JPH11121817A - Manufacture of thermo-semiconductor sintered element and extrusion mold for thermo-semiconductor sintered body - Google Patents

Manufacture of thermo-semiconductor sintered element and extrusion mold for thermo-semiconductor sintered body

Info

Publication number
JPH11121817A
JPH11121817A JP9277624A JP27762497A JPH11121817A JP H11121817 A JPH11121817 A JP H11121817A JP 9277624 A JP9277624 A JP 9277624A JP 27762497 A JP27762497 A JP 27762497A JP H11121817 A JPH11121817 A JP H11121817A
Authority
JP
Japan
Prior art keywords
sintered body
thermoelectric semiconductor
thermo
surface coating
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9277624A
Other languages
Japanese (ja)
Other versions
JP3922481B2 (en
Inventor
Joji Hachisuga
譲二 蜂須賀
Hitoshi Tauchi
比登志 田内
Makoto Yamazaki
誠 山崎
Satoshi Hori
智 堀
Masayoshi Ando
雅祥 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP27762497A priority Critical patent/JP3922481B2/en
Publication of JPH11121817A publication Critical patent/JPH11121817A/en
Application granted granted Critical
Publication of JP3922481B2 publication Critical patent/JP3922481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds

Abstract

PROBLEM TO BE SOLVED: To improve mass-productivity by forming surface coating layers constituted of carbide or diamond-like carbon on a wall face forming a cavity. SOLUTION: The thermo-semiconductor crystal powders composed of Bi (Te0.95 Se0.05 ) are put in the dice 2 (tool steel of SKD 61, cemented substance with WC+Co as a base material and the heat resistant material of cermet are used as materials) of hot extrusion jig 1 and hot extrusion molding is executed. The surface coating layers 7 and 7 constituted of carbide of VC and TiC are formed on the cavity wall face of the dice 2, the pressing face of a punch 3 and the sliding face of the punch 3 and the dice 2. Thus, the surface coating layers inhibit a reaction between the metallic component of the dice and the melt of thermo-semiconductor crystal powders, the surface roughness of the cavity wall is avoided, mass-productivity improves and the ability deterioration of the rod-like thermo-semiconductor crystal can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電半導体を焼結
した熱電半導体焼結素子の製造方法及び熱電半導体焼結
体用押出し型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric semiconductor sintered element obtained by sintering a thermoelectric semiconductor and an extrusion die for a thermoelectric semiconductor sintered body.

【0002】[0002]

【従来の技術】平成9年5月23日の平成9年度塑性加
工春期講演会で、Bi−Te系等の金属材料の結晶粉末
を、図1に示すように、一端にノズル状の押出し口4と
他端側に該押出し口4と連通するシリンダ状のキャビテ
ィー5を持つダイス2に入れ、該ダイス2内の該結晶粉
末を焼結温度に加熱しつつポンチ3で押出し、熱間押出
し加工して細い棒状の熱電半導体焼結体Wとし、これを
軸直角方向に切断して電子冷却素子とする方法が報告さ
れている。
2. Description of the Related Art At a spring lecture of plastic working on May 23, 1997, a crystal powder of a metal material such as a Bi-Te system was provided with a nozzle-like extrusion port at one end as shown in FIG. 4 and a die 2 having a cylindrical cavity 5 communicating with the extrusion port 4 at the other end. The crystal powder in the die 2 is extruded with a punch 3 while being heated to a sintering temperature. A method has been reported in which a thin rod-shaped thermoelectric semiconductor sintered body W is processed and cut in a direction perpendicular to the axis to form an electronic cooling element.

【0003】[0003]

【発明が解決しようとする課題】上記熱間押出し加工法
においては、超硬質物質等で形成されたダイスを500
℃前後の高温に加熱するため、結晶粉末の一部が溶融
し、ダイス及びポンチを備える押出し型材と焼結体とが
反応して、キャビティー表面が荒れたり喰われたりし、
面粗度が次第に低下して成形精度を損ねて量産性が悪化
するという問題がある。
In the hot extrusion method, a die formed of a super-hard material or the like is used.
Due to heating to a high temperature of around ℃, a part of the crystal powder is melted, the extruded mold material having a die and a punch reacts with the sintered body, and the cavity surface is roughened or eaten,
There is a problem that the surface roughness gradually decreases, the molding accuracy is impaired, and mass productivity is deteriorated.

