JPH11118247A - Heat pump type solar hot water supply system - Google Patents

Heat pump type solar hot water supply system

Info

Publication number
JPH11118247A
JPH11118247A JP28810897A JP28810897A JPH11118247A JP H11118247 A JPH11118247 A JP H11118247A JP 28810897 A JP28810897 A JP 28810897A JP 28810897 A JP28810897 A JP 28810897A JP H11118247 A JPH11118247 A JP H11118247A
Authority
JP
Japan
Prior art keywords
hot water
heat
solar
temperature
heat collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28810897A
Other languages
Japanese (ja)
Other versions
JP3758334B2 (en
Inventor
Takeji Watanabe
竹司 渡辺
Shiro Takeshita
志郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28810897A priority Critical patent/JP3758334B2/en
Publication of JPH11118247A publication Critical patent/JPH11118247A/en
Application granted granted Critical
Publication of JP3758334B2 publication Critical patent/JP3758334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To boil up high temperature hot water while enhancing the reliability of apparatus by collecting solar heat and atmospheric heat. SOLUTION: The heat pump type solar hot water supply system comprises a coolant circuit including a compressor 1, a condenser 2, a pressure reducing means 3 and an evaporator 4, a hot water supply circuit 9 including a hot water supply heat exchanger 6 exchanging heat with the condenser 2 and a hot water storage tank 7, and a solar heat collecting circuit 15 coupled with a solar heat radiator 10 exchanging heat with the evaporator 4 and a solar heat collecting plate 11. Coolant flowing through the evaporator 4 is evaporated and gasified by a medium collected solar heat through the solar heat collecting plate 11 and then compressed by the compressor 1 to produce high temperature high pressure gas. Water in the hot water supply heat exchanger 6 coupled with the hot water storage tank 7 is then heated by condensation heat through the condenser 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽熱利用のヒート
ポンプ式ソーラ給湯システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type solar hot water supply system utilizing solar heat.

【0002】[0002]

【従来の技術】従来、この種の太陽熱利用給湯システム
は第1の従来例として図11に示す如きものが知られて
いる。図11において、太陽熱を集熱板11が集熱して
集熱管13内の水を加熱し湯をつくる。そして、集熱板
11の周囲に太陽光を透過する透過体(ガラスなど)5
5および外気への放熱防止のための断熱材56が設けら
れている。また、第2の従来例として大気熱を利用した
ヒートポンプ給湯システムは特開平7ー225064号
公報など図12に示す如きものが知られている。図12
において、圧縮機1から吐出された高温高圧の冷媒ガス
は凝縮器2に流入し、ここで給湯熱交換器6を介して、
貯湯タンク7の水を加熱する。一方、凝縮器2で凝縮液
化した冷媒は減圧手段3で減圧されて蒸発器4に流入
し、ここで大気熱を吸熱して蒸発ガス化して圧縮機1に
戻る。このサイクルを繰り返しながら貯湯タンク7に多
量の湯を貯湯する。
2. Description of the Related Art Conventionally, as a first conventional example of this type, a solar hot water supply system as shown in FIG. 11 is known. In FIG. 11, the heat collecting plate 11 collects solar heat to heat water in the heat collecting tube 13 to make hot water. Then, a transparent body (such as glass) 5 that transmits sunlight around the heat collecting plate 11.
5 and a heat insulating material 56 for preventing heat radiation to the outside air. As a second conventional example, a heat pump hot water supply system using atmospheric heat as shown in FIG. 12 such as Japanese Patent Application Laid-Open No. Hei 7-225064 is known. FIG.
, The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the condenser 2, where it passes through the hot water supply heat exchanger 6,
The water in the hot water storage tank 7 is heated. On the other hand, the refrigerant condensed and liquefied in the condenser 2 is decompressed by the decompression means 3 and flows into the evaporator 4 where it absorbs atmospheric heat to evaporate and return to the compressor 1. A large amount of hot water is stored in the hot water storage tank 7 while repeating this cycle.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような第1の従来例の太陽熱利用給湯システムは日射量
が少ない場合には高温湯が得られない。また、透過体お
よび断熱材を設けているため重量も大きい。一方、大気
熱を利用する従来例2のヒートポンプ給湯システムは高
密度コンパクト蒸発器で大気熱を集熱するため太陽熱を
ほとんど集熱できない。
However, in the first conventional hot water supply system utilizing solar heat as described above, high-temperature hot water cannot be obtained when the amount of solar radiation is small. In addition, the weight is large because the transmission body and the heat insulating material are provided. On the other hand, the heat pump hot water supply system of the second conventional example that utilizes atmospheric heat collects atmospheric heat with a high-density compact evaporator, and thus hardly collects solar heat.

【0004】本発明は上記課題を解決するもので、太陽
熱を利用して高温湯に沸き上げることを主目的とするも
のであり、かつ施工時の冷媒量調整、冷媒漏れなど、工
事のバラツキをなくし、信頼性の高い機器を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its main object to heat solar water to high-temperature hot water. It provides a highly reliable device.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
本発明は、圧縮機、凝縮器、減圧手段、蒸発器からなる
冷媒回路と、凝縮器と熱交換関係を有する給湯熱交換
器、貯湯タンクからなる給湯回路と、蒸発器と熱交換関
係を有する太陽熱放熱器、太陽熱集熱板を接続した太陽
熱集熱回路を有するヒートポンプ式ソーラ給湯システム
であり、以上の構成により、太陽熱集熱板を介して太陽
熱を集熱した媒体で太陽熱放熱器を介して蒸発器を流れ
る冷媒を蒸発ガス化させ、圧縮機で高温高圧ガスに圧縮
して、凝縮器を介して凝縮熱で給湯熱交換器の水を加熱
する。よって、太陽熱を集熱し、ヒートポンプを利用し
て高温湯に沸き上げることができる。また、冷媒回路を
1つのユニットに収納して密閉回路を構成し、施工時の
冷媒配管工事レス化をはかることによって、施工時の冷
媒量の調整、冷媒漏れなど、工事のバラツキをなくし
て、機器の信頼性を向上させる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a refrigerant circuit comprising a compressor, a condenser, a pressure reducing means, and an evaporator, a hot water supply heat exchanger having a heat exchange relationship with the condenser, and a hot water storage. A hot water supply circuit comprising a tank, a solar heat radiator having a heat exchange relationship with an evaporator, and a heat pump type solar hot water supply system having a solar heat collection circuit connected to a solar heat collection plate. The refrigerant that flows through the evaporator through the solar heat radiator is evaporated and gasified by the medium that has collected solar heat through the evaporator, compressed into high-temperature, high-pressure gas by the compressor, and condensed by the condenser into the hot water supply heat exchanger. Heat the water. Therefore, solar heat can be collected and heated to high-temperature water using a heat pump. In addition, the refrigerant circuit is housed in one unit to form a closed circuit, and by eliminating the need for refrigerant piping work during construction, adjustment of the amount of refrigerant during construction, refrigerant leakage, etc., eliminating work variations, Improve equipment reliability.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、凝縮器、減圧手段、蒸発器からなる冷媒回
路と、凝縮器と熱交換関係を有する給湯熱交換器、貯湯
タンクからなる給湯回路と、蒸発器と熱交換関係を有す
る太陽熱放熱器、太陽熱集熱板を接続した太陽熱集熱回
路を有するヒートポンプ式ソーラ給湯システムであり、
以上の構成により、太陽熱集熱板を介して太陽熱を集熱
した媒体で太陽熱放熱器を介して蒸発器を流れる冷媒を
蒸発ガス化させ、圧縮機で高温高圧ガスに圧縮して、凝
縮器を介して凝縮熱で給湯熱交換器の水を加熱する。そ
して、太陽熱放熱器で温度低下した太陽熱集熱回路の媒
体を太陽熱集熱板に流入させ、再度太陽熱を集熱する。
よって、太陽熱を集熱し、ヒートポンプを利用して高温
湯に沸き上げることができる。また、冷媒回路を1つの
ユニットに収納して密閉回路を構成し、施工時の冷媒配
管工事レス化をはかることによって、施工時の冷媒量の
調整、冷媒漏れなどの工事ミスもなくなり、信頼性が向
上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a refrigerant circuit comprising a compressor, a condenser, a pressure reducing means, and an evaporator, a hot water supply heat exchanger having a heat exchange relationship with the condenser, and a hot water storage. A hot water supply circuit comprising a tank, a solar heat radiator having a heat exchange relationship with the evaporator, a heat pump solar hot water supply system having a solar heat collecting circuit connected to a solar heat collecting plate,
With the above configuration, the refrigerant flowing through the evaporator through the solar heat radiator is vaporized by the medium that has collected the solar heat through the solar heat collecting plate, and the refrigerant is compressed into a high-temperature and high-pressure gas by the compressor. Heat the water in the hot water heat exchanger with the heat of condensation. Then, the medium of the solar heat collecting circuit whose temperature has been lowered by the solar heat radiator is caused to flow into the solar heat collecting plate, and the solar heat is collected again.
Therefore, solar heat can be collected and heated to high-temperature water using a heat pump. In addition, since the refrigerant circuit is housed in one unit to form a closed circuit and eliminate the need for refrigerant piping work during construction, there is no need to adjust the amount of refrigerant during construction and eliminate construction errors such as refrigerant leakage, and reliability. Is improved.

【0007】また、請求項2に記載の発明は、前述の構
成に加え、太陽熱集熱板を太陽熱と大気熱を集熱する構
成としたことにより、太陽熱集熱板を流れる水温を太陽
熱集熱板温度よりも低温で流し、太陽熱に加え、大気熱
も集熱できるようにして、集熱量の増大をはかるととも
に透過体(ガラスなど)および断熱材をなくして太陽熱
集熱板の軽量化を実現するとともに設置自由度が向上す
る。
According to a second aspect of the present invention, in addition to the above-described structure, the solar heat collecting plate is configured to collect solar heat and atmospheric heat, so that the water temperature flowing through the solar heat collecting plate can be controlled by the solar heat collecting plate. By flowing at a lower temperature than the plate temperature, it is possible to collect not only solar heat but also atmospheric heat, thereby increasing the amount of heat collection and eliminating the need for transmissive bodies (such as glass) and heat insulating material to reduce the weight of the solar heat collector plate. And installation flexibility is improved.

【0008】また、請求項3に記載の発明は、前述の構
成に加え、太陽熱集熱板に設けた太陽電池セルと、太陽
電池セルの温度を検出する温度検出手段と、温度検出手
段の信号をうけて圧縮機の運転制御をおこなう運転制御
手段を備え、太陽電池セルが所定温度に上昇した場合
に、圧縮機を運転して、集熱回路の媒体を介して太陽電
池セルを冷却し、太陽電池セルの効率と耐久性を向上さ
せる。
According to a third aspect of the present invention, in addition to the above-described structure, a solar cell provided on a solar heat collecting plate, temperature detecting means for detecting the temperature of the solar cell, and a signal from the temperature detecting means are provided. Operation control means for controlling the operation of the compressor in response to, when the solar cell rises to a predetermined temperature, operates the compressor, cools the solar cell through the medium of the heat collection circuit, Improve the efficiency and durability of solar cells.

【0009】また、請求項4に記載の発明は、前述の構
成に加え、太陽電池セルと接続し、圧縮機を運転するイ
ンバータ制御手段と、太陽電池セルの出力を検出して、
出力が大きい場合にはインバータ制御手段に低周波数運
転の信号を発信する運転周波数制御手段を備え、太陽日
射量が多いことを太陽電池セルの出力で検出して、圧縮
機を低周波数で運転して、蒸発器を流れる冷媒温度を高
めて圧縮機の消費電力を削減する。従って、夏季など、
太陽日射量が多い時は冷房に電力が必要となるため、太
陽電池で得た電力の余剰電力を冷房に利用できる。
According to a fourth aspect of the present invention, in addition to the above-described configuration, an inverter control means connected to the solar cell and operating the compressor, and an output of the solar cell are detected.
When the output is large, the inverter control means is provided with an operation frequency control means for transmitting a low-frequency operation signal, and it is detected that a large amount of solar radiation is detected by the output of the solar cell, and the compressor is operated at a low frequency. Thus, the temperature of the refrigerant flowing through the evaporator is raised to reduce the power consumption of the compressor. So, in the summer,
Electric power is required for cooling when the amount of solar radiation is large, so that surplus electric power obtained from the solar cells can be used for cooling.

【0010】また、請求項5に記載の発明は、前述の構
成に加え、太陽熱集熱回路に流量制御型ポンプを備え、
太陽日射量の変化に対応して、太陽熱集熱板の循環水温
が絶えず太陽熱集熱板温度よりも低温となるように流量
制御をおこない、太陽熱に加え、常に大気熱も集熱する
信頼性の高いシステムを実現する。
According to a fifth aspect of the present invention, in addition to the above configuration, the solar heat collecting circuit includes a flow control type pump,
In response to changes in the amount of solar radiation, the flow rate is controlled so that the circulating water temperature of the solar heat collecting plate is always lower than the solar heat collecting plate temperature. Realize a high system.

【0011】また、請求項6に記載の発明は、前述の構
成に加え、圧縮機の周波数を制御する周波数制御手段
と、太陽熱集熱板の表面温度を検出する集熱板温度検出
手段と、太陽熱集熱回路の流体温度を検出する流体温度
検出手段と、集熱板温度検出手段と流体温度検出手段の
信号に基づき周波数制御手段に信号を発信する運転制御
手段を備え、集熱板温度と流体温度を所定温度差にコン
トロールするように圧縮機の運転周波数を制御して、日
射量および外気温度に対応して給湯加熱量と高効率運転
を実現する。
According to a sixth aspect of the present invention, in addition to the above-described structure, a frequency control means for controlling a frequency of the compressor, a heat collecting plate temperature detecting means for detecting a surface temperature of the solar heat collecting plate, Fluid temperature detecting means for detecting the fluid temperature of the solar heat collecting circuit, operation control means for transmitting a signal to the frequency control means based on the signal of the heat collecting plate temperature detecting means and the signal of the fluid temperature detecting means, the heat collecting plate temperature and The operating frequency of the compressor is controlled so as to control the fluid temperature to a predetermined temperature difference, thereby realizing a hot water supply heating amount and a high efficiency operation according to the amount of solar radiation and the outside air temperature.

【0012】また、請求項7に記載の発明は、前述の構
成に加え、太陽熱集熱板の表面温度を検出する集熱板温
度検出手段あるいは太陽熱集熱回路内の媒体圧力を検出
する圧力検出手段と、集熱板温度検出手段あるいは圧力
検出手段の信号をうけて、圧縮機を運転開始する運転制
御手段を備え、太陽熱集熱板の異常温度上昇、あるいは
集熱回路内の圧力上昇を検知して圧縮機を運転し、太陽
熱集熱回路内の媒体および太陽熱集熱板を冷却する。従
って、太陽熱集熱回路内の媒体が漏れて封入量が少な
く、かつ日射量が多い場合、空焚きを防止できる。よっ
て、太陽熱集熱板の耐久性が向上する。
According to a seventh aspect of the present invention, in addition to the above structure, a heat collecting plate temperature detecting means for detecting a surface temperature of the solar heat collecting plate or a pressure detecting means for detecting a medium pressure in the solar heat collecting circuit. Means and operation control means for starting the compressor in response to a signal from the heat collecting plate temperature detecting means or the pressure detecting means, and detects an abnormal temperature rise of the solar heat collecting plate or a pressure rise in the heat collecting circuit. Then, the compressor is operated to cool the medium and the solar heat collecting plate in the solar heat collecting circuit. Therefore, when the medium in the solar heat collecting circuit leaks and the amount of encapsulation is small and the amount of insolation is large, it is possible to prevent empty burning. Therefore, the durability of the solar heat collecting plate is improved.

【0013】また、請求項8に記載の発明は、前述の構
成に加え、集熱回路の媒体温度を検出する温度検出手段
と、集熱回路に設けたバルブと、温度検出手段の信号を
うけてバルブを開放制御する低温運転制御手段を備え、
冬季の低外気温度時において、集熱回路内の媒体が凍結
近傍温度に達した時、バルブを開放して集熱回路内の媒
体を排出するようにして、太陽熱集熱板の凍結破壊を防
止する。
In addition, in addition to the above configuration, the invention according to claim 8 further comprises a temperature detecting means for detecting a medium temperature of the heat collecting circuit, a valve provided in the heat collecting circuit, and a signal from the temperature detecting means. Low-temperature operation control means for controlling the opening of the valve by
At low outside air temperature in winter, when the medium in the heat collecting circuit reaches near freezing temperature, the valve is opened to discharge the medium in the heat collecting circuit to prevent freezing and destruction of the solar heat collecting plate. I do.

【0014】また、請求項9に記載の発明は、前述の構
成に加え、蒸発器と並列に設けた冷媒風呂熱交換器と、
冷媒風呂熱交換器と熱交換関係を有する風呂熱交換器、
浴槽からなる風呂回路を備え、低外気温度となる夜間時
間帯は、冷媒風呂熱交換器で浴槽残湯を集熱し、凝縮器
を介して湯をつくり、貯湯する。従って、日中は太陽熱
集熱板で太陽熱と大気熱を集熱し、夜間は浴槽残湯熱を
集熱して、貯湯熱量の増加と省エネ化を実現する。
According to a ninth aspect of the present invention, in addition to the above configuration, a refrigerant bath heat exchanger provided in parallel with the evaporator is provided.
A bath heat exchanger having a heat exchange relationship with a refrigerant bath heat exchanger,
A bath circuit consisting of a bathtub is provided, and during nighttime when the outside air temperature is low, the hot water remaining in the bathtub is collected by a refrigerant bath heat exchanger, and the hot water is made and stored through a condenser. Therefore, during the daytime, solar heat and atmospheric heat are collected by the solar heat collecting plate, and at night, the remaining heat of the bathtub is collected, thereby increasing the amount of stored heat and saving energy.

【0015】また、請求項10に記載の発明は、前述の
構成に加え、圧縮機と凝縮器の配管途中に四方弁を設
け、圧縮機、凝縮器、減圧手段、蒸発器からなる冷媒回
路と、圧縮機、冷媒風呂熱交換器、減圧手段、蒸発器か
らなる冷媒風呂回路と、貯湯タンクの湯温を検出する残
湯温度検出手段と、残湯温度検出手段の信号に基づき四
方弁を切り替えて冷媒回路と冷媒風呂回路を選択する切
り替え制御手段を備え、日中、貯湯タンクへの沸き上げ
運転時において、貯湯タンクに所定湯量が確保される
と、四方弁を切り替えて、圧縮機の高温高圧冷媒を冷媒
風呂熱交換器に流して浴槽を沸き上げる。その際に、浴
槽沸き上げ温度を中温湯にして、低圧縮比運転で効率の
良い運転をする。従って、太陽熱を貯湯タンクの沸き上
げと浴槽の沸き上げに効果的かつ高効率で利用できる。
また、浴槽を貯湯タンクの一部として利用するため、貯
湯タンクの小型化、省スペース化が実現できる。
According to a tenth aspect of the present invention, in addition to the above-described configuration, a four-way valve is provided in the piping between the compressor and the condenser, and a refrigerant circuit including a compressor, a condenser, a pressure reducing means, and an evaporator is provided. A refrigerant bath circuit including a compressor, a refrigerant bath heat exchanger, a pressure reducing means, and an evaporator, a remaining hot water temperature detecting means for detecting a hot water temperature of a hot water storage tank, and a four-way valve based on a signal from the remaining hot water temperature detecting means. Switching control means for selecting the refrigerant circuit and the refrigerant bath circuit, and in the daytime, during the boiling operation to the hot water storage tank, when a predetermined amount of hot water is secured in the hot water storage tank, the four-way valve is switched to switch the high temperature of the compressor. The high-pressure refrigerant flows through the refrigerant bath heat exchanger to boil the bathtub. At that time, the temperature of the bath tub is raised to a medium temperature, and the operation is performed efficiently at a low compression ratio. Therefore, the solar heat can be effectively and efficiently used for boiling the hot water storage tank and the bathtub.
Further, since the bathtub is used as a part of the hot water storage tank, the hot water storage tank can be reduced in size and space can be saved.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を用いて
説明する。なお、従来例および各実施例において、同じ
構成同じ動作をするものについては同一符号を付し、一
部説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and each embodiment, the same components having the same operation are denoted by the same reference numerals, and the description thereof is partially omitted.

【0017】(実施例1)図1は本発明の実施例1のヒ
ートポンプ式ソーラ給湯システムの構成図である。図1
において、実線矢印は太陽熱集熱回路内の媒体流れ方向
を、点線矢印は冷媒回路の冷媒流れ方向を表わす。1は
圧縮機、2は凝縮器、3は減圧手段、4は蒸発器、5は
冷媒回路であり、圧縮機1、凝縮器2、減圧手段3、蒸
発器4が順次接続されている。6は給湯熱交換器であ
り、凝縮器2と熱交換関係を有する。7は貯湯タンク、
8は給湯ポンプ、9は給湯回路であり、給湯熱交換器
6、貯湯タンク7、給湯ポンプ8を備える。10は太陽
熱放熱器であり、蒸発器4と熱交換関係を有する。11
は太陽熱集熱板であり、集熱フイン12と集熱管13を
備える。14は集熱ポンプ、15は太陽熱集熱回路であ
り、太陽熱放熱器10、太陽熱集熱板11、集熱ポンプ
14を備える。
(Embodiment 1) FIG. 1 is a configuration diagram of a heat pump type solar hot water supply system according to Embodiment 1 of the present invention. FIG.
, The solid arrow indicates the medium flow direction in the solar heat collecting circuit, and the dotted arrow indicates the refrigerant flow direction in the refrigerant circuit. 1 is a compressor, 2 is a condenser, 3 is a decompression means, 4 is an evaporator, 5 is a refrigerant circuit, and the compressor 1, the condenser 2, the decompression means 3, and the evaporator 4 are sequentially connected. A hot water supply heat exchanger 6 has a heat exchange relationship with the condenser 2. 7 is a hot water storage tank,
Reference numeral 8 denotes a hot water supply pump, 9 denotes a hot water supply circuit, and includes a hot water supply heat exchanger 6, a hot water storage tank 7, and a hot water supply pump 8. Reference numeral 10 denotes a solar heat radiator, which has a heat exchange relationship with the evaporator 4. 11
Denotes a solar heat collecting plate, which includes a heat collecting fin 12 and a heat collecting tube 13. Reference numeral 14 denotes a heat collecting pump, and 15 denotes a solar heat collecting circuit, which includes a solar heat radiator 10, a solar heat collecting plate 11, and a heat collecting pump 14.

【0018】以上の構成において、その動作、作用につ
いて説明する。太陽熱を集熱した集熱フィン12は集熱
管13を流れる水を加熱する。そして、加温された水は
太陽熱放熱器10へ流入し、ここで蒸発器4を流れる冷
媒を加熱する。そして、加熱された冷媒は蒸発ガス化
し、圧縮機1へ流入する。そして、高温高圧ガスとなっ
た冷媒は凝縮器2へ流入し、給湯ポンプ8から送られて
きた水を給湯熱交換器6で加熱する。そして、加熱され
た水は貯湯タンク7に貯湯される。一方、凝縮器2で放
熱して凝縮液化した冷媒は減圧装置3で減圧されて蒸発
器4へ流入して、再度蒸発作用をおこなう。また、太陽
熱放熱器10で温度低下した太陽熱集熱回路15の水は
再度、太陽熱集熱板11に流入して太陽熱を集熱する。
よって、太陽熱を集熱し、ヒートポンプを利用して高温
湯に沸き上げることができる。また、冷媒回路5を1つ
のユニットに収納して密閉回路を構成し、施工時の冷媒
配管工事レス化をはかることによって、施工時の冷媒量
の調整、冷媒漏れなどの工事ミスもなくなり、信頼性が
向上する。
The operation and operation of the above configuration will be described. The heat collecting fins 12 that collect solar heat heat the water flowing through the heat collecting tubes 13. Then, the heated water flows into the solar heat radiator 10, where it heats the refrigerant flowing through the evaporator 4. Then, the heated refrigerant evaporates and flows into the compressor 1. Then, the refrigerant that has become the high-temperature and high-pressure gas flows into the condenser 2, and heats the water sent from the hot water supply pump 8 with the hot water supply heat exchanger 6. Then, the heated water is stored in the hot water storage tank 7. On the other hand, the refrigerant that has radiated heat and been condensed and liquefied in the condenser 2 is decompressed by the decompression device 3 and flows into the evaporator 4 to perform the evaporating action again. Further, the water of the solar heat collecting circuit 15 whose temperature has been lowered by the solar heat radiator 10 flows into the solar heat collecting plate 11 again to collect the solar heat.
Therefore, solar heat can be collected and heated to high-temperature water using a heat pump. In addition, since the refrigerant circuit 5 is housed in a single unit to form a closed circuit and eliminate the need for refrigerant piping work during construction, there is no work mistake such as adjustment of the amount of refrigerant at the time of construction, refrigerant leakage, etc. The performance is improved.

【0019】(実施例2)図2は本発明の実施例2のヒ
ートポンプ式ソーラ給湯システムの構成図である。図2
において、16は太陽熱集熱板であり、集熱フィン17
と集熱管18を備え、太陽熱と大気熱を集熱するため、
大気開放型の構成からなる。19は集熱温度検出手段で
あり、集熱フィン17の温度を検出して信号を発信す
る。20は流体温度検出手段であり、太陽熱集熱回路1
5の流体温度を検出して信号を発信する。21は比較部
であり、集熱温度検出手段19の信号と流体温度検出手
段20の信号を比較して、圧縮機1あるいは集熱ポンプ
14へ信号を発信する。
(Embodiment 2) FIG. 2 is a configuration diagram of a heat pump type solar hot water supply system according to Embodiment 2 of the present invention. FIG.
In the figure, reference numeral 16 denotes a solar heat collecting plate,
And a heat collecting tube 18 to collect solar heat and atmospheric heat.
It has an open-to-atmosphere configuration. Reference numeral 19 denotes a heat collecting temperature detecting means for detecting a temperature of the heat collecting fins 17 and transmitting a signal. Reference numeral 20 denotes a fluid temperature detecting means, which is a solar heat collecting circuit 1
5 to detect the fluid temperature and transmit a signal. Reference numeral 21 denotes a comparing unit which compares a signal from the heat collecting temperature detecting means 19 with a signal from the fluid temperature detecting means 20 and sends a signal to the compressor 1 or the heat collecting pump 14.

【0020】以上の構成において、その動作、作用につ
いて説明する。太陽熱集熱板16において、太陽熱集熱
回路15の流体温度と集熱フィン17の温度を検出し、
太陽熱集熱回路15の流体温度が集熱フィン17の温度
よりも低温となるように比較部21は圧縮機1あるいは
集熱ポンプ14を制御する。従って、太陽熱集熱板16
は太陽熱に加え、大気熱も集熱するため、日射が少ない
場合でも集熱が可能であり、集熱量が増大するとともに
太陽熱集熱板をガラス、断熱材などで覆う必要もないた
め、太陽熱集熱板の軽量化が実現でき、壁掛け設置など
設置自由度が向上する。なお、集熱フィン17の温度の
代わりに外気温度を検出しても同じ効果が得られる。
The operation and operation of the above configuration will be described. In the solar heat collecting plate 16, the fluid temperature of the solar heat collecting circuit 15 and the temperature of the heat collecting fins 17 are detected,
The comparing unit 21 controls the compressor 1 or the heat collecting pump 14 so that the fluid temperature of the solar heat collecting circuit 15 is lower than the temperature of the heat collecting fins 17. Therefore, the solar heat collecting plate 16
Since solar heat and atmospheric heat are collected in addition to solar heat, it is possible to collect heat even when the amount of solar radiation is small, and it is not necessary to cover the solar heat collecting plate with glass, heat insulating material, etc. The weight of the hot plate can be reduced, and the degree of freedom of installation such as wall mounting can be improved. The same effect can be obtained by detecting the outside air temperature instead of the temperature of the heat collecting fins 17.

【0021】(実施例3)図3は本発明の実施例3のヒ
ートポンプ式ソーラ給湯システムの構成図である。図3
において、22は太陽電池セルであり、太陽熱集熱板1
1、16と熱交換するように設けられている。23は温
度検出手段であり、太陽電池セル22の温度を検出し
て、信号を発信する。24は運転制御手段であり、温度
検出手段23の信号をうけて圧縮機1を運転制御する。
(Embodiment 3) FIG. 3 is a configuration diagram of a heat pump type solar hot water supply system according to Embodiment 3 of the present invention. FIG.
In the figure, 22 is a solar cell, and the solar heat collecting plate 1
It is provided so as to exchange heat with 1, 16. 23 is a temperature detecting means for detecting the temperature of the solar battery cell 22 and transmitting a signal. An operation control unit 24 controls the operation of the compressor 1 in response to a signal from the temperature detection unit 23.

【0022】以上の構成において、その動作、作用につ
いて説明する。太陽電池セル22が所定温度に上昇した
ことを温度検出手段23で検出し、運転制御手段24は
圧縮機1を運転する。そして、圧縮機1によるヒートポ
ンプサイクルで運転をおこない、蒸発器4で太陽熱放熱
器10を介して太陽熱集熱回路15の媒体を冷却する。
そして、冷却した太陽熱集熱回路15の媒体は太陽熱集
熱板11へ流入し、太陽電池セル22を冷却する。従っ
て、太陽電池セルの効率と耐久性が向上する。
The operation and operation of the above configuration will be described. The temperature detector 23 detects that the solar cell 22 has risen to a predetermined temperature, and the operation controller 24 operates the compressor 1. Then, the compressor 1 is operated in a heat pump cycle, and the medium of the solar heat collecting circuit 15 is cooled by the evaporator 4 via the solar heat radiator 10.
Then, the cooled medium of the solar heat collecting circuit 15 flows into the solar heat collecting plate 11 to cool the solar battery cells 22. Therefore, the efficiency and durability of the solar cell are improved.

【0023】(実施例4)図4は本発明の実施例4のヒ
ートポンプ式ソーラ給湯システムの構成図である。図4
において、25はインバータ制御手段であり、太陽電池
セル22と接続され、圧縮機1の運転周波数制御をおこ
なう。26は運転周波数制御手段であり、太陽電池セル
22の出力を検出して、出力が大きい場合にはインバー
タ制御手段25に低周波数運転の信号を発信する。
(Embodiment 4) FIG. 4 is a configuration diagram of a heat pump type solar hot water supply system according to Embodiment 4 of the present invention. FIG.
, 25 is an inverter control means, which is connected to the solar cell 22 and controls the operating frequency of the compressor 1. Reference numeral 26 denotes an operation frequency control unit that detects the output of the solar battery cell 22 and, when the output is large, sends a signal of low frequency operation to the inverter control unit 25.

【0024】以上の構成において、その動作、作用につ
いて説明する。太陽日射量が多いことを太陽電池セル2
2の出力で検出して、圧縮機1を低周波数で運転する。
そのため、蒸発器を流れる冷媒温度は高くなるが、太陽
熱集熱回路内の循環媒体温度も高いため、充分集熱でき
る。よって、圧縮機1を低圧縮比で運転するため、貯湯
運転時の消費電力が少なくなる。従って、夏季など、太
陽日射量が多い時は冷房に電力が必要となるが、太陽電
池で得た電力の余剰電力を給湯以外の冷房などに利用で
きる。
The operation and operation of the above configuration will be described. Solar cell 2
2, the compressor 1 is operated at a low frequency.
Therefore, although the temperature of the refrigerant flowing through the evaporator becomes high, the temperature of the circulating medium in the solar heat collecting circuit is also high, so that the heat can be sufficiently collected. Therefore, since the compressor 1 is operated at a low compression ratio, power consumption during the hot water storage operation is reduced. Therefore, when the amount of solar irradiance is large, such as in summer, electric power is required for cooling. However, surplus electric power obtained by the solar cell can be used for cooling other than hot water supply.

【0025】(実施例5)図5は本発明の実施例5のヒ
ートポンプ式ソーラ給湯システムの構成図である。図5
において、27は流量制御型ポンプであり、太陽熱集熱
回路15に設けられている。28は流体温度検出手段で
あり、太陽熱集熱板11の流体入口温度を検出し、信号
を発信する。29は流量制御手段であり、集熱温度検出
手段19の信号と流体温度検出手段28の信号をうけ
て、流体温度検出手段28の信号が集熱温度検出手段1
9の信号よりも低温かつ温度差が一定となるよう流量制
御型ポンプ27を制御する。
(Embodiment 5) FIG. 5 is a configuration diagram of a heat pump type solar hot water supply system according to Embodiment 5 of the present invention. FIG.
In the figure, 27 is a flow control type pump, which is provided in the solar heat collecting circuit 15. Numeral 28 is a fluid temperature detecting means for detecting a fluid inlet temperature of the solar heat collecting plate 11 and transmitting a signal. Reference numeral 29 denotes a flow rate control means, which receives a signal from the heat collection temperature detection means 19 and a signal from the fluid temperature detection means 28, and outputs a signal from the fluid temperature detection means 28 to the heat collection temperature detection means 1.
The flow control type pump 27 is controlled so that the temperature is lower than the signal of No. 9 and the temperature difference is constant.

【0026】以上の構成において、その動作、作用につ
いて説明する。最初に太陽熱日射量が高い場合について
説明する。この場合は、太陽熱集熱板11から流出する
流体温度は上昇して太陽熱集熱板11との温度差が少な
くなり、太陽熱集熱板11の面積が有効に寄与しない。
そのため、太陽熱集熱板11から流出する流体温度を検
出して流量制御型ポンプ27の流量を増加して出口温度
を下げ、太陽熱集熱板11の面積を有効に利用して集熱
量増加をはかる。次に太陽熱日射量が少なくなった場合
について説明する。この場合には、太陽熱集熱板11か
ら流出する流体は温度を下げて太陽熱放熱器10へ流入
する。そのため、蒸発器4を流れる冷媒温度は低下して
圧縮機1へ流入し、冷凍能力、加熱能力が減少する。そ
のため、太陽熱放熱器10での放熱量減少にともない、
出口流体温度低下は少なくなって太陽熱集熱板11に流
入するため、太陽熱集熱板11の表面温度との温度差が
小さくなる。そして、流量制御手段29は流量制御型ポ
ンプ27の循環流量を上げて、太陽熱放熱器10の出口
温度および太陽熱集熱板11の流体入口温度を下げる制
御をおこない、集熱量が増加する。従って、太陽日射量
の変化に対応して、太陽熱集熱板の循環水温が絶えず太
陽熱集熱板温度よりも低温かつ所定温度差となるように
流量制御をおこない、太陽熱に加え、常に大気熱も集熱
する信頼性の高いシステムを実現する。
The operation and operation of the above configuration will be described. First, the case where the solar thermal solar radiation is high will be described. In this case, the temperature of the fluid flowing out of the solar heat collecting plate 11 rises and the temperature difference with the solar heat collecting plate 11 decreases, and the area of the solar heat collecting plate 11 does not effectively contribute.
Therefore, the temperature of the fluid flowing out of the solar heat collecting plate 11 is detected, the flow rate of the flow control type pump 27 is increased, the outlet temperature is reduced, and the heat collecting amount is increased by effectively using the area of the solar heat collecting plate 11. . Next, a case where the amount of solar thermal solar radiation is reduced will be described. In this case, the fluid flowing out of the solar heat collecting plate 11 flows into the solar heat radiator 10 at a reduced temperature. Therefore, the temperature of the refrigerant flowing through the evaporator 4 decreases, flows into the compressor 1, and the refrigerating ability and the heating ability decrease. Therefore, with the decrease in the amount of heat radiation in the solar heat radiator 10,
Since the outlet fluid temperature decreases less and flows into the solar heat collecting plate 11, the temperature difference from the surface temperature of the solar heat collecting plate 11 becomes small. Then, the flow rate control means 29 increases the circulation flow rate of the flow rate control type pump 27 so as to control the outlet temperature of the solar heat radiator 10 and the fluid inlet temperature of the solar heat collecting plate 11 to increase the heat collection amount. Therefore, in response to the change in the amount of solar radiation, the flow rate is controlled so that the circulating water temperature of the solar heat collecting plate is constantly lower than the solar heat collecting plate temperature and a predetermined temperature difference. A highly reliable system that collects heat is realized.

【0027】(実施例6)図6は本発明の実施例6のヒ
ートポンプ式ソーラ給湯システムの構成図である。図6
において、30は周波数制御手段であり、圧縮機1の運
転周波数を制御する。31は集熱板温度検出手段であ
り、太陽熱集熱板11の表面温度を検出する。32は流
体温度検出手段であり、太陽熱集熱回路15の流体温度
を検出する。33は運転制御手段であり、集熱板温度検
出手段31と流体温度検出手段32の信号に基づき周波
数制御手段30に信号を発信する。
(Embodiment 6) FIG. 6 is a block diagram of a heat pump type solar hot water supply system according to Embodiment 6 of the present invention. FIG.
In the figure, reference numeral 30 denotes frequency control means for controlling the operating frequency of the compressor 1. 31 is a heat collecting plate temperature detecting means for detecting the surface temperature of the solar heat collecting plate 11. Numeral 32 denotes a fluid temperature detecting means for detecting the fluid temperature of the solar heat collecting circuit 15. An operation control unit 33 transmits a signal to the frequency control unit 30 based on signals from the heat collecting plate temperature detection unit 31 and the fluid temperature detection unit 32.

【0028】以上の構成において、その動作、作用につ
いて説明する。最初に太陽熱日射量あるいは外気温度が
高い場合について説明する。この場合は、太陽熱集熱板
11から流出する流体温度は上昇して太陽熱放熱器10
へ流入する。そのため、蒸発器4を流れる冷媒温度は上
昇し、冷凍能力および加熱能力が増加する。そして、太
陽熱放熱器10の出口流体温度は低下して太陽熱集熱板
11に流入するため、集熱量がさらに増加する。そのた
め、太陽熱集熱板11の流体入口温度が下がり太陽熱集
熱板11の表面温度との温度差が大きくなったことを検
知して圧縮機1の運転周波数を下げて運転をおこない、
冷凍能力を下げて蒸発器4を流れる冷媒温度を高めて高
効率運転する。次に太陽熱日射量あるいは外気温度が低
い場合について説明する。この場合には、太陽熱集熱板
11から流出する流体は温度を下げて太陽熱放熱器10
へ流入する。そのため、蒸発器4を流れる冷媒温度は低
下して圧縮機1へ流入する。そのため、冷凍能力、加熱
能力が減少して太陽熱放熱器10の出口流体温度は上昇
して太陽熱集熱板11に流入し、集熱量がさらに低下す
る。そのため、太陽熱集熱板11の流体入口温度が上昇
し太陽熱集熱板11の表面温度との温度差が小さくなっ
たことを検知して圧縮機1の運転周波数を上げて運転を
おこない、冷凍能力、加熱能力を上げて高能力運転をお
こなう。従って、日射量および外気温度に対応した給湯
加熱量と高効率運転を実現する。また、日射量および外
気温度が高い場合に生じる冷媒回路の高圧の異常上昇を
防止することもできるため、機器の信頼性が向上する。
The operation and operation of the above configuration will be described. First, the case where the amount of solar radiation or the outside air temperature is high will be described. In this case, the temperature of the fluid flowing out of the solar heat collecting plate 11 rises and the solar heat radiator 10
Flows into Therefore, the temperature of the refrigerant flowing through the evaporator 4 increases, and the refrigeration capacity and the heating capacity increase. Then, since the outlet fluid temperature of the solar heat radiator 10 decreases and flows into the solar heat collecting plate 11, the amount of heat collection further increases. For this reason, it is detected that the fluid inlet temperature of the solar heat collecting plate 11 has decreased and the temperature difference with the surface temperature of the solar heat collecting plate 11 has increased, and the compressor 1 is operated at a reduced operating frequency,
High efficiency operation is performed by lowering the refrigerating capacity and raising the temperature of the refrigerant flowing through the evaporator 4. Next, the case where the amount of solar radiation or the outside air temperature is low will be described. In this case, the temperature of the fluid flowing out of the solar heat collecting plate 11 is lowered to reduce the temperature of the solar heat radiator 10.
Flows into Therefore, the temperature of the refrigerant flowing through the evaporator 4 decreases and flows into the compressor 1. Therefore, the refrigerating capacity and the heating capacity decrease, and the outlet fluid temperature of the solar heat radiator 10 rises, flows into the solar heat collecting plate 11, and the amount of heat collection further decreases. For this reason, it is detected that the fluid inlet temperature of the solar heat collecting plate 11 has risen and the temperature difference from the surface temperature of the solar heat collecting plate 11 has become small, and the compressor 1 is operated at an increased operating frequency to perform refrigeration capacity. Increase the heating capacity and perform high capacity operation. Therefore, a hot water supply heating amount corresponding to the amount of solar radiation and the outside air temperature and a high efficiency operation are realized. In addition, since it is possible to prevent an abnormal increase in the high pressure of the refrigerant circuit that occurs when the amount of solar radiation and the outside air temperature are high, the reliability of the device is improved.

【0029】(実施例7)図7は本発明の実施例7のヒ
ートポンプ式ソーラ給湯システムの構成図である。図7
において、34は集熱板温度検出手段であり、太陽熱集
熱板11の表面温度を検出する。35は圧力検出手段で
あり、太陽熱集熱回路15内の圧力を検出する。36は
運転制御手段であり、集熱板温度検出手段34あるいは
圧力検出手段の信号をうけて、圧縮機1を運転開始す
る。
(Embodiment 7) FIG. 7 is a block diagram of a heat pump type solar hot water supply system according to Embodiment 7 of the present invention. FIG.
, 34 is a heat collecting plate temperature detecting means for detecting the surface temperature of the solar heat collecting plate 11. 35 is a pressure detecting means for detecting the pressure in the solar heat collecting circuit 15. An operation control unit 36 starts operation of the compressor 1 in response to a signal from the heat collecting plate temperature detection unit 34 or the pressure detection unit.

【0030】以上の構成において、その動作、作用につ
いて説明する。太陽熱集熱板の異常温度上昇を検知して
圧縮機を運転する。そして、蒸発器4を介して太陽熱放
熱器10を流れる媒体を冷却し、冷却された媒体は太陽
熱集熱板11を冷却する。従って、太陽熱集熱回路内の
媒体が漏れて封入量が少なくなり、かつ日射量が多い場
合に生じる空焚きを防止するため、太陽熱集熱板の耐久
性が向上する。なお、集熱板温度検出手段34の代わり
に圧力検出手段35を用いて、高温時に太陽熱集熱回路
内の圧力を検出して、圧縮機1を運転開始しても同様の
効果が得られる。
The operation and operation of the above configuration will be described. Detects an abnormal rise in temperature of the solar heat collector and operates the compressor. Then, the medium flowing through the solar heat radiator 10 via the evaporator 4 is cooled, and the cooled medium cools the solar heat collecting plate 11. Therefore, the durability of the solar heat collecting plate is improved in order to prevent the medium in the solar heat collecting circuit from leaking and to reduce the amount of sealing, and to prevent the empty heating that occurs when the amount of solar radiation is large. The same effect can be obtained even if the pressure in the solar heat collecting circuit is detected at a high temperature by using the pressure detecting means 35 instead of the heat collecting plate temperature detecting means 34 and the compressor 1 is started to operate.

【0031】(実施例8)図8は本発明の実施例8のヒ
ートポンプ式ソーラ給湯システムの構成図である。図8
において、37は温度検出手段であり、太陽熱集熱回路
15の媒体温度を検出する。38はバルブであり、太陽
熱集熱回路の最下位に設けられている。39は低温運転
制御手段であり、温度検出手段37の信号をうけて、バ
ルブ38を開放制御するとともに圧縮機1を停止する。
(Eighth Embodiment) FIG. 8 is a block diagram of a heat pump type solar hot water supply system according to an eighth embodiment of the present invention. FIG.
In 37, a temperature detecting means 37 detects the medium temperature of the solar heat collecting circuit 15. Reference numeral 38 denotes a valve, which is provided at the bottom of the solar heat collecting circuit. Reference numeral 39 denotes a low-temperature operation control means, which receives a signal from the temperature detection means 37 and controls the opening of the valve 38 and stops the compressor 1.

【0032】以上の構成において、その動作、作用につ
いて説明する。冬季の低外気温度時および太陽日射量が
ない場合において、運転中および運転停止時に太陽熱集
熱回路15内の媒体が凍結近傍温度に達したことを温度
検出手段37が検出して、低温運転制御手段39はバル
ブ38を開放して太陽熱集熱回路15内の媒体を排出す
る。従って、太陽熱集熱板の凍結破壊を防止するため、
機器の信頼性が向上する。
The operation and operation of the above configuration will be described. At a low outside air temperature in winter and when there is no solar radiation, the temperature detecting means 37 detects that the medium in the solar heat collecting circuit 15 has reached a temperature near freezing during operation and at the time of operation stop, and performs low-temperature operation control. The means 39 opens the valve 38 to discharge the medium in the solar heat collecting circuit 15. Therefore, to prevent freezing and destruction of the solar heat collector,
The reliability of the equipment is improved.

【0033】(実施例9)図9は本発明の実施例9のヒ
ートポンプ式ソーラ給湯システムの構成図である。図9
において、実線矢印は浴槽残湯利用運転時の冷媒流れ方
向を表わし、破線矢印は太陽熱および大気熱利用運転時
の冷媒流れ方向を表わす。40は冷媒風呂熱交換器であ
り、蒸発器4と並列に設けられている。41は風呂熱交
換器であり、冷媒風呂熱交換器40と熱交換関係を有す
る。42は浴槽、43は風呂ポンプ、44は風呂回路で
あり、風呂熱交換器41と浴槽42、風呂ポンプ43か
らなる。45は太陽熱用開閉弁、46は風呂用開閉弁、
47は夜間運転設定手段であり、家族の入浴終了を検知
して手動あるいは自動で圧縮機1を運転するとともに太
陽熱用開閉弁45を閉制御、風呂用開閉弁46を開放制
御する。
(Embodiment 9) FIG. 9 is a configuration diagram of a heat pump solar hot water supply system according to Embodiment 9 of the present invention. FIG.
, The solid arrow indicates the refrigerant flow direction during the operation using the remaining hot water in the bathtub, and the dashed arrow indicates the refrigerant flow direction during the operation using the solar heat and the atmospheric heat. A refrigerant bath heat exchanger 40 is provided in parallel with the evaporator 4. Reference numeral 41 denotes a bath heat exchanger, which has a heat exchange relationship with the refrigerant bath heat exchanger 40. 42 is a bathtub, 43 is a bath pump, 44 is a bath circuit, which comprises a bath heat exchanger 41, a bathtub 42, and a bath pump 43. 45 is a solar on-off valve, 46 is a bath on-off valve,
Numeral 47 denotes a nighttime operation setting means, which detects the end of bathing of the family member and operates the compressor 1 manually or automatically, controls the solar heat on-off valve 45 to close, and controls the bath on-off valve 46 to open.

【0034】以上の構成において、その動作、作用につ
いて説明する。家族の入浴終了後に夜間運転設定手段4
7の信号をうけて圧縮機1は運転し、冷媒を冷媒風呂熱
交換器40に流し、ここで風呂ポンプ43から送られて
きた浴槽42の残湯を集熱する。そして、圧縮機1で高
温高圧に圧縮した冷媒の凝縮熱で凝縮器2を介して給湯
熱交換器6を流れる水を加熱して湯をつくり、貯湯タン
ク7に貯湯する。従って、日中は太陽熱集熱板で太陽熱
と大気熱を集熱し、夜間は着霜もなく、中温湯の浴槽廃
熱を利用するため高能力高効率集熱するため、貯湯熱量
の増加と省エネ化が実現できる。
The operation and operation of the above configuration will be described. Night driving setting means 4 after family bathing
In response to the signal of 7, the compressor 1 is operated, and the refrigerant flows into the refrigerant bath heat exchanger 40, where the remaining hot water in the bathtub 42 sent from the bath pump 43 is collected. Then, the water flowing through the hot water supply heat exchanger 6 through the condenser 2 is heated by the heat of condensation of the refrigerant compressed to a high temperature and a high pressure by the compressor 1 to produce hot water and stored in the hot water storage tank 7. Therefore, during the daytime, solar heat and atmospheric heat are collected by the solar heat collecting plate, and at night there is no frost, and high-capacity, high-efficiency heat collection is performed by using the waste heat of the tub of medium-temperature hot water. Can be realized.

【0035】(実施例10)図10は本発明の実施例8
のヒートポンプ式ソーラ給湯システムの構成図である。
図10において、実線矢印は貯湯タンク沸き上げ運転時
の冷媒流れ方向を表わし、破線矢印は浴槽加熱運転時の
冷媒流れ方向を表わす。48は四方弁であり、圧縮機1
と凝縮器2の配管途中に設けられている。49は貯湯運
転冷媒回路であり、圧縮機1、四方弁48、凝縮器2、
減圧手段3、蒸発器4からなる。50は浴槽加熱冷媒回
路であり、圧縮機1、四方弁48、冷媒風呂熱交換器4
0、減圧手段3、蒸発器4からなる。51は残湯温度検
出手段であり、貯湯タンク7の湯温を検出する。52は
切り替え制御手段であり、残湯温度検出手段51の信号
を検出して、四方弁48を切り替えて貯湯運転冷媒回路
49と浴槽加熱冷媒回路50を選択する。
(Embodiment 10) FIG. 10 shows Embodiment 8 of the present invention.
1 is a configuration diagram of a heat pump type solar hot water supply system of FIG.
In FIG. 10, the solid arrow indicates the refrigerant flow direction during the hot water storage tank boiling operation, and the broken arrow indicates the refrigerant flow direction during the bathtub heating operation. Reference numeral 48 denotes a four-way valve, and the compressor 1
And in the middle of the piping of the condenser 2. 49 is a hot-water storage operation refrigerant circuit, which is a compressor 1, a four-way valve 48, a condenser 2,
It comprises a pressure reducing means 3 and an evaporator 4. Reference numeral 50 denotes a bathtub heating refrigerant circuit, which includes a compressor 1, a four-way valve 48, and a refrigerant bath heat exchanger 4.
0, decompression means 3, and evaporator 4. Reference numeral 51 denotes remaining hot water temperature detecting means for detecting the hot water temperature of the hot water storage tank 7. 52 is a switching control means which detects a signal from the remaining hot water temperature detecting means 51 and switches the four-way valve 48 to select the hot water storage operation refrigerant circuit 49 and the bathtub heating refrigerant circuit 50.

【0036】以上の構成において、その動作、作用につ
いて説明する。日中、貯湯タンク7への沸き上げ運転時
において、貯湯タンク7に所定湯量が確保されたことを
検出して、四方弁48を切り替え、圧縮機1の高温高圧
冷媒を冷媒風呂熱交換器40に流して浴槽42を沸き上
げる。その際に、浴槽沸き上げ温度を中温湯にして、低
圧縮比運転で効率の良い運転をする。従って、太陽熱を
貯湯タンク7の沸き上げと浴槽42の沸き上げに効果的
かつ高効率で利用できる。また、浴槽42を貯湯タンク
7の一部として利用するため、貯湯タンクの小型化、省
スペース化が実現できる。
The operation and operation of the above configuration will be described. During the daytime, when a predetermined amount of hot water is secured in the hot water storage tank 7 during the boiling operation to the hot water storage tank 7, the four-way valve 48 is switched, and the high temperature and high pressure refrigerant of the compressor 1 is supplied to the refrigerant bath heat exchanger 40. And bath tub 42 is boiled. At that time, the temperature of the bath tub is raised to a medium temperature, and the operation is performed efficiently at a low compression ratio. Therefore, the solar heat can be effectively and efficiently used for boiling the hot water storage tank 7 and the bathtub 42. Further, since the bathtub 42 is used as a part of the hot water storage tank 7, the hot water storage tank can be reduced in size and space can be saved.

【0037】[0037]

【発明の効果】以上の説明から明らかのように、本発明
のヒートポンプ式ソーラ給湯システムによれば次の効果
を奏する。
As is apparent from the above description, the heat pump type solar hot water supply system of the present invention has the following effects.

【0038】請求項1記載の発明によれば、圧縮機、凝
縮器、減圧手段、蒸発器からなる冷媒回路と、凝縮器と
熱交換関係を有する給湯熱交換器、貯湯タンクからなる
給湯回路と、蒸発器と熱交換関係を有する太陽熱放熱
器、太陽熱集熱板を接続した太陽熱集熱回路を備え、太
陽熱集熱板を介して太陽熱を集熱した媒体で太陽熱放熱
器を介して蒸発器を流れる冷媒を蒸発ガス化させ、圧縮
機で高温高圧ガスに圧縮して、凝縮器を介して凝縮熱で
給湯熱交換器の水を加熱する。よって、太陽熱を集熱
し、ヒートポンプを利用して高温湯に沸き上げることが
できる。また、冷媒回路を1つのユニットに収納して密
閉回路を構成し、施工時の冷媒配管工事レス化をはかる
ことによって、施工時の冷媒量の調整、冷媒漏れなど、
工事のバラツキをなくして、機器の信頼性を向上させ
る。
According to the first aspect of the present invention, a refrigerant circuit including a compressor, a condenser, a pressure reducing means, and an evaporator, a hot water supply heat exchanger having a heat exchange relationship with the condenser, and a hot water supply circuit including a hot water storage tank are provided. A solar heat radiator having a heat exchange relationship with the evaporator, a solar heat collecting circuit connected to the solar heat collecting plate, and a evaporator through the solar heat radiator with a medium that collects solar heat through the solar heat collecting plate. The flowing refrigerant is vaporized and gasified, compressed into a high-temperature and high-pressure gas by a compressor, and the water in the hot water supply heat exchanger is heated by the heat of condensation via the condenser. Therefore, solar heat can be collected and heated to high-temperature water using a heat pump. In addition, the refrigerant circuit is housed in one unit to form a closed circuit, and by eliminating the need for refrigerant piping work during construction, adjustment of the amount of refrigerant during construction, refrigerant leakage, etc.
Eliminate work variations and improve equipment reliability.

【0039】また、請求項2に記載の発明によれば、太
陽熱集熱板を太陽熱と大気熱を集熱する構成としたこと
により、太陽熱集熱板を流れる水温を太陽熱集熱板温度
よりも低温で流し、太陽熱に加え、大気熱も集熱できる
ようにして、集熱量の増大をはかるとともに透過体(ガ
ラスなど)および断熱材をなくして太陽熱集熱板の軽量
化と設置自由度を向上させる。
According to the second aspect of the present invention, since the solar heat collecting plate is configured to collect solar heat and atmospheric heat, the temperature of water flowing through the solar heat collecting plate can be lower than the temperature of the solar heat collecting plate. By flowing at low temperatures and collecting solar heat as well as atmospheric heat, it is possible to increase the amount of heat collected and eliminate the use of transparent bodies (such as glass) and heat insulating materials to reduce the weight of the solar heat collecting plate and improve the flexibility of installation. Let it.

【0040】また、請求項3に記載の発明によれば、太
陽熱集熱板に設けた太陽電池セルと、太陽電池セルの温
度を検出する温度検出手段と、温度検出手段の信号をう
けて圧縮機の運転制御をおこなう運転制御手段を備え、
太陽電池セルが所定温度に上昇した場合、圧縮機を運転
して集熱回路の媒体を介して太陽電池セルを冷却し、太
陽電池セルの効率と耐久性を向上させる。
According to the third aspect of the present invention, the solar cell provided on the solar heat collecting plate, the temperature detecting means for detecting the temperature of the solar cell, and the signal received from the temperature detecting means are compressed. Operation control means for controlling the operation of the machine,
When the temperature of the solar cell rises to a predetermined temperature, the compressor is operated to cool the solar cell via the medium of the heat collecting circuit, thereby improving the efficiency and durability of the solar cell.

【0041】また、請求項4に記載の発明によれば、太
陽電池セルと接続し、圧縮機を運転するインバータ制御
手段と、太陽電池セルの出力を検出して、出力が大きい
場合にはインバータ制御手段に低周波数運転の信号を発
信する運転周波数制御手段を備え、太陽日射量が多いこ
とを太陽電池セルの出力で検出して、圧縮機を低周波数
で運転して、圧縮機の消費電力を削減する。従って、夏
季など、太陽日射量が多い時は冷房に電力が必要となる
ため、太陽電池で得た電力の余剰電力を冷房に利用でき
る。
According to the fourth aspect of the present invention, there is provided an inverter control means which is connected to the solar cell and operates the compressor, and detects the output of the solar cell and, if the output is large, the inverter. The control means is provided with an operation frequency control means for transmitting a signal of low frequency operation, detects that the amount of solar radiation is large by the output of the solar cell, operates the compressor at a low frequency, and consumes power of the compressor. Reduce. Therefore, when the amount of solar irradiance is large, such as in summer, electric power is required for cooling, and the surplus electric power obtained by the solar cell can be used for cooling.

【0042】また、請求項5に記載の発明によれば、太
陽熱集熱回路に流量制御型ポンプを備え、太陽日射量の
変化に対応して、太陽熱集熱板の循環水温が絶えず太陽
熱集熱板温度よりも低温となるように流量制御をおこな
い、太陽熱に加え、常に大気熱も集熱する信頼性の高い
システムを実現する。
According to the fifth aspect of the present invention, the solar heat collecting circuit is provided with a flow rate control type pump, and the circulating water temperature of the solar heat collecting plate is constantly increased in response to a change in the amount of solar radiation. By controlling the flow rate so that it is lower than the plate temperature, a highly reliable system that always collects atmospheric heat in addition to solar heat is realized.

【0043】また、請求項6に記載の発明によれば、圧
縮機の周波数を制御する周波数制御手段と、太陽熱集熱
板の表面温度を検出する集熱板温度検出手段と、太陽熱
集熱回路の流体温度を検出する流体温度検出手段と、集
熱板温度検出手段と流体温度検出手段の信号に基づき周
波数制御手段に信号を発信する運転制御手段を備え、集
熱板温度と流体温度を所定温度差にコントロールするよ
うに圧縮機の運転周波数を制御して、日射量および外気
温度に対応して給湯加熱量と高効率運転を実現する。
According to the invention, the frequency control means for controlling the frequency of the compressor, the heat collecting plate temperature detecting means for detecting the surface temperature of the solar heat collecting plate, and the solar heat collecting circuit Fluid temperature detecting means for detecting the temperature of the fluid, and operation control means for transmitting a signal to the frequency control means based on the signals from the heat collecting plate temperature detecting means and the fluid temperature detecting means. The operating frequency of the compressor is controlled so as to control the temperature difference, thereby realizing a hot water supply heating amount and a high efficiency operation corresponding to the amount of solar radiation and the outside air temperature.

【0044】また、請求項7に記載の発明によれば、太
陽熱集熱板の表面温度を検出する集熱板温度検出手段あ
るいは太陽熱集熱回路内の媒体圧力を検出する圧力検出
手段と、集熱板温度検出手段あるいは圧力検出手段の信
号をうけて、圧縮機を運転開始する運転制御手段を備
え、太陽熱集熱板の異常温度上昇、あるいは集熱回路内
の圧力上昇を検知して圧縮機を運転し、太陽熱集熱回路
内の媒体および太陽熱集熱板を冷却する。従って、太陽
熱集熱回路内の媒体が漏れて封入量が少なく、かつ日射
量が多い場合に発生する空焚きを防止する。よって、太
陽熱集熱板の耐久性が向上する。
According to the seventh aspect of the present invention, there is provided a heat collecting plate temperature detecting means for detecting a surface temperature of a solar heat collecting plate or a pressure detecting means for detecting a medium pressure in a solar heat collecting circuit. The compressor is provided with operation control means for starting operation of the compressor in response to a signal from the hot plate temperature detecting means or the pressure detecting means, and detecting an abnormal temperature rise of the solar heat collecting plate or a pressure rise in the heat collecting circuit. Is operated to cool the medium and the solar heat collecting plate in the solar heat collecting circuit. Therefore, it is possible to prevent the air in the solar heat collecting circuit from leaking when the medium leaks and the sealed amount is small and the solar radiation amount is large. Therefore, the durability of the solar heat collecting plate is improved.

【0045】また、請求項8に記載の発明によれば、集
熱回路の媒体温度を検出する温度検出手段と、集熱回路
に設けたバルブと、温度検出手段の信号をうけてバルブ
を開放制御する低温運転制御手段を備え、冬季の低外気
温度時において、集熱回路内の媒体が凍結近傍温度に達
した時、バルブを開放して集熱回路内の媒体を排出する
ようにして、太陽熱集熱板の凍結破壊を防止する。
According to the eighth aspect of the present invention, a temperature detecting means for detecting a medium temperature of the heat collecting circuit, a valve provided in the heat collecting circuit, and a valve opened upon receiving a signal from the temperature detecting means. With a low-temperature operation control means for controlling, at a low outside air temperature in winter, when the medium in the heat collecting circuit reaches a temperature near freezing, the valve is opened to discharge the medium in the heat collecting circuit, Prevents freezing and destruction of solar heat collectors.

【0046】また、請求項9に記載の発明によれば、蒸
発器と並列に設けた冷媒風呂熱交換器と、冷媒風呂熱交
換器と熱交換関係を有する風呂熱交換器、浴槽からなる
風呂回路を備え、低外気温度となる夜間時間帯は、冷媒
風呂熱交換器で浴槽残湯を集熱し、凝縮器を介して湯を
つくり、貯湯する。従って、日中は太陽熱集熱板で太陽
熱と大気熱を集熱し、夜間は浴槽残湯熱を集熱して、貯
湯熱量の増加と省エネ化を実現する。
According to the ninth aspect of the present invention, a bath comprising a refrigerant bath heat exchanger provided in parallel with the evaporator, a bath heat exchanger having a heat exchange relationship with the refrigerant bath heat exchanger, and a bathtub. With a circuit, during the night time when the outside air temperature is low, the hot water remaining in the bathtub is collected by a refrigerant bath heat exchanger, and the hot water is made through a condenser and stored. Therefore, during the daytime, solar heat and atmospheric heat are collected by the solar heat collecting plate, and at night, the remaining heat of the bathtub is collected, thereby increasing the amount of stored heat and saving energy.

【0047】また、請求項10に記載の発明によれば、
圧縮機と凝縮器の配管途中に四方弁を設け、圧縮機、凝
縮器、減圧手段、蒸発器からなる冷媒回路と、圧縮機、
冷媒風呂熱交換器、減圧手段、蒸発器からなる冷媒風呂
回路と、貯湯タンクの湯温を検出する残湯温度検出手段
と、残湯温度検出手段の信号に基づき四方弁を切り替え
て冷媒回路と冷媒風呂回路を選択する切り替え制御手段
を備え、日中、貯湯タンクへの沸き上げ運転時におい
て、貯湯タンクに所定湯量が確保されると、四方弁を切
り替えて、圧縮機の高温高圧冷媒を冷媒風呂熱交換器に
流して浴槽を沸き上げる。その際に、浴槽沸き上げ温度
を中温湯にして、低圧縮比運転で効率の良い運転をす
る。従って、太陽熱を貯湯タンクの沸き上げと浴槽の沸
き上げに効果的かつ高効率で利用できる。また、浴槽を
貯湯タンクの一部として利用するため、貯湯タンクの小
型化、省スペース化が実現できる。
According to the tenth aspect of the present invention,
A four-way valve is provided in the piping between the compressor and the condenser, and a refrigerant circuit including a compressor, a condenser, a decompression means, an evaporator, and a compressor,
A refrigerant bath circuit including a refrigerant bath heat exchanger, a decompression unit, and an evaporator; a remaining hot water temperature detection unit that detects a hot water temperature of a hot water storage tank; and a refrigerant circuit that switches a four-way valve based on a signal from the remaining hot water temperature detection unit. A switching control means for selecting a refrigerant bath circuit is provided.During the daytime, during the heating operation to the hot water storage tank, when a predetermined amount of hot water is secured in the hot water storage tank, the four-way valve is switched to allow the high-temperature and high-pressure refrigerant of the compressor to be cooled Pour into the bath heat exchanger and boil the bathtub. At that time, the temperature of the bath tub is raised to a medium temperature, and the operation is performed efficiently at a low compression ratio. Therefore, the solar heat can be effectively and efficiently used for boiling the hot water storage tank and the bathtub. Further, since the bathtub is used as a part of the hot water storage tank, the hot water storage tank can be reduced in size and space can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 1 is a configuration diagram of a heat pump type solar hot water supply system according to a first embodiment of the present invention.

【図2】本発明の実施例2のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 2 is a configuration diagram of a heat pump type solar hot water supply system according to a second embodiment of the present invention.

【図3】本発明の実施例3のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 3 is a configuration diagram of a heat pump type solar hot water supply system according to a third embodiment of the present invention.

【図4】本発明の実施例4のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 4 is a configuration diagram of a heat pump type solar hot water supply system according to a fourth embodiment of the present invention.

【図5】本発明の実施例5のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 5 is a configuration diagram of a heat pump solar hot water supply system according to a fifth embodiment of the present invention.

【図6】本発明の実施例6のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 6 is a configuration diagram of a heat pump type solar hot water supply system according to a sixth embodiment of the present invention.

【図7】本発明の実施例7のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 7 is a configuration diagram of a heat pump solar hot water supply system according to a seventh embodiment of the present invention.

【図8】本発明の実施例8のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 8 is a configuration diagram of a heat pump type solar hot water supply system according to an eighth embodiment of the present invention.

【図9】本発明の実施例9のヒートポンプ式ソーラ給湯
システムの構成図
FIG. 9 is a configuration diagram of a heat pump type solar hot water supply system according to a ninth embodiment of the present invention.

【図10】本発明の実施例10のヒートポンプ式ソーラ
給湯システムの構成図
FIG. 10 is a configuration diagram of a heat pump type solar hot water supply system according to a tenth embodiment of the present invention.

【図11】従来の太陽熱利用ヒートポンプシステムの構
成図
FIG. 11 is a configuration diagram of a conventional solar heat utilizing heat pump system.

【図12】従来の大気熱利用のヒートポンプ給湯システ
ムの構成図
FIG. 12 is a configuration diagram of a conventional heat pump hot water supply system using atmospheric heat.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧手段 4 蒸発器 5 冷媒回路 6 給湯熱交換器 7 貯湯タンク 8 給湯ポンプ 9 給湯回路 10 太陽熱放熱器 11、16 太陽熱集熱板 12、17 集熱フィン 13、18 集熱管 14 集熱ポンプ 15 太陽熱集熱回路 19 集熱温度検出手段 20 流体温度検出手段 21 比較部 22 太陽電池セル 23 温度検出手段 24 運転制御手段 25 インバータ制御手段 26 運転周波数制御手段 27 流量制御型ポンプ 28 流体温度検出手段 29 流量制御手段 30 周波数制御手段 31、34 集熱板温度検出手段 32 流体温度検出手段 33、36 運転制御手段 35 圧力検出手段 37 温度検出手段 38 バルブ 39 低温運転制御手段 40 冷媒風呂熱交換器 41 風呂熱交換器 42 浴槽 43 風呂ポンプ 44 風呂回路 45 太陽熱用開閉弁 46 風呂用開閉弁 47 夜間運転設定手段 48 四方弁 49 貯湯運転冷媒回路 50 浴槽加熱冷媒回路 51 残湯温度検出手段 52 切り替え手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Decompression means 4 Evaporator 5 Refrigerant circuit 6 Hot water supply heat exchanger 7 Hot water storage tank 8 Hot water supply pump 9 Hot water supply circuit 10 Solar heat radiator 11, 16 Solar heat collecting plate 12, 17 Heat collecting fins 13, 18 Collecting Heat pipe 14 Heat collecting pump 15 Solar heat collecting circuit 19 Heat collecting temperature detecting means 20 Fluid temperature detecting means 21 Comparison unit 22 Solar cell 23 Temperature detecting means 24 Operation controlling means 25 Inverter controlling means 26 Operating frequency controlling means 27 Flow control type pump 28 Fluid temperature detecting means 29 Flow rate controlling means 30 Frequency controlling means 31, 34 Heat collecting plate temperature detecting means 32 Fluid temperature detecting means 33, 36 Operation controlling means 35 Pressure detecting means 37 Temperature detecting means 38 Valve 39 Low temperature operation controlling means 40 Refrigerant Bath heat exchanger 41 Bath heat exchanger 42 Bathtub 43 Bath pump 44 Bath times 45 solar-off valve 46 bath-off valve 47 night driving setting means 48 four-way valve 49 the hot water storage operation refrigerant circuit 50 bath heated refrigerant circuit 51 remaining hot water temperature detecting means 52 the switching means

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、減圧手段及び蒸発器から
なる冷媒回路と、前記凝縮器と熱交換関係を有する給湯
熱交換器、貯湯タンクからなる給湯回路と、前記蒸発器
と熱交換関係を有する太陽熱放熱器、太陽熱集熱板を接
続した太陽熱集熱回路とを備えたヒートポンプ式ソーラ
給湯システム。
1. A refrigerant circuit comprising a compressor, a condenser, a pressure reducing means and an evaporator, a hot water supply heat exchanger having a heat exchange relationship with the condenser, a hot water supply circuit comprising a hot water storage tank, and heat exchange with the evaporator. A heat pump type solar hot water supply system comprising a solar heat radiator having a relationship and a solar heat collecting circuit to which a solar heat collecting plate is connected.
【請求項2】太陽熱集熱板は太陽熱と大気熱を集熱する
構成とした請求項1記載のヒートポンプ式ソーラ給湯シ
ステム。
2. A heat pump type solar hot water supply system according to claim 1, wherein the solar heat collecting plate is configured to collect solar heat and atmospheric heat.
【請求項3】太陽熱集熱板に設けた太陽電池セルと、前
記太陽電池セルの温度を検出する温度検出手段と、前記
温度検出手段の信号をうけて圧縮機の運転制御をおこな
う運転制御手段を有する請求項1または2記載のヒート
ポンプ式ソーラ給湯システム。
3. A solar cell provided on a solar heat collecting plate, temperature detecting means for detecting the temperature of the solar cell, and operation control means for controlling the operation of the compressor in response to a signal from the temperature detecting means. The heat pump type solar hot water supply system according to claim 1 or 2, further comprising:
【請求項4】太陽電池セルと接続し、圧縮機を運転する
インバータ制御手段と、前記太陽電池セルの出力を検出
し、出力が大きい場合には前記インバータ制御手段に低
周波数運転の信号を発信する運転周波数制御手段を有す
る請求項1、2または3記載のヒートポンプ式ソーラ給
湯システム。
4. An inverter control means connected to a solar cell and operating a compressor, detecting an output of the solar cell and transmitting a low-frequency operation signal to the inverter control means when the output is large. 4. A heat pump type solar hot water supply system according to claim 1, further comprising an operating frequency control means for performing the operation.
【請求項5】太陽熱集熱回路に流量制御型ポンプを有す
る請求項1または2記載のヒートポンプ式ソーラ給湯シ
ステム。
5. The heat pump type solar hot water supply system according to claim 1, wherein a flow rate control type pump is provided in the solar heat collecting circuit.
【請求項6】圧縮機の周波数を制御する周波数制御手段
と、太陽熱集熱板の表面温度を検出する集熱板温度検出
手段と、太陽熱集熱回路の流体温度を検出する流体温度
検出手段と、前記集熱熱板温度検出手段と前記流体温度
検出手段の信号に基づき前記周波数制御手段に信号を発
信する運転制御手段を有する請求項1または2記載のヒ
ートポンプ式ソーラ給湯システム。
6. A frequency control means for controlling the frequency of the compressor, a heat collecting plate temperature detecting means for detecting a surface temperature of the solar heat collecting plate, and a fluid temperature detecting means for detecting a fluid temperature of the solar heat collecting circuit. 3. A heat pump solar hot water supply system according to claim 1, further comprising operation control means for transmitting a signal to said frequency control means based on signals from said heat collection heat plate temperature detection means and said fluid temperature detection means.
【請求項7】太陽熱集熱板の表面温度を検出する集熱板
温度検出手段あるいは太陽熱集熱回路内の媒体圧力を検
出する圧力検出手段と、前記集熱板温度検出手段あるい
は前記圧力検出手段の信号をうけて、前記圧縮機を運転
開始する運転制御手段を有する請求項1または2記載の
ヒートポンプ式ソーラ給湯システム。
7. A heat collecting plate temperature detecting means for detecting the surface temperature of the solar heat collecting plate or a pressure detecting means for detecting a medium pressure in the solar heat collecting circuit, and the heat collecting plate temperature detecting means or the pressure detecting means. 3. A heat pump type solar hot water supply system according to claim 1, further comprising operation control means for starting operation of the compressor in response to the signal of (1).
【請求項8】太陽熱集熱回路の媒体温度を検出する温度
検出手段と、前記太陽熱集熱回路に設けたバルブと、前
記温度検出手段の信号をうけ、前記バルブを開放制御す
る低温運転制御手段を有する請求項1または2記載のヒ
ートポンプ式ソーラ給湯システム。
8. A temperature detecting means for detecting a medium temperature of the solar heat collecting circuit, a valve provided in the solar heat collecting circuit, and a low-temperature operation control means for receiving a signal from the temperature detecting means and controlling opening of the valve. The heat pump type solar hot water supply system according to claim 1 or 2, further comprising:
【請求項9】蒸発器と並列に設けた冷媒風呂熱交換器
と、前記冷媒風呂熱交換器と熱交換関係を有する風呂熱
交換器、浴槽からなる風呂回路を有する請求項1〜4の
いづれか1項記載のヒートポンプ式ソーラ給湯システ
ム。
9. A bath circuit comprising a refrigerant bath heat exchanger provided in parallel with an evaporator, a bath heat exchanger having a heat exchange relationship with the refrigerant bath heat exchanger, and a bathtub. The heat pump type solar hot water supply system according to claim 1.
【請求項10】圧縮機と凝縮器の配管途中に四方弁を設
け、前記圧縮機、前記凝縮器、減圧手段及び蒸発器から
なる冷媒回路と、前記圧縮機、冷媒風呂熱交換器、前記
減圧手段、前記蒸発器からなる冷媒風呂回路と、貯湯タ
ンクの湯温を検出する残湯温度検出手段と、前記残湯温
度検出手段の信号に基づき前記四方弁を切り替えて前記
冷媒回路と前記冷媒風呂回路を選択する切り替え制御手
段を有する請求項1〜5のいづれか1項記載のヒートポ
ンプ式ソーラ給湯システム。
10. A refrigerant circuit comprising a compressor, the condenser, a pressure reducing means and an evaporator, a compressor, a refrigerant bath heat exchanger, and a pressure reducing valve. Means, a refrigerant bath circuit comprising the evaporator, a residual hot water temperature detecting means for detecting the temperature of the hot water in the hot water storage tank, and the four-way valve is switched based on a signal from the residual hot water temperature detecting means to switch the refrigerant circuit and the refrigerant bath. The heat pump type solar hot water supply system according to any one of claims 1 to 5, further comprising switching control means for selecting a circuit.
JP28810897A 1997-10-21 1997-10-21 Heat pump solar water heating system Expired - Fee Related JP3758334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28810897A JP3758334B2 (en) 1997-10-21 1997-10-21 Heat pump solar water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28810897A JP3758334B2 (en) 1997-10-21 1997-10-21 Heat pump solar water heating system

Publications (2)

Publication Number Publication Date
JPH11118247A true JPH11118247A (en) 1999-04-30
JP3758334B2 JP3758334B2 (en) 2006-03-22

Family

ID=17725915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28810897A Expired - Fee Related JP3758334B2 (en) 1997-10-21 1997-10-21 Heat pump solar water heating system

Country Status (1)

Country Link
JP (1) JP3758334B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340433A (en) * 2001-05-15 2002-11-27 Matsushita Electric Ind Co Ltd Solar-heat utilizing equipment
KR100777830B1 (en) 2007-01-23 2007-11-22 주식회사 강남 Heat pump system combined use of heat in the sunlight and air
JP2012098012A (en) * 2010-11-05 2012-05-24 Gastar Corp Heat source device
CN103017273A (en) * 2012-12-06 2013-04-03 西安工程大学 Heating and ventilating air conditioner system for rural residence
CN104596008A (en) * 2015-01-23 2015-05-06 黄国和 All-weather solar heat pump air-conditioning system
CN107882708A (en) * 2017-10-23 2018-04-06 北京工业大学 A kind of solar air compressor
KR20180136767A (en) * 2017-06-15 2018-12-26 이해랑 The solar panels to improve generating efficiency
KR20190042901A (en) * 2017-10-17 2019-04-25 주식회사 대린이엔텍 Solar collectors
CN111351109A (en) * 2018-12-20 2020-06-30 大连民族大学 Float glass waste heat recovery heating method with lithium bromide heat pump coupled with solar energy
CN115127167A (en) * 2022-08-31 2022-09-30 宁波奥克斯电气股份有限公司 Solar water heating and air conditioning integrated system, control method thereof and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042636A (en) * 2010-11-25 2011-05-04 大连熵立得传热技术有限公司 Household central heating and water heating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340433A (en) * 2001-05-15 2002-11-27 Matsushita Electric Ind Co Ltd Solar-heat utilizing equipment
JP4639521B2 (en) * 2001-05-15 2011-02-23 パナソニック株式会社 Solar thermal equipment
KR100777830B1 (en) 2007-01-23 2007-11-22 주식회사 강남 Heat pump system combined use of heat in the sunlight and air
JP2012098012A (en) * 2010-11-05 2012-05-24 Gastar Corp Heat source device
CN103017273A (en) * 2012-12-06 2013-04-03 西安工程大学 Heating and ventilating air conditioner system for rural residence
WO2016116028A1 (en) * 2015-01-23 2016-07-28 黄国和 All-weather solar energy heat pump air-conditioning system
CN104596008A (en) * 2015-01-23 2015-05-06 黄国和 All-weather solar heat pump air-conditioning system
CN104596008B (en) * 2015-01-23 2017-02-22 黄国和 All-weather solar heat pump air-conditioning system
KR20180136767A (en) * 2017-06-15 2018-12-26 이해랑 The solar panels to improve generating efficiency
KR20190042901A (en) * 2017-10-17 2019-04-25 주식회사 대린이엔텍 Solar collectors
CN107882708A (en) * 2017-10-23 2018-04-06 北京工业大学 A kind of solar air compressor
CN111351109A (en) * 2018-12-20 2020-06-30 大连民族大学 Float glass waste heat recovery heating method with lithium bromide heat pump coupled with solar energy
CN115127167A (en) * 2022-08-31 2022-09-30 宁波奥克斯电气股份有限公司 Solar water heating and air conditioning integrated system, control method thereof and air conditioner
CN115127167B (en) * 2022-08-31 2022-11-25 宁波奥克斯电气股份有限公司 Solar water heating and air conditioning integrated system, control method thereof and air conditioner

Also Published As

Publication number Publication date
JP3758334B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US8037931B2 (en) Hybrid water heating system
US20100031953A1 (en) Hybrid Water Heating System
CN101319818A (en) Frequency-variable flux-changing heat pump water heater
KR101836360B1 (en) A hybrid heat exchanger system using geothermal and solar thermal and Control method for this
CN110966801B (en) Heat accumulating type direct expansion photovoltaic-solar heat pump electric heat combined supply system and method
JP3758334B2 (en) Heat pump solar water heating system
US4382368A (en) Geothermal hot water system
KR100586460B1 (en) Hybrid heat-pump system using solar-heat and air-heat
JPH10318604A (en) Heat pump type hot water supply system for bath
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
JP3632306B2 (en) Heat pump bath water supply system
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
CN213656920U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change floor coupling system
CN214581537U (en) Air conditioner and heat pump integrated machine control system using water as heat-conducting medium to operate
CN209431728U (en) Anti- defrosting device
CN111750417A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change floor coupling system and method
JPH0413619B2 (en)
CN212673533U (en) Solar energy synergistic heat pump system
JP3303899B2 (en) Ice storage refrigerator unit
JPH1038347A (en) Heat accumulative type air conditioner
JPH07174414A (en) Heat pump solar heat collecting system
JP2001289506A (en) Storage type hot-water supplier
CN215765812U (en) Solar water heater engineering equipment
JPH1054617A (en) Air conditioner
CN117739520A (en) Light Fu Rebeng water heater and control method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees