【0039】次に,本発明品としての超音波モータ1と
比較品としての超音波モータ9との疲労寿命試験を行っ
た。試験は,周囲温度25±5℃にて圧電素子に210
Vrmsの電圧を印加して行った。そして,3秒間のモ
ータ正転,12秒間の停止,3秒間のモータ逆転,12
秒間の停止を順次行う30秒のサイクルを1回とし,こ
のサイクルを続けることができた回数により寿命を判断
した。その結果を表1に示す。表1より知られるごと
く,本発明品の寿命は比較品の10倍以上の寿命が得ら
れることが分かる。
Next, a fatigue life test was performed on the ultrasonic motor 1 as the product of the present invention and the ultrasonic motor 9 as the comparative product. The test was performed on the piezoelectric element at an ambient temperature of 25 ± 5 ° C.
The test was performed by applying a voltage of Vrms. Then, the motor rotates forward for 3 seconds, stops for 12 seconds, reverses the motor for 3 seconds,
The cycle of 30 seconds for sequentially stopping for one second was defined as one, and the life was determined based on the number of times the cycle could be continued. Table 1 shows the results. As can be seen from Table 1, the life of the product of the present invention is 10 times or more that of the comparative product.

【0040】実施形態例3 本例は,図6に示すごとく,実施形態例1における圧電
素子10の裏面側の電極パターンを,区画を設けること
なく面全体に配設してなるベタ電極19に代えた例であ
る。また,図5に示すごとく,圧電素子10の表側面の
駆動用電極11,12は,それぞれの駆動用電極群11
0,120内において樹脂Agよりなる導電層8により
短絡させた。
Embodiment 3 In this embodiment, as shown in FIG. 6, the electrode pattern on the back surface side of the piezoelectric element 10 in Embodiment 1 is applied to a solid electrode 19 which is disposed on the entire surface without providing a partition. This is a modified example. As shown in FIG. 5, the driving electrodes 11 and 12 on the front surface of the piezoelectric element 10 are
A short circuit was caused by the conductive layer 8 made of resin Ag in the inside of the metal layers 0 and 120.

【0041】また,本例における圧電素子10と振動体
2との接着は,図7に示すごとく,圧電素子10の裏側
面102を振動体2に接着剤により接着した。そして,
駆動用の高周波電圧印加用の配線は各駆動用電極群11
0,120に,振動検出用の配線は検知用電極13に,
接地電極への配線は振動体2にそれぞれ行った(図示
略)。
Further, as shown in FIG. 7, the back surface 102 of the piezoelectric element 10 was bonded to the vibrating body 2 with an adhesive, as shown in FIG. And
The wiring for applying the driving high-frequency voltage is provided by each of the driving electrode groups 11.
0, 120, the wiring for vibration detection is on the detection electrode 13,
Wiring to the ground electrode was performed on each of the vibrators 2 (not shown).

【0042】また,上記駆動用電極11,12の短絡
は,同一駆動用電極群内の駆動用電極間を結ぶように樹
脂Agをスクリーン印刷により塗布し,その樹脂Agを
180℃以下の温度により硬化させて導電層8を形成す
ることにより行った。その他は実施形態例1と同様であ
る。
The short-circuit between the driving electrodes 11 and 12 is performed by applying resin Ag by screen printing so as to connect the driving electrodes in the same driving electrode group, and applying the resin Ag at a temperature of 180 ° C. or less. The curing was performed by forming the conductive layer 8. Others are the same as the first embodiment.

【0043】本例の場合には,圧電素子10の表裏の電
極形成位置を厳密に位置合わせする必要がない。そし
て,上記駆動用電極群110,120ごとへの高周波電
圧の印加は,上記短絡した各駆動用電極群110,12
0から容易に行うことができる。そのため,裏側面に設
けた電極毎にそれぞれ高周波電圧を印加する場合におけ
る,表裏の電極ずれによる不具合の発生を防止すること
ができる。
In the case of the present embodiment, it is not necessary to strictly position the electrode formation positions on the front and back of the piezoelectric element 10. The application of the high-frequency voltage to each of the driving electrode groups 110 and 120 depends on the short-circuited driving electrode groups 110 and 12.
It can be easily done from zero. Therefore, when applying a high-frequency voltage to each of the electrodes provided on the back side surface, it is possible to prevent the occurrence of a problem due to the displacement of the front and back electrodes.

【0044】また,上記駆動用電極11,12の短絡
は,電極11,12の導電材質と同じ樹脂Agよりなる
導電層8により行っている。そのため,導電層8による
短絡構造は,非常に密着性に優れ,かつ導電性の優れた
ものとなる。それ故,耐久性等を低下させることなく上
記効果を発揮させることができる。その他は実施形態例
1と同様の効果が得られる。
The drive electrodes 11 and 12 are short-circuited by the conductive layer 8 made of the same resin Ag as the conductive material of the electrodes 11 and 12. Therefore, the short-circuit structure using the conductive layer 8 has very excellent adhesion and excellent conductivity. Therefore, the above effects can be exerted without lowering the durability and the like. The other effects are the same as those of the first embodiment.

【0045】なお,本例においては,上記駆動用電極の
短絡を樹脂Agの塗布,硬化により行ったが,これに代
えて,スパッタリング,蒸着等の表面処理によりAg等
の薄膜よりなる導電層を形成して行うこともできる。
In this embodiment, the drive electrodes are short-circuited by applying and curing resin Ag. Alternatively, a conductive layer made of a thin film of Ag or the like may be formed by surface treatment such as sputtering or vapor deposition. It can also be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,圧電素子の表側面にお
ける電極配置を示す説明図。
FIG. 1 is an explanatory diagram showing an electrode arrangement on a front surface of a piezoelectric element in a first embodiment.

【図2】実施形態例1における,圧電素子の裏側面にお
ける電極は位置を示す説明図。
FIG. 2 is an explanatory view showing positions of electrodes on a back surface of a piezoelectric element in the first embodiment.

【図3】実施形態例1の超音波モータの正面図。FIG. 3 is a front view of the ultrasonic motor according to the first embodiment.

【図4】実施形態例1の超音波モータの一部切り欠き断
面図。
FIG. 4 is a partially cutaway sectional view of the ultrasonic motor according to the first embodiment.

【図5】実施形態例3における,圧電素子の表側面にお
ける電極配置を示す説明図。
FIG. 5 is an explanatory view showing an electrode arrangement on a front surface of a piezoelectric element according to a third embodiment.

【図6】実施形態例3における,圧電素子の裏側面にお
ける電極は位置を示す説明図。
FIG. 6 is an explanatory view showing positions of electrodes on a back side surface of a piezoelectric element in a third embodiment.

【図7】実施形態例3における,振動体を貼設した圧電
素子の正面図。
FIG. 7 is a front view of a piezoelectric element to which a vibrating body is attached according to a third embodiment.

【図8】超音波モータの駆動原理を示す説明図。FIG. 8 is an explanatory diagram showing a driving principle of the ultrasonic motor.

【図9】従来例における,圧電素子の表側面における電
極配置を示す説明図。
FIG. 9 is an explanatory view showing the arrangement of electrodes on the front surface of a piezoelectric element in a conventional example.

【図10】従来例における,圧電素子の裏側面における
電極は位置を示す説明図。
FIG. 10 is an explanatory diagram showing positions of electrodes on a back side surface of a piezoelectric element in a conventional example.

【図11】従来例における,個々の駆動用電極群への通
電によって発生する位相の異なる固定波を示す説明図。
FIG. 11 is an explanatory view showing fixed waves having different phases generated by energizing individual drive electrode groups in a conventional example.

【図12】従来例における,2つの固定波が合成された
移動波を示す説明図。
FIG. 12 is an explanatory diagram showing a moving wave in which two fixed waves are combined in a conventional example.

【符号の説明】[Explanation of symbols]

1...超音波モータ, 10...圧電素子, 11,12...駆動用電極, 110,120...駆動用電極群, 13...第1検知用電極, 14...第2検知用電極, 2...振動体, 3...回転体, 1. . . Ultrasonic motor, 10. . . Piezoelectric element, 11,12. . . Driving electrode, 110, 120. . . 12. drive electrode group; . . 13. first detection electrode; . . 1. second detection electrode; . . Vibrator, 3. . . Rotating body,

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リング状の圧電素子と,該圧電素子の表
側面又は裏側面に貼設した振動体と,該振動体に加圧当
接させた回転体とを有してなり,上記圧電素子に位相が
90度異なる2種類の高周波電圧を印加することにより
上記振動体に進行波を発生させて上記回転体を摩擦駆動
する超音波モータにおいて,上記圧電素子の表側面に
は,円周上において180度の角度を隔てて配された第
1検知用電極及び第2検知用電極を設けてなると共に,
これら第1検知用電極と第2検知用電極との間の2つの
領域には,それぞれ複数の駆動用電極に区分してなる駆
動用電極群を設けてなり,また,上記第1検知用電極,
上記第2検知用電極及び上記駆動用電極は,それぞれ隣
接する電極と逆方向に分極処理されており,かつ,上記
圧電素子における各電極の円周方向の長さは,振動体に
発生させる進行波の波長をλとした場合に,上記第1検
知用電極はλ/4,上記第2検知用電極は3λ/4,上
記駆動用電極はλ/2であることを特徴とする超音波モ
ータ。
1. A piezoelectric device comprising: a ring-shaped piezoelectric element; a vibrating body attached to a front side or a back side of the piezoelectric element; and a rotating body pressed against the vibrating body. In an ultrasonic motor in which a traveling wave is generated in the vibrating body by applying two kinds of high-frequency voltages having phases different by 90 degrees to the element and the rotating body is frictionally driven, a circumferential surface is provided on a surface of the piezoelectric element. A first detection electrode and a second detection electrode disposed at an angle of 180 degrees on the upper side;
A drive electrode group divided into a plurality of drive electrodes is provided in each of the two regions between the first detection electrode and the second detection electrode. ,
The second detecting electrode and the driving electrode are polarized in a direction opposite to that of an adjacent electrode, and the length of each electrode in the piezoelectric element in the circumferential direction is equal to the length of the electrode generated by the vibrator. Where the wavelength of the wave is λ, the first detection electrode is λ / 4, the second detection electrode is 3λ / 4, and the driving electrode is λ / 2, .
【請求項2】 請求項1において,上記圧電素子の裏側
面には,区画を設けることなく面全体に配設してなるベ
タ電極を設けてあることを特徴とする超音波モータ。
2. The ultrasonic motor according to claim 1, wherein a solid electrode is provided on the rear side surface of the piezoelectric element without providing a partition, over the entire surface.
【請求項3】 請求項2において,上記振動体は,上記
圧電素子の裏側面に貼設してあることを特徴とする超音
波モータ。
3. The ultrasonic motor according to claim 2, wherein the vibrating body is attached to a back surface of the piezoelectric element.
【請求項4】 請求項2又は3において,上記圧電素子
の各駆動用電極群においては,隣接する上記駆動用電極
を互いに短絡させてあることを特徴とする超音波モー
タ。
4. The ultrasonic motor according to claim 2, wherein adjacent driving electrodes are short-circuited in each driving electrode group of the piezoelectric element.
【請求項5】 請求項4において,上記駆動用電極の短
絡は,隣接配置された各駆動用電極間を樹脂Agよりな
る導電層により連結することにより行っていることを特
徴とする超音波モータ。
5. The ultrasonic motor according to claim 4, wherein the driving electrodes are short-circuited by connecting adjacent driving electrodes by a conductive layer made of resin Ag. .
【請求項6】 請求項4又は5に記載の超音波モータを
製造する方法であって,上記駆動用電極の短絡処理は,
同一駆動用電極群内の駆動用電極間を結ぶように樹脂A
gを塗布し,該樹脂Agを180℃以下の温度により硬
化して導電層を形成することにより行うことを特徴とす
る超音波モータの製造方法。
6. The method of manufacturing an ultrasonic motor according to claim 4, wherein the short-circuiting of the driving electrode is performed by:
Resin A so as to connect between the drive electrodes in the same drive electrode group
a method of manufacturing an ultrasonic motor, wherein the method is performed by applying g, and curing the resin Ag at a temperature of 180 ° C. or less to form a conductive layer.
【請求項7】 請求項4に記載の超音波モータを製造す
る方法であって,上記駆動用電極の短絡処理は,上記圧
電素子の表面を短絡部分を残してマスキングし,次い
で,上記圧電素子の温度上昇が180℃以下となるよう
に制御しながら表面処理により導電層を形成することに
より行うことを特徴とする超音波モータの製造方法。
7. The method for manufacturing an ultrasonic motor according to claim 4, wherein the short-circuiting of the driving electrode is performed by masking a surface of the piezoelectric element while leaving a short-circuited portion. Forming a conductive layer by surface treatment while controlling the temperature rise to 180 ° C. or less.
【請求項8】 請求項7において,上記表面処理はスパ
ッタリング処理又は蒸着処理であることを特徴とする超
音波モータの製造方法。
8. The method for manufacturing an ultrasonic motor according to claim 7, wherein said surface treatment is a sputtering treatment or a vapor deposition treatment.
JP9293470A 1997-10-08 1997-10-08 Ultrasonic motor and manufacture thereof Pending JPH11122957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9293470A JPH11122957A (en) 1997-10-08 1997-10-08 Ultrasonic motor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9293470A JPH11122957A (en) 1997-10-08 1997-10-08 Ultrasonic motor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11122957A true JPH11122957A (en) 1999-04-30

Family

ID=17795172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9293470A Pending JPH11122957A (en) 1997-10-08 1997-10-08 Ultrasonic motor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11122957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174618A (en) * 2004-12-16 2006-06-29 Kyocera Corp Piezoelectric actuator and liquid discharging apparatus
JP2013034366A (en) * 2011-06-27 2013-02-14 Canon Inc Piezoelectric elements, stators for oscillatory wave motors, oscillatory wave motors, driving control systems, optical apparatus, and method of manufacturing stators for oscillatory wave motors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174618A (en) * 2004-12-16 2006-06-29 Kyocera Corp Piezoelectric actuator and liquid discharging apparatus
JP4594060B2 (en) * 2004-12-16 2010-12-08 京セラ株式会社 Liquid ejection device
JP2013034366A (en) * 2011-06-27 2013-02-14 Canon Inc Piezoelectric elements, stators for oscillatory wave motors, oscillatory wave motors, driving control systems, optical apparatus, and method of manufacturing stators for oscillatory wave motors

Similar Documents

Publication Publication Date Title
JPH08213664A (en) Multilayered ceramics piezoelectric element
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
JP4026885B2 (en) Piezoelectric element and vibration type driving device
CN101707445B (en) Sheet and dual traveling wave type rotary ultrasonic motor and control method thereof
KR910003672B1 (en) Ultrasonic motor
JPH11122957A (en) Ultrasonic motor and manufacture thereof
CN103368457A (en) Thin-plate-type rotating ultrasonic motor
JP2002142473A (en) Vibration wave driver and apparatus using vibration wave driver
JPS60183981A (en) Supersonic wave motor
JPH0650949B2 (en) Method for manufacturing piezoelectric actuator
JPS63257474A (en) Ultrasonic motor
JPS6026476A (en) Piezoelectric motor
JP2585574B2 (en) Ultrasonic drive using a ring-shaped piezoelectric vibrator
JP4731737B2 (en) Vibration wave motor
JPH09223825A (en) Piezoelectric application element
JP4341227B2 (en) Drive device and equipment using the same
JP2601659B2 (en) Ultrasonic drive
JP3089324B2 (en) Ultrasonic motor
JP2002369556A (en) Electrical-mechanical energy conversion element and vibration wave drive apparatus
JP3161028B2 (en) Ultrasonic motor
JPS6353985A (en) Manufacture of ultrasonic driving body
JPH03243180A (en) Oscillation wave motor
JPH0628951Y2 (en) Piezoelectric actuator
JP2537947B2 (en) Ultrasonic motor
JPS63171174A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621