【0004】また、反応した押出し型材の金属成分(F
e、Co等)が焼結体中に混入して、熱電半導体焼結体
の電気的特性を変化させてしまう等の問題が生じてい
る。本発明はかかる問題点に鑑みなされたものであっ
て、押出し型材と焼結体との反応を生じさせないことを
目的とする。
[0004] Further, the metal component (F
e, Co, etc.) are mixed into the sintered body to change the electrical characteristics of the thermoelectric semiconductor sintered body. The present invention has been made in view of such a problem, and has as its object to prevent a reaction between an extruded die and a sintered body.

【0005】[0005]

【課題を解決するための手段】上記課題を解決した本発
明の熱電半導体焼結素子の製造方法は、熱電半導体結晶
粉末を押出しダイスのキャビティー内で加熱しつつ押出
して棒状の熱電半導体焼結体を形成し、得られた該熱電
半導体焼結体を切断して熱電半導体焼結素子とする熱電
半導体焼結素子の製造方法であって、前記キャビティー
を形成する壁面に炭化物またはダイヤモンドライクカー
ボンからなる表面コーティング層を形成したことを特徴
とするものである。
A method for manufacturing a thermoelectric semiconductor sintered element according to the present invention, which has solved the above-mentioned problems, comprises: extruding a thermoelectric semiconductor crystal powder while heating it in a cavity of an extrusion die; A method for producing a thermoelectric semiconductor sintered element by cutting the obtained thermoelectric semiconductor sintered body into a thermoelectric semiconductor sintered element, wherein the wall surface forming the cavity is made of carbide or diamond-like carbon. Characterized in that a surface coating layer made of

【0006】また、上記課題を解決した本発明の熱電半
導体焼結体用押出し型は、熱電半導体結晶粉末を前記押
出しダイスのキャビティー内で加熱しつつ押出して棒状
の熱電半導体焼結体を形成するための熱電半導体焼結体
用押出し型であって、前記キャビティーを形成する壁面
に炭化物またはダイヤモンドライクカーボンからなる表
面コーティング層が形成されてなることを特徴とするも
のである。
Further, the extrusion die for a thermoelectric semiconductor sintered body of the present invention, which solves the above-mentioned problem, extrudes a thermoelectric semiconductor crystal powder while heating it in a cavity of the extrusion die to form a rod-shaped thermoelectric semiconductor sintered body. And wherein a surface coating layer made of carbide or diamond-like carbon is formed on a wall surface forming the cavity.

【0007】本発明によれば、キャビティーを形成する
壁面に炭化物またはダイヤモンドライクカーボンからな
る表面コーティング層が形成される。この表面コーティ
ング層は、熱電半導体結晶粉末の溶融物の付着を阻止し
て、押出し型材の金属成分と熱電半導体結晶粉末の溶融
物との反応を阻止し、キャビティー壁面の表面荒れを防
止すると共に、焼結体中への押出し型材の金属成分の混
入も生じさせない。
According to the present invention, a surface coating layer made of carbide or diamond-like carbon is formed on a wall surface forming a cavity. This surface coating layer prevents adhesion of the melt of the thermoelectric semiconductor crystal powder, prevents a reaction between the metal component of the extruded die material and the melt of the thermoelectric semiconductor crystal powder, and prevents the surface roughness of the cavity wall surface. In addition, no metal component of the extruded mold material is mixed into the sintered body.

【0008】前記炭化物はVCまたはTiCが好まし
い。このVC、TiCが表面コーティング層として形成
されることにより、押出し型材と熱電半導体結晶粉末の
溶融物との反応を阻止する。又、コーティング層として
ダイヤモンドライクカーボンを用いても同様の効果があ
る。
The carbide is preferably VC or TiC. By forming the VC and TiC as a surface coating layer, the reaction between the extruded die and the melt of the thermoelectric semiconductor crystal powder is prevented. The same effect can be obtained by using diamond-like carbon as the coating layer.

【0009】[0009]

【発明の実施の形態】本発明の熱電半導体焼結素子の製
造方法において、ダイスは、一端にノズル状の押出し口
と他端側に該押出し口と連通するシリンダ状のキャビテ
ィーを持ち、材質としては、SKD61等の工具用鋼
材、WC+Coを母材とする超硬質物質、サーメット等
の耐熱材料を用いることができる。キャビティーと押出
し口とを連通する形状は、焼結体が棒状にスムーズに押
出されるようなロート状とすることが好ましい。キャビ
ティーに導入された熱電半導体結晶粉末は、ダイスを所
定の温度で加熱することにより焼結される。キャビティ
ー内で焼結した焼結体は、ポンチによって押出し口に押
出され、該押出し口で所定径の棒状に成形される。ポン
チもダイスと同じ材質を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method for manufacturing a thermoelectric semiconductor sintered element of the present invention, a die has a nozzle-shaped extrusion port at one end and a cylindrical cavity communicating with the extrusion port at the other end. For example, a steel material for tools such as SKD61, a super-hard material having WC + Co as a base material, and a heat-resistant material such as cermet can be used. It is preferable that the shape communicating the cavity and the extrusion port is a funnel shape such that the sintered body is smoothly extruded into a rod shape. The thermoelectric semiconductor crystal powder introduced into the cavity is sintered by heating the die at a predetermined temperature. The sintered body sintered in the cavity is extruded to an extrusion port by a punch, and is formed into a rod having a predetermined diameter at the extrusion port. The same material as the die can be used for the punch.

【0010】熱電半導体結晶粉末は、BixSbyTez
Sea、BixSbyTez、BixTe zSea、BixTe
z等で示される組成のものが使用できる。表面コーティ
ング層は、前記熱電半導体結晶粉末と反応しない炭化物
またはダイヤモンドライクカーボンにより構成すること
ができる。炭化物としては、VC、TiCが好ましく、
ダイヤモンドライクカーボンとしては、DLC−Siが
好ましい。これら表面コーティング層に必要な機能は、
熱電半導体焼結体の溶融物が浸透したり該熱電半導体焼
結体の溶融物と反応しないことである。
[0010] The thermoelectric semiconductor crystal powder is BixSbyTez
Sea, BixSbyTez, BixTe zSea, BixTe
zEtc. can be used. Surface coating
The carbide layer which does not react with the thermoelectric semiconductor crystal powder.
Or composed of diamond-like carbon
Can be. As the carbide, VC and TiC are preferable,
As diamond-like carbon, DLC-Si is
preferable. The functions required for these surface coating layers are:
The melt of the thermoelectric semiconductor sintered body may penetrate or
It does not react with the melt of the consolidation.

【0011】表面コーティング層の厚さは、1〜8μm
程度が好ましい。上記表面コーティング層は、イオンプ
レーティング等の物理蒸着法によって表面被覆したり、
化学蒸着によって浸透拡散して形成することができる。
なお、上記ダイスは、例えば押出し口に角部をもつ。該
角部へのこうした表面コーティング層の形成は難しいた
め、該角部へアール付けを行う。このアールは、R=
0.10mm以上で表面コーティング層が完全に形成さ
れた。
The thickness of the surface coating layer is 1 to 8 μm
The degree is preferred. The surface coating layer, or surface coating by physical vapor deposition such as ion plating,
It can be formed by infiltration and diffusion by chemical vapor deposition.
The die has, for example, a corner at an extrusion opening. Since it is difficult to form such a surface coating layer on the corner, the corner is rounded. This is R =
At 0.10 mm or more, the surface coating layer was completely formed.

【0012】また、ダイスとポンチとにより熱間押出し
加工を行う場合は、表面コーティング層をポンチ側にも
形成することができる。そして、ポンチの角部へもアー
ルを付ける。表面コーティング層は、塗布法によっても
形成することができる。この場合、上記炭化物に適当な
溶媒を加えて液体とし、粘結剤を数重量%添加する。
When hot extrusion is performed using a die and a punch, a surface coating layer can be formed also on the punch side. Then, the corners of the punch are also rounded. The surface coating layer can also be formed by a coating method. In this case, a suitable solvent is added to the above-mentioned carbide to make a liquid, and a binder is added by several weight%.

【0013】[0013]

【実施例】以下に、本発明の実施例を図面を参照して説
明する。熱電半導体は、BixSbyTezSea、Bix
SbyTez、BixTezSea、BixTez等で示され
るいずれかの組成物より製造される。そこで、実施例で
は、Bi2(Te0.95Se0.05)の組成で各原材料を秤
量し、これらの原材料の純度を高める処理を行った後、
これらの混合物を溶融し、冷却して熱電半導体結晶合金
とする。
Embodiments of the present invention will be described below with reference to the drawings. Thermoelectric semiconductors, Bi x Sb y Te z Se a, Bi x
Sb y Te z, Bi x Te z Se a, is produced from any of the compositions represented by Bi x Te z, and the like. Therefore, in the embodiment, after weighing each raw material with a composition of Bi 2 (Te 0.95 Se 0.05 ) and performing a process of increasing the purity of these raw materials,
These mixtures are melted and cooled to obtain a thermoelectric semiconductor crystal alloy.

【0014】この熱電半導体結晶合金をカッターミルに
て粉砕し、熱電半導体結晶粉末とした。次に粉砕された
熱電半導体結晶粉末を所定粒径サイズに分級した。この
ようなして作製した熱電半導体結晶粉末を、図1に概略
的に示すような熱間押出し用治具1のダイス2内に入
れ、熱間押出成形を行った。熱間押出し用治具1は、一
端にノズル状の押出し口4と他端側に該押出し口4と連
通するシリンダ状のキャビティー5を持つダイス2と、
該ダイス2のキャビティー5内に導入された熱電半導体
結晶粉末を押圧するポンチ3と、ダイス2の外表面に取
付けられたヒータ6とからなる。ダイス2のキャビティ
ー壁面とポンチ3の押圧面及びポンチ3とダイス2との
摺動面には、それぞれ本発明の表面コーティング層7、
7が形成されている。この表面コーティング7は、V
C、TiC等の炭化物で形成した。ヒータ6は図示せぬ
電源供給部から通電されて発熱され、それによりダイス
2が加熱されるようになっている。 好ましくは、ダイ
ス2の加熱温度は400〜500℃、熱伝半導体結晶粉
末にかかる圧力は、10ton/cm2となるように、
ヒータ6の温度およびポンチ3の押圧力が調整される。
The thermoelectric semiconductor crystal alloy was pulverized by a cutter mill to obtain thermoelectric semiconductor crystal powder. Next, the pulverized thermoelectric semiconductor crystal powder was classified into a predetermined particle size. The thermoelectric semiconductor crystal powder thus produced was placed in a die 2 of a hot extrusion jig 1 as schematically shown in FIG. 1 and subjected to hot extrusion. A hot extrusion jig 1 includes a die 2 having a nozzle-shaped extrusion port 4 at one end and a cylindrical cavity 5 communicating with the extrusion port 4 at the other end.
The die 2 includes a punch 3 for pressing the thermoelectric semiconductor crystal powder introduced into the cavity 5 of the die 2, and a heater 6 attached to the outer surface of the die 2. The surface coating layer 7 of the present invention is provided on the cavity wall surface of the die 2, the pressing surface of the punch 3, and the sliding surface of the punch 3 and the die 2, respectively.
7 are formed. This surface coating 7
It was formed of carbides such as C and TiC. The heater 6 is energized by a power supply unit (not shown) and generates heat, thereby heating the die 2. Preferably, the heating temperature of the die 2 is 400 to 500 ° C., and the pressure applied to the heat conductive semiconductor crystal powder is 10 ton / cm 2 .
The temperature of the heater 6 and the pressing force of the punch 3 are adjusted.

【0015】上記条件下においてポンチ3を矢視C方向
に移動させると、キャビティー5内の熱電半導体結晶粉
末は、加熱されつつ、ポンチ3の押圧力によって加圧さ
れ、次第に焼結体となる。このようにして形成された焼
結体は、押出し口4へ押出され外部に直線状に排出され
て、熱電半導体焼結体Wが製造される。そして、熱間押
出しされた棒状の熱電半導体焼結体Wを、例えば押出し
方向と垂直な面で切断することにより、この切断片が熱
電半導体焼結体素子とされる。
When the punch 3 is moved in the direction of arrow C under the above conditions, the thermoelectric semiconductor crystal powder in the cavity 5 is pressed by the pressing force of the punch 3 while being heated, and gradually becomes a sintered body. . The sintered body thus formed is extruded into the extrusion port 4 and discharged linearly to the outside, whereby the thermoelectric semiconductor sintered body W is manufactured. The hot extruded rod-shaped thermoelectric semiconductor sintered body W is cut, for example, in a plane perpendicular to the extrusion direction, so that the cut piece is used as a thermoelectric semiconductor sintered body element.

【0016】上記実施例で焼結体W中へのダイス金属成
分の混入およびダイス2あるいはポンチ3への焼結体金
属成分の混入を調べるため、実施例として表面コーティ
ング7を形成した試料〜の型材(ダイス、ポンチ)
と、比較例として表面コーティング7を形成しない試料
〜の型材を用いて実際に押出し加工を行い、そのと
きの押出温度(焼結体温度)と、焼結体および型材に含
有される物質の分析実験を行った。試験結果を表1に示
す。
In order to examine the mixing of the die metal component into the sintered body W and the mixing of the sintered metal component into the die 2 or the punch 3 in the above-described embodiment, the samples having the surface coating 7 formed thereon were used as examples. Mold material (die, punch)
Then, as a comparative example, the extrusion process was actually performed using the mold material of the sample to which the surface coating 7 was not formed, and the extrusion temperature (sintered body temperature) at that time and the analysis of the substances contained in the sintered body and the mold material An experiment was performed. Table 1 shows the test results.

【0017】 表1において、試料はSKD61製の型材、試料は
タングステンカーバイトとコバルト(WC+Co)から
なる超硬質物質の型材、試料、は同じくWC+Co
からなる超硬質物質の型材、試料はサーメット(Ti
C+Ni)製の型材、試料は試料と同じSKD61
製の型材、試料は試料と同じサーメット製の型材で
ある。
[0017] In Table 1, the sample is a mold material made of SKD61, the sample is a mold material of a super-hard material made of tungsten carbide and cobalt (WC + Co), and the sample is WC + Co.
The super-hard material consisting of cermet (Ti
C + Ni) mold and sample are the same SKD61 as the sample
The sample and the sample are made of the same cermet as the sample.

【0018】各比較例の型材ではいずれも面粗度が悪化
しているが、各実施例の型材では面粗度の悪化は生じな
かった。比較例の試料では、図2に示すEDX分析か
ら、焼結体Wの表面から0.1mmの深さにFe元素の
拡散が見られ、電気的特性が劣化(ゼーベック係数α=
−198μV/Kが−173μV/Kに変化)している
ことがわかった。
Although the surface roughness was deteriorated in each of the mold materials of the comparative examples, the surface roughness was not deteriorated in the mold materials of the examples. In the sample of the comparative example, from the EDX analysis shown in FIG. 2, diffusion of the Fe element was observed at a depth of 0.1 mm from the surface of the sintered body W, and the electrical characteristics were deteriorated (seebeck coefficient α =
(−198 μV / K changed to −173 μV / K).

【0019】比較例の試料では、分析結果からは拡散
は認められなかったが、キャビティー壁面の面粗度が悪
化していることより、反応が始っていると推測される。
比較例の試料では、押出温度が490℃にも上昇した
ことから、反応が急速に進み、図3に示すように、キャ
ビティー壁の表面付近(表面から0.5mmの深さ)に
Bi、Te、SeとCoとの混合物が生成されていた。
In the sample of the comparative example, no diffusion was observed from the analysis result, but it is presumed that the reaction had started because the surface roughness of the cavity wall surface was deteriorated.
In the sample of the comparative example, since the extrusion temperature rose to 490 ° C., the reaction proceeded rapidly, and Bi, near the surface of the cavity wall (depth of 0.5 mm from the surface) as shown in FIG. A mixture of Te, Se and Co was produced.

【0020】比較例の試料も、図4に示すように、キ
ャビティー壁の表面付近(表面から1mmの深さ)にB
i、Te、SeとNiとの混合物が生成されていた。し
かし、実施例の試料〜の型材では、焼結体中へのF
e等の混入や、キャビティー壁表面付近への焼結体成分
の混入、および面粗度の変化も見られなかった。
As shown in FIG. 4, the sample of the comparative example also has B near the surface of the cavity wall (1 mm deep from the surface).
i, Te, and a mixture of Se and Ni were produced. However, in the samples of Examples 1 to 3, the F
e and the like, no mixture of the sintered body component near the cavity wall surface, and no change in the surface roughness were observed.

【0021】次に表面コーティング層7の優劣を見極め
るため、該表面コーティング層7の材料と焼結体材料と
の反応実験を行った。この実験は、真空中で、表面コー
ティング層を設けた型材で焼結体材料を加圧、加熱し
て、表面コーティング層に焼結体材料を接合させるもの
である。型材は(WC+Co)を母材とする超硬質物質
で作った。この結果を表2に示す。
Next, in order to determine whether the surface coating layer 7 is superior or inferior, a reaction experiment was conducted between the material of the surface coating layer 7 and the sintered material. In this experiment, the sintered body material was pressurized and heated in a vacuum with a mold provided with a surface coating layer, and the sintered body material was joined to the surface coating layer. The mold was made of a super-hard material based on (WC + Co). Table 2 shows the results.

【0022】 表2から明らかなように、炭素物系およびDLCの表面
コーティング層に熱電半導体焼結体が付着するが、この
付着物は容易にはがれ、型材に変色も見られなかった。
N系のTiNは、焼結体が容易にはがれたが、部分的に
ブルー色に変色し、反応が開始していると推察された。
また、O系のAl23では、部分的に凹凸が目視で観察
され、部分的に反応していることが明らかとなった。以
上の結果より、表面コーティング層7として、炭素物ま
たはDLC、DLC−Si等が使用に適していることが
判明した。特に、炭化物が反応阻止に優れていることも
明らかとなった。
[0022] As is clear from Table 2, the thermoelectric semiconductor sintered body adhered to the surface coating layer of the carbonaceous material and the DLC, but the adhered matter was easily peeled off, and no discoloration was observed in the mold material.
It was presumed that the N-based TiN easily peeled off the sintered body, but partially turned blue, and the reaction started.
Further, in the case of O-based Al 2 O 3 , unevenness was partially observed visually, and it was clarified that partial reaction occurred. From the above results, it was found that carbonaceous material, DLC, DLC-Si, or the like was suitable for use as the surface coating layer 7. In particular, it was also found that carbides were excellent in inhibiting the reaction.

【0023】次に、型材へのアール付けについて検討す
る。表3に、型材の角部(ポンチ先端のアール)のアー
ル量と、コーティング状態および押出し加工時の反応の
有無を示した。本データは、Bi2(Te0.95
0.05)の合金体を、500℃に加熱したダイス中に投
入し、共試ポンチで押出し加工を実施した結果である。 R=0.04mmの場合、アール部にコーティング層が
形成され難いため、R部から反応が発生した。R=0.
06mmでも、コーティング層が完全に形成されなかっ
たことから、4回の押出しの繰返しで、反応が認められ
た。R=0.10mm以上では、コーティングが完全に
行えたため、50回の押出しの繰返しでも反応は認めら
れなかった。
Next, a description will be given of the rounding of the mold material. Table 3 shows the radius of the corners of the mold (the radius of the tip of the punch), the coating state, and the presence or absence of a reaction during extrusion. This data is Bi 2 (Te 0.95 S
e 0.05 ) is a result of putting the alloy body into a die heated to 500 ° C. and extruding the alloy body with a co-test punch. When R = 0.04 mm, a reaction occurred from the R portion because a coating layer was hardly formed on the radius portion. R = 0.
Even at 06 mm, since the coating layer was not completely formed, a reaction was observed by repeating the extrusion four times. When R = 0.10 mm or more, since the coating was completely performed, no reaction was observed even when the extrusion was repeated 50 times.

【0024】表3より、熱電半導体焼結体を押出し加工
する型の角部をR=0.06mm以上にすることで、表
面コーティング層7を反応阻止皮膜として確実に形成す
ることができた。また、R量は0.10mm以上がこの
ましい。
From Table 3, it was found that the surface coating layer 7 could be reliably formed as a reaction inhibiting film by setting the corner of the die for extruding the thermoelectric semiconductor sintered body to R = 0.06 mm or more. The R amount is preferably 0.10 mm or more.

【0025】[0025]

【発明の効果】以上述べたように本発明によれば、熱電
半導体焼結体と型材との反応を阻止する表面コーティン
グ層を少なくともダイスのキャビティー壁面に設けるこ
とにより、該表面コーティング層がダイスの金属成分と
熱電半導体結晶粉末の溶融物との反応を阻止し、キャビ
ティー壁の表面荒れを回避して量産性を向上すると共
に、棒状の熱電半導体焼結体の性能低下を抑止すること
ができる。
As described above, according to the present invention, the surface coating layer for preventing the reaction between the thermoelectric semiconductor sintered body and the mold material is provided at least on the cavity wall surface of the die. The reaction between the metal component and the melt of the thermoelectric semiconductor crystal powder can be prevented, the surface roughness of the cavity wall can be avoided to improve mass productivity, and the performance of the rod-shaped thermoelectric semiconductor sintered body can be prevented from deteriorating. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱電半導体焼結素子の製造方法にお
いて棒状の焼結体が押出される様子を示す説明図であ
る。
FIG. 1 is an explanatory view showing a state in which a rod-shaped sintered body is extruded in a method for manufacturing a thermoelectric semiconductor sintered element of the present invention.

【図2】 焼結体中に拡散したFe元素の含有特性を示
し、縦軸は原子含有率、横軸は焼結体の表面から軸心方
向への深さを表す。
FIG. 2 shows the content characteristics of Fe elements diffused in the sintered body, the vertical axis represents the atomic content, and the horizontal axis represents the depth from the surface of the sintered body in the axial direction.

【図3】 比較例の型材の表面付近に含有された焼結体
成分の特性を示し、縦軸は原子カウント数、横軸は型材
の表面からの深さを表す。
FIG. 3 shows the characteristics of components of a sintered body contained in the vicinity of the surface of a mold material of a comparative example.

【図4】 別の比較例の型材の表面付近に含有された焼
結体成分の特性を示し、縦軸は原子カウント数、横軸は
型材の表面からの深さを表す。
FIG. 4 shows the characteristics of a sintered body component contained in the vicinity of the surface of a mold material of another comparative example, where the vertical axis represents the atomic count number and the horizontal axis represents the depth from the surface of the mold material.

【符号の説明】[Explanation of symbols]

1…押出し用治具、2…ダイス、3…ポンチ、4…押出
し口、5…キャビティー、6…ヒータ、7…表面コーテ
ィング層。
DESCRIPTION OF SYMBOLS 1 ... Extrusion jig, 2 ... Die, 3 ... Punch, 4 ... Extrusion port, 5 ... Cavity, 6 ... Heater, 7 ... Surface coating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀 智 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 安藤 雅祥 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Hori 2-1-1 Asahi-cho, Kariya-shi, Aichi Prefecture Inside Aisin Seiki Co., Ltd. (72) Inventor Masayoshi Ando 2-1-1 Asahi-cho, Kariya-shi, Aichi Aisin Seiki Inside the company

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱電半導体結晶粉末を押出しダイスのキ
ャビティー内で加熱しつつ押出して棒状の熱電半導体焼
結体を形成し、得られた該熱電半導体焼結体を切断して
熱電半導体焼結素子とする熱電半導体焼結素子の製造方
法であって、 前記キャビティーを形成する壁面に炭化物またはダイヤ
モンドライクカーボンからなる表面コーティング層を形
成したことを特徴とする熱電半導体焼結素子の製造方
法。
An extruded thermoelectric semiconductor crystal powder is extruded while being heated in a cavity of an extrusion die to form a rod-shaped thermoelectric semiconductor sintered body, and the obtained thermoelectric semiconductor sintered body is cut to obtain a thermoelectric semiconductor sintered body. A method for manufacturing a thermoelectric semiconductor sintered element as an element, wherein a surface coating layer made of carbide or diamond-like carbon is formed on a wall surface forming the cavity.
【請求項2】 前記炭化物はVCまたはTiCである請
求項1記載の熱電半導体焼結素子の製造方法。
2. The method according to claim 1, wherein the carbide is VC or TiC.
【請求項3】 熱電半導体結晶粉末を前記押出しダイス
のキャビティー内で加熱しつつ押出して棒状の熱電半導
体焼結体を形成するための熱電半導体焼結体用押出し型
であって、 前記キャビティーを形成する壁面に炭化物またはダイヤ
モンドライクカーボンからなる表面コーティング層が形
成されてなることを特徴とする熱電半導体焼結体用押出
し型。
3. An extrusion die for a thermoelectric semiconductor sintered body for extruding a thermoelectric semiconductor crystal powder while heating in a cavity of the extrusion die to form a rod-shaped thermoelectric semiconductor sintered body, wherein An extrusion die for a thermoelectric semiconductor sintered body, characterized in that a surface coating layer made of carbide or diamond-like carbon is formed on a wall surface on which a surface is formed.
【請求項4】 前記炭化物はVCまたはTiCである請
求項3記載の熱電半導体焼結体用押出し型。
4. The extrusion die for a thermoelectric semiconductor sintered body according to claim 3, wherein the carbide is VC or TiC.
【請求項5】 前記キャビティーを形成する壁面の角部
はR0.1mm以上であることを特徴とする請求項3記
載の熱電半導体焼結体用押出し型。
5. The extrusion die for a thermoelectric semiconductor sintered body according to claim 3, wherein a corner of a wall forming the cavity has a radius of 0.1 mm or more.
JP27762497A 1997-10-09 1997-10-09 Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body Expired - Fee Related JP3922481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27762497A JP3922481B2 (en) 1997-10-09 1997-10-09 Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27762497A JP3922481B2 (en) 1997-10-09 1997-10-09 Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body

Publications (2)

Publication Number Publication Date
JPH11121817A true JPH11121817A (en) 1999-04-30
JP3922481B2 JP3922481B2 (en) 2007-05-30

Family

ID=17586027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27762497A Expired - Fee Related JP3922481B2 (en) 1997-10-09 1997-10-09 Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body

Country Status (1)

Country Link
JP (1) JP3922481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096490A (en) * 2001-06-20 2002-12-31 병 선 천 Multi functional vacuum extrusion method for thermoelectric semiconductor materials and thereof apparatus
JP2003046149A (en) * 2001-08-02 2003-02-14 Univ Shimane Manufacturing apparatus for thermoelectric conversion material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096490A (en) * 2001-06-20 2002-12-31 병 선 천 Multi functional vacuum extrusion method for thermoelectric semiconductor materials and thereof apparatus
JP2003046149A (en) * 2001-08-02 2003-02-14 Univ Shimane Manufacturing apparatus for thermoelectric conversion material

Also Published As

Publication number Publication date
JP3922481B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
EP1216314B1 (en) Low thermal conductivity hard metal
KR100394156B1 (en) Method for manufacturing the screw
US6045601A (en) Non-magnetic, high density alloy
EP0516165B1 (en) Method of manufacturing a hard sintered component
EP1640476B1 (en) Discharge surface treating electrode, discharge surface treating device and discharge surface treating method
KR100404527B1 (en) Method of producing sintered body
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
JPH11121817A (en) Manufacture of thermo-semiconductor sintered element and extrusion mold for thermo-semiconductor sintered body
IE940157A1 (en) Composite compacts and methods of making them
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by Spark Plasma Sintering (SPS) method and its industrial applications
WO2001028717A1 (en) Method of producing watchband parts
KR100650409B1 (en) Manufacturing method of complex-shaped workpiece using powder injection molding and workpiece therefrom
US20020037233A1 (en) Method for making micromolds
KR100678590B1 (en) Multi-layer material and Munufacturing method therefor
US20230013537A1 (en) Superhard material-containing objects and methods of production thereof
JPH08215912A (en) Tool with oiling hole and its manufacture
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
Kupp et al. Rapid prototyping of functional metal and ceramic components by the multiphase jet solidification (MJS) process
KR100563770B1 (en) Manufacturing method of sintered diamond tool by metal powder injection molding process
JP2000144201A (en) Cermet powder for injection molding and production of cermet sintered body
JP3645482B2 (en) Current sintering method
JP3872714B2 (en) Method for producing molding composition for powder sintering, composition produced by the method, sintering method thereof, and powder sintered member thereof
JPH05171334A (en) Hard sintered part and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees