JPH11118227A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11118227A
JPH11118227A JP9283398A JP28339897A JPH11118227A JP H11118227 A JPH11118227 A JP H11118227A JP 9283398 A JP9283398 A JP 9283398A JP 28339897 A JP28339897 A JP 28339897A JP H11118227 A JPH11118227 A JP H11118227A
Authority
JP
Japan
Prior art keywords
compressor
determination
determination value
value
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9283398A
Other languages
Japanese (ja)
Other versions
JP3438551B2 (en
Inventor
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Hiroshi Yasuda
弘 安田
Yasutaka Yoshida
康孝 吉田
Takaharu Sato
敬治 佐藤
Satoru Yoshida
悟 吉田
Kenichi Nakamura
憲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28339897A priority Critical patent/JP3438551B2/en
Publication of JPH11118227A publication Critical patent/JPH11118227A/en
Application granted granted Critical
Publication of JP3438551B2 publication Critical patent/JP3438551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which reduces the number of time of stoppage at operation abnormality. SOLUTION: An air conditioner, which is equipped with a refrigeration cycle where a compressor 81, an outdoor heat exchanger 11, an expandion mechanism 21, and indoor heat exchangers 12 and 13 are connected with one another by a pipe, is equipped with an operation state detection means 141 which detects the operation state of the refrigeration cycle, a means for controlling the compressor within the first capacity control range by the value detected by the operation state detection means 141, a means for stopping the compressor, judging the abnormality of the operation state of the refrigeration cycle, and a means for controlling the compressor, within the second capacity control range smaller than the first capacity control range when the compressor is restarted after stoppage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍サイクルを備え
た空気調和機に関するもので、特に、運転異常時の停止
回数を減少させる保護制御に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a refrigeration cycle, and is particularly suitable for protection control for reducing the number of stoppages when an operation is abnormal.

【0002】[0002]

【従来の技術】冷凍サイクルを備えた空気調和機の保護
制御として、例えば、特開平5―187726号公報に
記載のように、高圧遮断装置が作動するごとに高圧遮断
装置が作動する条件よりもはやく保護制御をはたらかせ
る条件を決定し、決定された条件を記憶手段に記憶さ
せ、以後の保護制御を記憶した条件によっておこない、
高圧遮断装置による停止を減少させ圧縮機を保護するこ
とが知られている。
2. Description of the Related Art As protection control of an air conditioner having a refrigeration cycle, for example, as described in Japanese Patent Application Laid-Open No. Hei 5-187726, a condition for operating the high-pressure shut-off device every time the high-pressure shut-off device is activated is set as follows. Determine the conditions under which the protection control works quickly, store the determined conditions in the storage means, and perform the subsequent protection control based on the stored conditions.
It is known to reduce downtime due to high pressure shut-off devices to protect the compressor.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、高圧
遮断装置の作動後の保護制御をはやめに実施して、圧縮
機を保護している。しかし、高圧遮断装置の作動後は保
護制御が常に早めに働くため、室内外の空気条件などの
運転環境が変わり高圧遮断装置の作動までに十分余裕が
ある場合にも保護制御によって圧縮機の能力を抑えてし
まう問題がある。また、上記従来技術のものは高圧圧力
に対する保護のみで圧縮機の電流や温度に対する保護が
考慮されていない。
In the above-mentioned prior art, the compressor is protected by executing protection control after the operation of the high-pressure cut-off device as soon as possible. However, since the protection control always operates promptly after the operation of the high-pressure shut-off device, the protection control can be applied even if the operating environment such as indoor and outdoor air conditions changes and there is sufficient room before the high-pressure shut-off device operates. There is a problem that suppresses. Further, the above-mentioned prior art only protects against high pressure and does not consider protection against current and temperature of the compressor.

【0004】本発明の目的は、上記問題点を解決し、特
に、運転異常時の停止回数を減少させた空気調和機を提
供することにある。
[0004] It is an object of the present invention to solve the above-mentioned problems and, in particular, to provide an air conditioner in which the number of stoppages in the event of an abnormal operation is reduced.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は、圧縮機、室外熱交換器、膨張機構および室内
熱交換器を配管で接続した冷凍サイクルを備えた空気調
和機において、冷凍サイクルの運転状態を検出する運転
状態検出手段と、運転状態検出手段によって検出される
値によって圧縮機を第1の容量制御範囲で圧縮機を制御
する手段と、冷凍サイクルの運転状態が異常と判断して
圧縮機を停止する手段と、停止後、圧縮機が再起動され
たときは第1の容量制御範囲よりも小さい第2の容量制
御範囲で圧縮機を制御する手段とを備えたものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to an air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger are connected by piping. Operating state detecting means for detecting an operating state of the cycle, means for controlling the compressor in a first capacity control range based on a value detected by the operating state detecting means, and determining that the operating state of the refrigeration cycle is abnormal And a means for controlling the compressor in a second displacement control range smaller than the first displacement control range when the compressor is restarted after the stop. is there.

【0006】また、本発明は圧縮機、室外熱交換器、膨
張機構および室内熱交換器を配管で接続した冷凍サイク
ルを備えた空気調和機において、冷凍サイクルの運転状
態を検出する運転状態検出手段と、運転状態検出手段に
よって検出される第1の判定値または判定領域によって
運転状態が異常状態に近づいていると判定する手段と、
運転状態検出手段によって検出される第2の判定値また
は判定領域によって運転状態が異常であると判定する手
段と、運転状態が前記第1の判定値または判定領域にな
ったとき圧縮機の運転容量または膨張機構を制御し、運
転状態が第2の判定値または判定領域になったとき圧縮
機を停止する手段と、停止後、圧縮機が再起動されたと
きは第1の判定値または判定領域よりも小さい値で第3
の判定値または判定領域及び第2の判定値または判定領
域よりも小さい値で第4の判定値または判定領域を定め
る手段とを備えたものである。
Further, the present invention provides an operating condition detecting means for detecting an operating condition of a refrigerating cycle in an air conditioner having a refrigerating cycle in which a compressor, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger are connected by piping. Means for determining that the operating state is approaching an abnormal state based on a first determination value or a determination area detected by the operating state detecting means;
Means for determining that the operating state is abnormal based on a second determination value or determination area detected by the operating state detection means, and operating capacity of the compressor when the operating state has reached the first determination value or determination area Or means for controlling the expansion mechanism to stop the compressor when the operating state reaches the second determination value or the determination area; and when the compressor is restarted after the stop, the first determination value or the determination area. Less than the third
And a means for determining the fourth determination value or the determination area with a value smaller than the determination value or the determination area and the second determination value or the determination area.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図1な
いし図9を参照して説明する。図1は、一実施例による
冷凍サイクルの構成を示すブロック図、図2は、一実施
例による圧縮機の制御方法を示すフローチャート、図3
は、他の実施例による圧縮機の制御方法を示すフローチ
ャート、図4は、一実施例による判定値及び判定領域を
示すグラフ、図5は、他の実施例による判定値及び判定
領域を示すグラフ、図6は、さらに他の実施例による判
定値及び判定領域を示すグラフ、図7は、一実施例によ
る膨張弁の制御方法を示すフローチャート、図8は、膨
張弁の判定値及び判定領域を示すグラフ、図9は、さら
に他の実施例による圧縮機の制御方法を示すフローチャ
ートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram illustrating a configuration of a refrigeration cycle according to one embodiment. FIG. 2 is a flowchart illustrating a control method of a compressor according to one embodiment.
Is a flowchart illustrating a control method of a compressor according to another embodiment, FIG. 4 is a graph illustrating a determination value and a determination region according to one embodiment, and FIG. 5 is a graph illustrating a determination value and a determination region according to another embodiment. 6, FIG. 6 is a graph showing a determination value and a determination region according to still another embodiment, FIG. 7 is a flowchart showing a control method of the expansion valve according to one embodiment, and FIG. FIG. 9 is a flowchart showing a compressor control method according to still another embodiment.

【0008】室外ユニット1は圧縮機81、四方弁6
1、室外熱交換器11、流量調整可能な室外膨張弁2
1、液タンク71、アキュムレータ91、圧力センサ4
1、温度センサ51および室外ファン31で構成されて
いる。冷房運転時は圧縮機81の吐出側と室外熱交換器
11の一端とが連通し、ガス配管121とアキュムレー
タ91とが連通し、暖房運転時は圧縮機81の吐出側と
ガス配管121とが連通し、アキュムレータ91と室外
熱交換器11の一端とが連通するようになっている。
室外熱交換器11の他端は室外膨張弁21、液タンク7
1を介して液配管111に結合されている。圧縮機81
の吐出側には圧力センサ41が取り付けられており、吐
出圧力が検知できようになっている。また、圧縮機の吐
出側には温度センサ51が取り付けられており、圧縮機
の吐出ガス温度が検知できようになっている。圧縮機8
1には周波数可変装置131から周波数が変化できる電
源が供給されている。また、電流センサ141によって
圧縮機へ供給される電源電流が検知出来るようになって
いる。
The outdoor unit 1 comprises a compressor 81, a four-way valve 6
1. Outdoor heat exchanger 11, Outdoor expansion valve 2 with adjustable flow rate
1, liquid tank 71, accumulator 91, pressure sensor 4
1. It comprises a temperature sensor 51 and an outdoor fan 31. During the cooling operation, the discharge side of the compressor 81 communicates with one end of the outdoor heat exchanger 11, and the gas pipe 121 communicates with the accumulator 91. During the heating operation, the discharge side of the compressor 81 communicates with the gas pipe 121. The accumulator 91 and one end of the outdoor heat exchanger 11 communicate with each other.
The other end of the outdoor heat exchanger 11 is connected to the outdoor expansion valve 21 and the liquid tank 7.
1 and connected to the liquid pipe 111. Compressor 81
A pressure sensor 41 is attached to the discharge side of the printer, so that the discharge pressure can be detected. A temperature sensor 51 is attached to the discharge side of the compressor so that the temperature of the gas discharged from the compressor can be detected. Compressor 8
1 is supplied with a power source whose frequency can be changed from a frequency variable device 131. Further, the power supply current supplied to the compressor can be detected by the current sensor 141.

【0009】圧力センサ41によって検知された吐出圧
力、温度センサ51によって検知された吐出ガス温度お
よび電流センサ141によって検知された圧縮機への電
源電流の情報は室外制御装置101に入力されている。
また、室外制御装置101は周波数可変装置131から
圧縮機へ供給する電源周波数を制御している。また、室
外膨張弁21および室内膨張弁22、23の弁開度も制
御している。室内ユニット2、3はそれぞれ室内熱交換
器12、13、流量調整可能な室内膨張弁22、23お
よび室内ファン32、33で構成されている。それぞれ
の室内熱交換器12、13の一端はガス配管121と結
合され、他端は室内膨張弁22、23と結合されてい
る。室内膨張弁22、23の他端は液配管111に結合
されている。室内ユニット2、3にはリモコン102、
103が取り付けられて、室内ユニット2、3の運転モ
ード、運転停止、温度設定などの制御を行うと共にに運
転状態も表示する。
Information on the discharge pressure detected by the pressure sensor 41, the discharge gas temperature detected by the temperature sensor 51, and the power supply current to the compressor detected by the current sensor 141 are input to the outdoor control device 101.
The outdoor control device 101 controls the power supply frequency supplied from the frequency variable device 131 to the compressor. Further, the valve opening of the outdoor expansion valve 21 and the indoor expansion valves 22 and 23 is also controlled. Each of the indoor units 2 and 3 includes indoor heat exchangers 12 and 13, indoor expansion valves 22 and 23 whose flow rates can be adjusted, and indoor fans 32 and 33, respectively. One end of each of the indoor heat exchangers 12 and 13 is connected to the gas pipe 121, and the other end is connected to the indoor expansion valves 22 and 23. The other ends of the indoor expansion valves 22 and 23 are connected to a liquid pipe 111. The indoor units 2 and 3 have a remote controller 102,
The control unit 103 is attached to control the operation mode, operation stop, temperature setting, and the like of the indoor units 2 and 3, and also displays the operation state.

【0010】次に、冷媒の流れを説明し、室内ユニット
2、3を冷房運転する場合について説明する。四方弁6
1は冷房モードになっている。圧縮機81から吐出され
た高圧ガス冷媒は四方弁61を通って室外熱交換器11
へ流れる。室外熱交換器11へ入った高圧ガス冷媒は室
外ファン31によって送風された室外空気と熱交換され
て凝縮し液冷媒となり、室外膨張弁11を通って液タン
ク71へ入る。液タンク71の液冷媒は液配管111を
通って、室内ユニット2、3に入り、それぞれの室内膨
張弁22、23で減圧されて、室内熱交換器12、13
に入り、それぞれの室内ファン32、33によって送風
された室内空気と熱交換されて蒸発しガス冷媒となる。
このときそれぞれの室内は冷房される。室内熱交換器1
2、13内のガス冷媒はガス配管121を通って室外ユ
ニット1へ入り、四方弁61およびアキュムレータ91
を通って圧縮機91に吸入される。
Next, the flow of the refrigerant will be described, and the case where the indoor units 2 and 3 perform the cooling operation will be described. Four-way valve 6
1 is in the cooling mode. The high-pressure gas refrigerant discharged from the compressor 81 passes through the four-way valve 61 and passes through the outdoor heat exchanger 11.
Flows to The high-pressure gas refrigerant that has entered the outdoor heat exchanger 11 exchanges heat with the outdoor air blown by the outdoor fan 31 and condenses into a liquid refrigerant, which passes through the outdoor expansion valve 11 and enters the liquid tank 71. The liquid refrigerant in the liquid tank 71 enters the indoor units 2 and 3 through the liquid pipe 111, and is decompressed by the respective indoor expansion valves 22 and 23, and the indoor heat exchangers 12 and 13
And heat exchange with the indoor air blown by the respective indoor fans 32 and 33 to evaporate to become a gas refrigerant.
At this time, each room is cooled. Indoor heat exchanger 1
The gas refrigerant in 2 and 13 enters the outdoor unit 1 through the gas pipe 121, and the four-way valve 61 and the accumulator 91
Through the compressor 91.

【0011】次に、室内ユニット2、3を暖房運転する
場合について説明する。四方弁61は暖房モードになっ
てあり、圧縮機81から吐出された高圧ガス冷媒は四方
弁61を通ってガス配管121へ流れる。ガス配管12
1を通った高圧ガス冷媒は室内ユニット2、3の室内熱
交換器12、13に入り、それぞれの室内ファン32、
33によって送風された室内空気と熱交換されて凝縮し
液冷媒となる。このときそれぞれの室内は暖房される。
液冷媒は室内膨張弁22、23、液配管111を通って
液タンク71に入る。液タンク71の液冷媒は室外膨張
弁11で減圧されて室外熱交換器11に入り、室外ファ
ン31によって送風された室外空気と熱交換されて蒸発
し低圧のガス状の冷媒となり、四方弁61およびアキュ
ムレータ91を通って圧縮機81に吸入される。
Next, the case where the indoor units 2 and 3 are operated for heating will be described. The four-way valve 61 is in the heating mode, and the high-pressure gas refrigerant discharged from the compressor 81 flows to the gas pipe 121 through the four-way valve 61. Gas piping 12
1 passes through the indoor heat exchangers 12 and 13 of the indoor units 2 and 3, and the respective indoor fans 32 and
The heat is exchanged with the room air blown by 33 and condensed to become a liquid refrigerant. At this time, each room is heated.
The liquid refrigerant enters the liquid tank 71 through the indoor expansion valves 22 and 23 and the liquid pipe 111. The liquid refrigerant in the liquid tank 71 is decompressed by the outdoor expansion valve 11 and enters the outdoor heat exchanger 11, where it exchanges heat with the outdoor air blown by the outdoor fan 31 and evaporates to become a low-pressure gaseous refrigerant. And is sucked into the compressor 81 through the accumulator 91.

【0012】次に、室外制御装置101の圧縮機の制御
方法について説明する。ステップS1で圧縮機の起動信
号が入力されるとステップS2で圧縮機の駆動周波数の
上限値Hzmax、下限値Hzminを設定し、ステッ
プS3で起動周波数を演算後、ステップS4で圧縮機を
起動周波数で起動する。ステップS5で圧縮機の運転状
態(吐出圧力、吐出ガス温度、圧縮機電流)を検出す
る。ステップS6で圧縮機の停止信号が入力されたかど
うかをチェックし、停止のときは圧縮機を停止させてス
テップS1へ戻る。停止信号が入力されていないときは
ステップS7で運転状態から圧縮機駆動周波数Hzを演
算し、前記周波数Hzが上限値Hzmaxと下限値Hz
minとの範囲に入るようにし、その周波数で圧縮機を
駆動する。
Next, a method of controlling the compressor of the outdoor control device 101 will be described. When the start signal of the compressor is inputted in step S1, the upper limit value Hzmax and the lower limit value Hzmin of the drive frequency of the compressor are set in step S2, the start frequency is calculated in step S3, and the start frequency is calculated in step S4. Start with In step S5, the operating state of the compressor (discharge pressure, discharge gas temperature, compressor current) is detected. At step S6, it is checked whether or not a stop signal of the compressor has been input. If the signal is stopped, the compressor is stopped and the process returns to step S1. If the stop signal has not been input, the compressor drive frequency Hz is calculated from the operation state in step S7, and the frequency Hz is set to the upper limit value Hzmax and the lower limit value Hz.
min, and the compressor is driven at that frequency.

【0013】ステップS8で圧縮機の圧縮機の運転状態
から異常をチェックし、異常がなければステップS5へ
戻り、ステップS5からステップS8を繰り返し実施す
る。なお、この繰り返しは所定の周期で行う。ステップ
S8で圧縮機に異常があるときはステップS9で圧縮機
を停止する。ステップS10で圧縮機の異常停止回数が
3回異常であれば修復できない異常と判断してステップ
S16で圧縮機異常をリモコンなどに表示して運転を禁
止する。異常停止回数が3回未満であればステップS1
1で圧縮機を3分間停止した後、ステップS12で圧縮
機の起動周波数を演算し、ステップS13で圧縮機の駆
動周波数の上限値Hzmax、下限値Hzminをステ
ップS2の設定範囲より縮小して設定する。ステップS
14で圧縮機を再起動するとともに、ステップS15で
圧縮機の運転容量範囲が縮小したことをリモコンなどに
表示し、ステップS5へ戻る。圧縮機の駆動周波数が高
いときは圧縮機の仕事量が増加するので圧縮機の負担が
大きく、モータや圧縮機構の故障の原因になる。また、
駆動周波数が低いときは軸受けの潤滑不良やモータ効率
の低下に焼損などの故障の原因になる。ステップS13
で圧縮機の駆動周波数を狭めたことで上記の故障原因が
緩和され圧縮機の故障が低減できる。
In step S8, an abnormality is checked from the operation state of the compressor. If there is no abnormality, the process returns to step S5, and steps S5 to S8 are repeatedly performed. This repetition is performed at a predetermined cycle. If there is an abnormality in the compressor in step S8, the compressor is stopped in step S9. If the number of abnormal stoppages of the compressor is three in step S10, it is determined that the abnormality cannot be repaired, and in step S16, the compressor is displayed on a remote controller or the like to prohibit operation. If the number of abnormal stops is less than three, step S1
After the compressor is stopped for 3 minutes in step 1, the starting frequency of the compressor is calculated in step S12, and the upper limit Hzmax and the lower limit Hzmin of the driving frequency of the compressor are set to be smaller than the setting range in step S2 in step S13. I do. Step S
At 14, the compressor is restarted, and at step S15, the fact that the operating capacity range of the compressor has been reduced is displayed on a remote controller or the like, and the process returns to step S5. When the driving frequency of the compressor is high, the workload of the compressor increases, so that the load on the compressor is large, which causes failure of the motor and the compression mechanism. Also,
When the driving frequency is low, the lubrication of the bearing may be poor, the motor efficiency may be reduced, and a failure such as burning may be caused. Step S13
By narrowing the driving frequency of the compressor, the cause of the above-described failure is alleviated, and the failure of the compressor can be reduced.

【0014】つぎに図3により他の実施例を説明する。
図3の制御方法と前述の図2の制御方法との違いはステ
ップS2、S7、S13、S15であり、他は図2と同
様である。ステップS2、S7、S13については図4
〜図6を用いて後で説明する。ステップS15は、図2
では圧縮機の運転容量範囲が縮小されたことを表示して
いたが、図3の実施例では第1の設定値が変更されたこ
とを表示している。
Next, another embodiment will be described with reference to FIG.
The difference between the control method in FIG. 3 and the control method in FIG. 2 described above is steps S2, S7, S13, and S15, and the other steps are the same as those in FIG. Steps S2, S7 and S13 are shown in FIG.
This will be described later with reference to FIG. Step S15 corresponds to FIG.
In FIG. 3, it is displayed that the operating capacity range of the compressor has been reduced, but in the embodiment of FIG. 3, it is displayed that the first set value has been changed.

【0015】次に、図3のステップS2、S7、S13
について説明する。図4は吐出圧力に対しての圧縮機制
御方法を示したものである。図3のステップS2で設定
する第1の判定値はPd1、Pd2でそれぞれ2.3M
Pa、2.5MPaで、圧縮機の運転状態が異常と判定
する第2の判定値Pdmax=2.7MPaより低い値
に設定されている。ステップS7の圧縮機周波数制御で
は、検出した吐出圧力PdがPd1より低ければ室内機
の運転容量に見合った周波数で圧縮機を駆動する。吐出
圧力PdがPd1より高ければ圧縮機の周波数を現在の
運転周波数より上昇させず、吐出圧力PdがPd2より
高ければ圧縮機の周波数を吐出圧力PdがPd2以下に
なるまで所定のスピードで強制的に減少させる。 第2
の判定値PdmaxはステップS8の圧縮機の異常判定
で用いるもので、吐出圧力PdがPdmax以上になっ
たら圧縮機異常と判断する。ステップS13の第1の判
定値変更では、 Pd1、Pd2をそれぞれ2.1MP
a、2.3MPaに変更している。これらの値はステッ
プS2で設定した値より第2の判定値Pdmaxに対し
て遠ざけた値になっている。吐出圧力の異常上昇は室内
外の空気温度が非常に高いときに発生しやすく、特に、
起動直後に第2の判定値を越えることが起きやすい。こ
れは起動時、吐出圧力が比較的はやく上昇し、第1の判
定値のPd2を越えたとき圧縮機周波数を減少させる
が、間に合わなく第2の判定値を越えてしますためであ
る。このような状態で圧縮機が異常と判定し停止させた
とき、第1の判定値を下げて自動復帰によって圧縮機を
再起動するので、次からは吐出圧力上昇時、吐出圧力が
低いときに第1の判定値にかかり、圧縮機周波数を減少
させて吐出圧力が第2の判定値を越えるのを防ぐことが
でき、圧縮機の異常停止回数が減る。
Next, steps S2, S7, S13 in FIG.
Will be described. FIG. 4 shows a compressor control method for the discharge pressure. The first determination values set in step S2 in FIG. 3 are Pd1 and Pd2, each being 2.3M.
At Pa and 2.5 MPa, the second determination value Pdmax for determining that the operating state of the compressor is abnormal is set to a value lower than 2.7 MPa. In the compressor frequency control in step S7, if the detected discharge pressure Pd is lower than Pd1, the compressor is driven at a frequency corresponding to the operating capacity of the indoor unit. If the discharge pressure Pd is higher than Pd1, the frequency of the compressor is not increased from the current operating frequency. If the discharge pressure Pd is higher than Pd2, the frequency of the compressor is forced at a predetermined speed until the discharge pressure Pd becomes equal to or lower than Pd2. To reduce. Second
The determination value Pdmax is used in the compressor abnormality determination in step S8. When the discharge pressure Pd becomes equal to or higher than Pdmax, it is determined that the compressor is abnormal. In the first determination value change in step S13, Pd1 and Pd2 are each set to 2.1MP.
a and 2.3 MPa. These values are values that are farther from the second determination value Pdmax than the values set in step S2. Abnormal rise in discharge pressure is likely to occur when the air temperature inside and outside the room is extremely high.
It is easy to exceed the second determination value immediately after the activation. This is because, at the time of startup, the discharge pressure rises relatively quickly, and when the discharge pressure exceeds the first judgment value Pd2, the compressor frequency is decreased, but the second judgment value is exceeded in time. When the compressor is determined to be abnormal and stopped in such a state, the first determination value is reduced and the compressor is restarted by automatic recovery, so that when the discharge pressure rises and when the discharge pressure is low, According to the first determination value, the compressor frequency can be reduced to prevent the discharge pressure from exceeding the second determination value, and the number of abnormal stoppages of the compressor decreases.

【0016】圧縮機周波数を減少させても吐出圧力が上
昇するときは膨張弁閉塞などの不具合が想定され、この
ようなときは図3のステップS10の異常停止3回以上
の判定で運転をやめるので、圧縮機の故障が防止でき
る。また、第1の判定値を変更したことを図3のステッ
プS15でリモコンなどに表示するので、圧縮機の運転
が抑制されていることをサービスマンに知らせることが
できる。また、室内外の空気温度がそれほど高くないと
きは、第1の判定値を変更してしなくても第2の判定値
を越えることは少ないので、圧縮機運転容量の減少はな
い。
If the discharge pressure rises even if the compressor frequency is reduced, a malfunction such as an expansion valve blockage is assumed. In such a case, the operation is stopped by judging three or more abnormal stops in step S10 in FIG. Therefore, failure of the compressor can be prevented. Further, since the fact that the first determination value has been changed is displayed on the remote controller or the like in step S15 in FIG. 3, it is possible to notify the serviceman that the operation of the compressor is suppressed. In addition, when the indoor and outdoor air temperatures are not so high, the compressor operating capacity does not decrease because the second determination value is rarely exceeded without changing the first determination value.

【0017】図5により圧縮機電流に対しての圧縮機制
御方法を説明する。図3のステップS2で設定する第1
の判定値はI1、I2でそれぞれ26A、28Aで、圧
縮機の運転状態が異常と判定する第2の判定値Imax
=30Aより低い値に設定されている。ステップS7の
圧縮機周波数制御では、検出した圧縮機電流IがI1よ
り低ければ室内機の運転容量に見合った周波数で圧縮機
を駆動する。圧縮機電流IがI1より高ければ圧縮機の
周波数を現在の運転周波数より上昇させず、圧縮機電流
IがI2より高ければ圧縮機の周波数を圧縮機電流Iが
I2以下になるまで所定のスピードで強制的に減少させ
る。
Referring to FIG. 5, a method for controlling the compressor with respect to the compressor current will be described. The first set in step S2 of FIG.
The determination values of I1 and I2 are 26A and 28A, respectively, and the second determination value Imax for determining that the operating state of the compressor is abnormal.
= 30 A is set to a lower value. In the compressor frequency control of step S7, if the detected compressor current I is lower than I1, the compressor is driven at a frequency corresponding to the operating capacity of the indoor unit. If the compressor current I is higher than I1, the frequency of the compressor is not increased from the current operating frequency. If the compressor current I is higher than I2, the frequency of the compressor is increased to a predetermined speed until the compressor current I becomes equal to or lower than I2. To forcibly decrease.

【0018】第2の判定値ImaxはステップS8の圧
縮機の異常判定で用いるもので、圧縮機電流IがIma
x以上になったら圧縮機異常と判断する。ステップS1
3の第1の判定値変更では、I1、I2をそれぞれ23
A、25Aに変更している。これらの値はステップS2
で設定した値より第2の判定値Imaxに対して遠ざけ
た値になっている。
The second judgment value Imax is used in the compressor abnormality judgment in step S8.
When it becomes x or more, it is determined that the compressor is abnormal. Step S1
In the first determination value change of 3, I1 and I2 are each set to 23
A, 25A. These values are stored in step S2.
The value is set farther from the second determination value Imax than the value set in.

【0019】つぎに図6により吐出温度に対しての圧縮
機制御方法を説明する。図3のステップS2で設定する
第1の判定値はTd1、Td2でそれぞれ105℃、1
15℃で、圧縮機の運転状態が異常と判定する第2の判
定値Tdmax=130℃より低い値に設定されてい
る。ステップS7の圧縮機周波数制御では、検出した吐
出温度TdがTd1より低ければ室内機の運転容量に見
合った周波数で圧縮機を駆動する。吐出温度TdがTd
1より高ければ圧縮機の周波数を現在の運転周波数より
上昇させず、吐出温度TdがTd2より高ければ圧縮機
の周波数をTd2以下になるまで所定のスピードで強制
的に減少させる。第2の判定値TdmaxはステップS
8の圧縮機の異常判定で用いるもので、吐出温度Tdが
Tdmax以上になったら圧縮機異常と判断する。ステ
ップS13の第1の判定値変更では、 Td1、Td2
をそれぞれ90℃、100℃に変更している。これらの
値はステップS2で設定した値より第2の判定値Tdm
axに対して遠ざけた値になっている。
Next, a compressor control method for the discharge temperature will be described with reference to FIG. The first determination values set in step S2 in FIG. 3 are Td1 and Td2 at 105 ° C. and 1
At 15 ° C., the second determination value Tdmax for determining that the operating state of the compressor is abnormal is set to a value lower than 130 ° C. In the compressor frequency control of step S7, if the detected discharge temperature Td is lower than Td1, the compressor is driven at a frequency corresponding to the operating capacity of the indoor unit. Discharge temperature Td is Td
If it is higher than 1, the frequency of the compressor is not raised from the current operating frequency, and if the discharge temperature Td is higher than Td2, the frequency of the compressor is forcibly reduced at a predetermined speed until it becomes lower than Td2. The second determination value Tdmax is determined in step S
This is used in the abnormality determination of the compressor No. 8, and when the discharge temperature Td becomes equal to or higher than Tdmax, it is determined that the compressor is abnormal. In the first determination value change in step S13, Td1, Td2
Are changed to 90 ° C. and 100 ° C., respectively. These values are the second determination values Tdm from the values set in step S2.
This value is far from ax.

【0020】つぎに、図7により膨張弁の制御方法を説
明する。図7の制御方法と前述の図3の圧縮機の制御方
法との違いはステップS2、S3、S7、S12、S1
3であり、他は図3と同様である。ステップS2、S
7、S13については図8を用いて後で説明する。ステ
ップS3、S12では、圧縮機起動時の膨張弁開度を設
定している。
Next, a control method of the expansion valve will be described with reference to FIG. The difference between the control method of FIG. 7 and the control method of the compressor of FIG. 3 is that steps S2, S3, S7, S12, S1.
3 and the others are the same as FIG. Step S2, S
Steps S7 and S13 will be described later with reference to FIG. In steps S3 and S12, the expansion valve opening at the time of starting the compressor is set.

【0021】次に、図7のステップS2、S7、S13
について説明する。図8は暖房時の吐出温度に対しての
室外膨張弁制御方法を示したものである。図7のステッ
プS2で設定する第1の判定値はTd3で110℃で、
圧縮機の運転状態が異常と判定する第2の判定値Tdm
ax=130℃より低い値に設定されている。S7の膨
張弁開度制御では、検出した吐出温度TdがTd3より
低ければ吐出温度が目標値になるように膨張弁開度を制
御する。吐出温度TdがTd3より高ければ膨張弁開度
をTd3以下になるまで1分毎に5%アップする。
Next, steps S2, S7 and S13 in FIG.
Will be described. FIG. 8 shows a method of controlling the outdoor expansion valve with respect to the discharge temperature during heating. The first determination value set in step S2 of FIG.
Second determination value Tdm for determining that the operating state of the compressor is abnormal
ax is set to a value lower than 130 ° C. In the expansion valve opening control of S7, if the detected discharge temperature Td is lower than Td3, the expansion valve opening is controlled so that the discharge temperature becomes a target value. If the discharge temperature Td is higher than Td3, the expansion valve opening is increased by 5% every minute until it becomes equal to or lower than Td3.

【0022】第2の判定値TdmaxはS8の圧縮機の
異常判定で用いるもので、吐出温度TdがTdmax以
上になったら異常と判断する。S13の第1の判定値変
更では、Td3を95℃に変更している。この値はS2
で設定した値より第2の判定値Tdmaxに対して遠ざ
けた値になっている。
The second determination value Tdmax is used in the abnormality determination of the compressor in S8. When the discharge temperature Td becomes equal to or higher than Tdmax, it is determined that there is an abnormality. In the first determination value change in S13, Td3 is changed to 95 ° C. This value is S2
The value is set farther from the second determination value Tdmax than the value set in.

【0023】図9において、圧縮機の制御方法のさらに
他の実施例を説明する。図2の制御方法との違いはステ
ップS13で圧縮機の運転周波数を30Hzに限定した
点である。他は図2と同様である。これによって、室内
機の能力は減少するが、圧縮機の負荷は減少し、運転継
続が可能になる。
Referring to FIG. 9, still another embodiment of the control method of the compressor will be described. The difference from the control method of FIG. 2 is that the operation frequency of the compressor is limited to 30 Hz in step S13. Others are the same as FIG. As a result, the capacity of the indoor unit is reduced, but the load on the compressor is reduced, and the operation can be continued.

【0024】[0024]

【発明の効果】本発明によれば、運転環境の変化によっ
て圧縮機が異常状態になりやすい場合だけ圧縮機の保護
を早めに働かせて圧縮機の能力を抑制し、圧縮機の異常
運転による停止回数を減少させることができる。他の場
合は圧縮機の能力を抑制することがなく、圧縮機の能力
を十分発揮する事が出来る。よって、運転異常時の停止
回数を減少させた空気調和機を得ることができる。
According to the present invention, only when the compressor is likely to be in an abnormal state due to a change in the operating environment, the protection of the compressor is activated early to suppress the capacity of the compressor, and the compressor is stopped due to abnormal operation. The number of times can be reduced. In other cases, the capacity of the compressor can be fully exhibited without suppressing the capacity of the compressor. Therefore, it is possible to obtain an air conditioner in which the number of stops at the time of abnormal operation is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の冷凍サイクル構成図。FIG. 1 is a configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】本発明の圧縮機制御の一実施例のフローチャー
ト。
FIG. 2 is a flowchart of one embodiment of compressor control according to the present invention.

【図3】本発明の圧縮機制御の他の実施例のフローチャ
ート。
FIG. 3 is a flowchart of another embodiment of the compressor control of the present invention.

【図4】本発明の圧縮機制御の実施例の説明図。FIG. 4 is an explanatory diagram of an embodiment of compressor control according to the present invention.

【図5】本発明の圧縮機制御の他の実施例の説明図。FIG. 5 is an explanatory diagram of another embodiment of the compressor control of the present invention.

【図6】本発明の圧縮機制御のさらに他の実施例の説明
図。
FIG. 6 is an explanatory diagram of still another embodiment of the compressor control of the present invention.

【図7】本発明の膨張弁制御の実施例のフローチャー
ト。
FIG. 7 is a flowchart of an embodiment of expansion valve control according to the present invention.

【図8】本発明の膨張弁制御の実施例の説明図。FIG. 8 is an explanatory diagram of an embodiment of expansion valve control according to the present invention.

【図9】本発明の圧縮機制御のさらに他の実施例のフロ
ーチャート。
FIG. 9 is a flowchart of still another embodiment of the compressor control according to the present invention.

【符号の説明】[Explanation of symbols]

1…室外ユニット、 2、3…室内ユニット、11…室
外熱交換器、12、13…室内熱交換器、21…室外膨
張弁、 22、23…室内膨張弁、31…室外ファン、
32、33…室内ファン、41…圧力センサ、51…温
度センサ、61…四方弁、71…液タンク、81…圧縮
機、91…アキュムレータ、101…室外制御装置、1
02、103…リモコン、111…液配管、121…ガ
ス配管、131…周波数可変装置、141…電流セン
サ、
DESCRIPTION OF SYMBOLS 1 ... outdoor unit, 2, 3 ... indoor unit, 11 ... outdoor heat exchanger, 12, 13 ... indoor heat exchanger, 21 ... outdoor expansion valve, 22, 23 ... indoor expansion valve, 31 ... outdoor fan,
32, 33 ... indoor fan, 41 ... pressure sensor, 51 ... temperature sensor, 61 ... four-way valve, 71 ... liquid tank, 81 ... compressor, 91 ... accumulator, 101 ... outdoor control device, 1
02, 103 remote controller, 111 liquid pipe, 121 gas pipe, 131 frequency variable device, 141 current sensor,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 康孝 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 佐藤 敬治 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 吉田 悟 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 中村 憲一 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yasutaka Yoshida 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd. (72) Inventor Keiji Sato 390 Muramatsu, Shimizu-shi, Shizuoka Air Conditioning System Business, Hitachi, Ltd. Inside (72) Inventor Satoru Yoshida 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd. (72) Inventor Kenichi Nakamura 390 Muramatsu, Shimizu-shi, Shizuoka Inside Air Conditioning Systems Division, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室外熱交換器、膨張機構および室
内熱交換器を配管で接続した冷凍サイクルを備えた空気
調和機において、 前記冷凍サイクルの運転状態を検出する運転状態検出手
段と、 前記運転状態検出手段によって検出される値によって前
記圧縮機を第1の容量制御範囲で前記圧縮機を制御する
手段と、 前記冷凍サイクルの運転状態が異常と判断して前記圧縮
機を停止する手段と、 停止後、前記圧縮機が再起動されたときは前記第1の容
量制御範囲よりも小さい第2の容量制御範囲で前記圧縮
機を制御する手段とを備えたことを特徴とする空気調和
機。
1. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected by piping, an operation state detection means for detecting an operation state of the refrigeration cycle; Means for controlling the compressor in a first capacity control range based on a value detected by the operating state detecting means; means for determining that the operating state of the refrigeration cycle is abnormal and stopping the compressor. Means for controlling the compressor in a second displacement control range smaller than the first displacement control range when the compressor is restarted after stopping. Machine.
【請求項2】圧縮機、室外熱交換器、膨張機構および室
内熱交換器を配管で接続した冷凍サイクルを備えた空気
調和機において、 前記冷凍サイクルの運転状態を検出する運転状態検出手
段と、 前記運転状態検出手段によって検出される第1の判定値
または判定領域によって前記運転状態が異常状態に近づ
いていると判定する手段と、 前記運転状態検出手段によって検出される第2の判定値
または判定領域によって前記運転状態が異常であると判
定する手段と、 前記運転状態が前記第1の判定値または判定領域になっ
たとき前記圧縮機の運転容量または前記膨張機構を制御
し、前記運転状態が第2の判定値または判定領域になっ
たとき圧縮機を停止する手段と、 停止後、前記圧縮機が再起動されたときは第1の判定値
または判定領域よりも小さい値で第3の判定値または判
定領域及び第2の判定値または判定領域よりも小さい値
で第4の判定値または判定領域を定める手段とを備えた
ことを特徴とする空気調和機。
2. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected by piping, an operation state detection means for detecting an operation state of the refrigeration cycle, Means for determining that the operating state is approaching an abnormal state based on a first determination value or determination area detected by the operating state detecting means; a second determination value or determination detected by the operating state detecting means Means for determining that the operating state is abnormal depending on the region; controlling the operating capacity of the compressor or the expansion mechanism when the operating state has reached the first determination value or the determination region; Means for stopping the compressor when the second determination value or the determination area is reached; and when the compressor is restarted after the stop, the first determination value or the determination area becomes lower than the first determination value or the determination area. An air conditioner characterized by comprising a third determination value or determination area and the second determination value or a value smaller than the determination area fourth determination value or defining the determination area means again values.
JP28339897A 1997-10-16 1997-10-16 Air conditioner Expired - Fee Related JP3438551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28339897A JP3438551B2 (en) 1997-10-16 1997-10-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28339897A JP3438551B2 (en) 1997-10-16 1997-10-16 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11118227A true JPH11118227A (en) 1999-04-30
JP3438551B2 JP3438551B2 (en) 2003-08-18

Family

ID=17665012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28339897A Expired - Fee Related JP3438551B2 (en) 1997-10-16 1997-10-16 Air conditioner

Country Status (1)

Country Link
JP (1) JP3438551B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2007147184A (en) * 2005-11-29 2007-06-14 Okamura Corp Centralized control system of freezing/refrigerating facility equipped with multiple showcases
JP2009243786A (en) * 2008-03-31 2009-10-22 Toshiba Corp Refrigerator
JP2012107861A (en) * 2012-02-29 2012-06-07 Toshiba Corp Refrigerator
JP2013170717A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
JP2017026227A (en) * 2015-07-23 2017-02-02 株式会社デンソー Water heater
CN107367094A (en) * 2016-05-11 2017-11-21 艾默生环境优化技术(苏州)有限公司 Control device and method for frequency converter of air conditioning system
JP2020034250A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2007147184A (en) * 2005-11-29 2007-06-14 Okamura Corp Centralized control system of freezing/refrigerating facility equipped with multiple showcases
JP2009243786A (en) * 2008-03-31 2009-10-22 Toshiba Corp Refrigerator
JP2013170717A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
JP2012107861A (en) * 2012-02-29 2012-06-07 Toshiba Corp Refrigerator
JP2017026227A (en) * 2015-07-23 2017-02-02 株式会社デンソー Water heater
CN107367094A (en) * 2016-05-11 2017-11-21 艾默生环境优化技术(苏州)有限公司 Control device and method for frequency converter of air conditioning system
JP2020034250A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device

Also Published As

Publication number Publication date
JP3438551B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
EP2102569B1 (en) Methods and systems for controlling an air conditioning system operating in free cooling mode
EP3872422B1 (en) Air conditioning system, and method and device for controlling air conditioning system
CN107429950B (en) Heat pump
CN110234944B (en) Refrigeration system
JP3221232B2 (en) Heat pump refrigeration system
JP4475660B2 (en) Refrigeration equipment
JP3445861B2 (en) Air conditioner
JPH11118227A (en) Air conditioner
JP6146606B2 (en) Air conditioner
KR100814956B1 (en) Multi Air-Conditioner and its Compressor control method
JP2007212023A (en) Air conditioning system
JPH0571822A (en) Air-conditioner
WO2018003094A1 (en) Air conditioner
JP2003042520A (en) Air conditioning apparatus, and control method for its operation
JPH07120091A (en) Air conditioner
JP3481076B2 (en) Operation control device for air conditioner
JPH04273949A (en) Refrigerating cycle device
KR20000073045A (en) Expansion apparatus trouble sensing method for air conditioner
JPH0674621A (en) Air conditioner
JP3420652B2 (en) Air conditioner
JPH11153366A (en) Starting control device for refrigerating apparatus
JPH0571832A (en) Air-conditioner
JP2508528Y2 (en) Air conditioner
JPS62213669A (en) Method of controlling operation of air conditioner
JP3613862B2 (en) Air conditioner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees