JPH11116792A - Polyelectrolyte and secondary battery prepared by using the same - Google Patents

Polyelectrolyte and secondary battery prepared by using the same

Info

Publication number
JPH11116792A
JPH11116792A JP9288236A JP28823697A JPH11116792A JP H11116792 A JPH11116792 A JP H11116792A JP 9288236 A JP9288236 A JP 9288236A JP 28823697 A JP28823697 A JP 28823697A JP H11116792 A JPH11116792 A JP H11116792A
Authority
JP
Japan
Prior art keywords
group
compound
polymer
polymer electrolyte
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9288236A
Other languages
Japanese (ja)
Other versions
JP3045120B2 (en
Inventor
Yutaka Sakauchi
裕 坂内
Kimisuke Amano
公輔 天野
Hiroshi Yagata
弘志 屋ヶ田
Etsuo Hasegawa
悦雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9288236A priority Critical patent/JP3045120B2/en
Publication of JPH11116792A publication Critical patent/JPH11116792A/en
Application granted granted Critical
Publication of JP3045120B2 publication Critical patent/JP3045120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polyeletrolyte having a high ionic conductivity by adding an ionic compd. to a high-molecular compd. obtd. by copolymerizing an alkylene oxide deriv. having substituents derived from a liq. crystal compd. with another alkylene oxide deriv. SOLUTION: This polyelectrolyte is prepd. by adding 0.1-2 mol of an ionic compd. soluble in a nonaq. org. solvent and a specified amt. of a plasticizer (e.g. propylene carbonate) to 1 kg of a polymer compd. obtd. by copolymerizing an alkylene oxide deriv. of formula I having liq.-crystalline substituents with an alkylene oxide deriv. of fomrula II in a ratio of (1/1)=-(1/50). The ionic compd. is a salt of a metal of the group 1 or 2 of the periodic table, pref. examples being LiClO4 , LiAsF6 , and LiCF3 SO3 . In the formulas, A is a substituent of formula III (wherein W and Y are each a homocyclic compd.; X is alkylene or the like; and Z is alkyl or the like); and R is alkyl, fluoroalkyl, or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質に関
わり、電池等の電気化学デバイス用材料として有用な高
分子電解質、及びこれを用いた二次電池に関するもので
ある。
The present invention relates to a polymer electrolyte, and more particularly to a polymer electrolyte useful as a material for an electrochemical device such as a battery, and a secondary battery using the same.

【0002】[0002]

【従来の技術】近年、情報化時代の到来に伴いマルチメ
ディア技術が急速に発展し、エレクトロニクス製品の高
性能化、ポータブル化に対する要求が強く、そのエネル
ギー源である電池にも同様の要求があり、小型・軽量・
薄型で且つ高容量・高エネルギー密度を有する新しい電
池の研究・開発が盛んに行われている。
2. Description of the Related Art In recent years, multimedia technology has rapidly developed with the advent of the information age, and there is a strong demand for higher performance and portable electronic products. , Small size, light weight,
Research and development of a new battery that is thin and has a high capacity and a high energy density has been actively conducted.

【0003】1990年代初頭、リチウムイオン二次電
池が商品化された。リチウムイオン二次電池は、金属酸
化物を正極、炭素材料を負極に用い、正極−負極間にセ
パレータと電解液を挟んだ構造を持っており、高エネル
ギー密度を有する二次電池である。しかし、電解液を使
用するため、液漏れの問題があり、安全性に課題を残
し、且つ液漏れ防止のために金属缶を外装とする必要が
あり、軽量化等が困難であった。
[0003] In the early 1990's, lithium ion secondary batteries were commercialized. A lithium ion secondary battery is a secondary battery having a high energy density, having a structure in which a metal oxide is used for a positive electrode, a carbon material is used for a negative electrode, and a separator and an electrolytic solution are sandwiched between the positive electrode and the negative electrode. However, since an electrolytic solution is used, there is a problem of liquid leakage, leaving a problem in safety, and it is necessary to provide a metal can as an exterior for preventing liquid leakage, and it has been difficult to reduce the weight.

【0004】Armand等は、電解液に替わるものと
してポリアルキレンオキサイドにアルカリ金属、または
アルカリ土類金属塩を溶解した固体電解質(米国特許第
4303748号、1981年)を提案をした。しか
し、代表的なポリアルキレンオキサイドであるポリエチ
レンオキサイドまたはポリプロピレンオキサイド等は、
イオン伝導度が不十分であり、正極、及び負極との接触
抵抗が高いため、いまだ採用されていない(K.Mur
ata、Electrochimica Acta、V
ol.40、No.13−14、p2177−218
4、1995)。
[0004] Armand et al. Proposed a solid electrolyte (US Pat. No. 4,303,748, 1981) in which an alkali metal or alkaline earth metal salt was dissolved in a polyalkylene oxide as an alternative to the electrolytic solution. However, typical polyalkylene oxide such as polyethylene oxide or polypropylene oxide,
It has not been adopted yet because of insufficient ionic conductivity and high contact resistance with the positive electrode and the negative electrode (K. Mur
ata, Electrochimica Acta, V
ol. 40, no. 13-14, p2177-218
4, 1995).

【0005】この問題を解決するために、溝口等は、比
誘電率4以上の有機高分子化合物及びその化合物に対し
て優れた溶解性を示す有機溶媒からなるイオン伝導性固
形体組成物(特公昭61−23945号公報、特公昭6
1−23947号公報)を提案した。この種の電解質は
ゲル電解質と総称されるが、固体状態でもあるため、従
来の固体電解質と混同され固体電解質と呼ばれる場合も
ある。ゲル電解質の力学的強度はマトリックスとなる高
分子化合物に依存し、高イオン伝導性は高分子化合物に
分子レベルで包含された溶液部分に依ると考えられ、マ
トリックスとなる高分子化合物の材料設計が重要とな
る。溝口等の提案に対し、次に記すように種々の改善が
なされている。
[0005] In order to solve this problem, Mizoguchi et al. Disclosed an ion-conductive solid composition comprising an organic polymer compound having a relative dielectric constant of 4 or more and an organic solvent exhibiting excellent solubility in the compound. JP-B-61-23945, JP-B-6-23
No. 1-23947). Although this kind of electrolyte is generally called a gel electrolyte, it is also in a solid state, so it is sometimes confused with a conventional solid electrolyte and called a solid electrolyte. It is considered that the mechanical strength of the gel electrolyte depends on the polymer compound serving as the matrix, and the high ionic conductivity depends on the solution portion included at the molecular level in the polymer compound. It becomes important. Various improvements have been made to the proposal by Mizoguchi and others as described below.

【0006】Gozdz等は、フッ化ビニリデンと8−
25重量%のヘキサフルオロプロピレンとの共重合体に
リチウム塩を溶解した非水系電解質溶液を含浸させた高
分子ゲル電解質(米国特許第5429891号、199
5年)を提案した。
Gozdz et al. Disclose vinylidene fluoride and 8-
Polymer gel electrolyte obtained by impregnating a non-aqueous electrolyte solution in which a lithium salt is dissolved in a copolymer with 25% by weight of hexafluoropropylene (US Pat. No. 5,429,891, 199)
5 years).

【0007】Lee等は、アクリレート末端基、または
アクリレート側鎖を有する低分子量のアルキレンオキサ
イド架橋体に、高沸点で極性の高い有機溶媒とアルカリ
金属塩との溶液を分散した高分子ゲル電解質(米国特許
第4830939号、1989年)を提案した。
Lee et al. Disclose a polymer gel electrolyte (US) in which a solution of an organic solvent having a high boiling point and a high polarity and an alkali metal salt is dispersed in a crosslinked product of a low molecular weight alkylene oxide having an acrylate terminal group or an acrylate side chain. Patent No. 4830939, 1989).

【0008】また、フシュ等は、ポリシロキサンを主鎖
とし、側鎖にオリゴオキシエチレンをスペーサとして液
晶を導入した高分子固体電解質(日本特許第18974
80号、1995年)を提案した。
Fusch et al. Disclose a polymer solid electrolyte in which a liquid crystal is introduced using polysiloxane as a main chain and oligooxyethylene as a spacer in a side chain (Japanese Patent No. 18974).
No. 80, 1995).

【0009】[0009]

【発明が解決しようとする課題】高分子ゲル電解質の使
用は、イオン伝導度の向上ばかりでなく、電解質−電極
間の接触抵抗の低減が見込まれ、本格的な実用化が期待
されるが、未だ幾つかの課題を残している。Gozdz
等が提案した高分子ゲル電解質(上記米国特許第542
9891号、1995年)は、溝口等のイオン伝導性固
形体組成物と対比し、約1桁高いイオン伝導度を達成し
ており、加工性、力学的強度にも優れているが、高温時
の電解液保持性が必ずしも十分ではない。高分子ゲル電
解質における高イオン伝導性の達成には、できるだけ多
量の電解液を電解質に含浸させることが必要となるが、
高温時の液漏れ発生の懸念が増し、高分子ゲル電解質使
用のメリットが減少する。
The use of a polymer gel electrolyte is expected not only to improve the ionic conductivity but also to reduce the contact resistance between the electrolyte and the electrode. There are still some issues left. Gozdz
Et al. Proposed a polymer gel electrolyte (see US Pat.
No. 9891, 1995) achieves an ionic conductivity that is about one order of magnitude higher than ion conductive solid compositions such as Mizonokuchi, and is excellent in workability and mechanical strength. Is not always sufficient. In order to achieve high ionic conductivity in the polymer gel electrolyte, it is necessary to impregnate the electrolyte with as much electrolyte solution as possible.
Concerns about the occurrence of liquid leakage at high temperatures are increased, and the merits of using a polymer gel electrolyte are reduced.

【0010】アルキレンオキサイド架橋体は、力学的特
性が必ずしも十分ではなく、架橋体の製造に際して、電
解質溶液を含むマトリックス高分子前駆体に対し電子線
や紫外線などの照射を行い十分に架橋反応させると、こ
れに伴う副反応が進行するという課題を残し、実用的に
は未だ数々の問題点を抱えている。
The crosslinked alkylene oxide does not always have sufficient mechanical properties. When a crosslinked product is produced, a matrix polymer precursor containing an electrolyte solution is irradiated with an electron beam or ultraviolet light to cause a sufficient crosslink reaction. However, there remains a problem that a side reaction accompanying this progresses, and there are still many problems in practical use.

【0011】側鎖液晶導入型ポリシロキサンは、主鎖で
あるポリシロキサン骨格が加水分解し易く、またカチオ
ンの輸率が低いという問題点がある。
The side-chain liquid crystal-introduced polysiloxane has problems that the polysiloxane skeleton, which is the main chain, is easily hydrolyzed and the cation transport number is low.

【0012】本発明の課題は、上記諸問題点を解決し得
る電解質、特に高イオン伝導性と優れた力学的強度の両
立した電解質を得ることにあり、またこの電解質を応用
してエレクトロニクス製品の高機能化、ポータブル化に
対処し得る薄型且つ高容量の二次電池の創出を目的とす
る。
An object of the present invention is to provide an electrolyte which can solve the above-mentioned problems, in particular, an electrolyte having both high ionic conductivity and excellent mechanical strength, and applying this electrolyte to electronic products. An object is to create a thin and high-capacity secondary battery capable of coping with high functionality and portability.

【0013】[0013]

【課題を解決するための手段】本発明によれば、ポリエ
チレンオキサイド主鎖に強い凝集性を有する側鎖として
液晶性化合物を導入することにより、高イオン伝導性と
優れた力学的強度が両立した高分子電解質が得られる。
更にこの電解質を二次電池の構成要素に応用することに
より、高エネルギー密度を有し、且つ小型、軽量、薄型
の二次電池が提供される。
According to the present invention, by introducing a liquid crystalline compound as a side chain having strong cohesiveness into a polyethylene oxide main chain, both high ionic conductivity and excellent mechanical strength are achieved. A polymer electrolyte is obtained.
Further, by applying this electrolyte to constituent elements of a secondary battery, a small, lightweight, and thin secondary battery having a high energy density is provided.

【0014】即ち本発明は、液晶性化合物が側鎖Aとし
て導入された高分子化合物と、非水系有機溶媒に可溶な
イオン性化合物からなる高分子固体電解質、または、液
晶性化合物が側鎖として導入された高分子化合物、非水
系有機溶媒に可溶なイオン性化合物及び可塑剤からなる
高分子ゲル電解質の発明であり、更に、前記高分子電解
質を用いた二次電rの発明である。
That is, the present invention provides a polymer solid electrolyte composed of a polymer compound having a liquid crystal compound introduced as a side chain A and an ionic compound soluble in a non-aqueous organic solvent, or a liquid crystal compound having a side chain The invention is a polymer gel electrolyte comprising a polymer compound introduced as a non-aqueous organic solvent, an ionic compound soluble in a non-aqueous organic solvent, and a plasticizer, and is a invention of a secondary electrode r using the polymer electrolyte. .

【0015】本発明に用いる液晶性側鎖Aとなる化合物
は、液晶を生じるものであれば、特に限定されない。但
し、例えば下記の一般式化3で示される構造を有する化
合物は、剛直な構造を有する化合物または強い凝集性を
有する化合物であり、高分子電解質の力学的強度を示現
するために好ましい。
The compound serving as the liquid crystalline side chain A used in the present invention is not particularly limited as long as it produces liquid crystal. However, for example, a compound having a structure represented by the following general formula 3 is a compound having a rigid structure or a compound having strong cohesiveness, and is preferable for exhibiting the mechanical strength of a polymer electrolyte.

【0016】[0016]

【化4】 Embedded image

【0017】化3式においてW、Yは、同素環式化合物
または複素環式化合物であり、同一または異なっていて
も良く、置換基を有していても良い。Xは、アルキレン
基、ビニレン基、エチニレン基、カルボキシル基、アゾ
メチン基、アゾ基、アゾキシ基であり、またはXが存在
せずにWとYとが直接結合していても良い。Zは、アル
キル基、アルコキシ基、フルオロアルキル基、フルオロ
アルコキシ基、アリール基、ハロゲンまたは水素であ
る。
In formula 3, W and Y are homocyclic compounds or heterocyclic compounds, which may be the same or different, and may have a substituent. X is an alkylene group, a vinylene group, an ethynylene group, a carboxyl group, an azomethine group, an azo group, an azoxy group, or W and Y may be directly bonded without X. Z is an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, halogen or hydrogen.

【0018】同素環式化合物からなる基の例としては、
シクロヘキシル、フェニル、ビフェニル、ナフチル基
等、また複素環式化合物からなる基の例としては、ピリ
ジル、ピリミジル、ジオキサニル基、チオフェン残基等
が挙げられるが、これらに限定されるものではない。
Examples of the group consisting of the homocyclic compound include:
Examples of the group consisting of cyclohexyl, phenyl, biphenyl, naphthyl and the like, and a group consisting of a heterocyclic compound include, but are not limited to, pyridyl, pyrimidyl, dioxanyl group, thiophene residue and the like.

【0019】上記の液晶性側鎖を有する本発明の高分子
化合物は、従来知られているエポキシ化合物の開環重合
法により得ることができる。例えば、前記液晶性置換基
Aを有するアルキレンオキサイド誘導体モノマーと他の
アルキレンオキサイド誘導体モノマーとを従来知られて
いる開環重合触媒を用いて所定の配合比で共重合させる
ことにより合成することができるが、これに限定される
ものではない。配合比は、液晶性化合物を有するアルキ
レンオキサイド単位が他のアルキレンオキサイド単位に
対して1:1から1:50である。この範囲外では、液
晶性化合物を有するアルキレンオキサイド単位が少ない
場合は、高分子電解質の力学的強度が低下し、多い場合
は、イオン伝導性が低下する。両者のバランスが特に好
ましいのは、1:5から1:30の範囲である。
The polymer compound of the present invention having the above-mentioned liquid crystalline side chain can be obtained by a conventionally known ring-opening polymerization method of an epoxy compound. For example, it can be synthesized by copolymerizing the alkylene oxide derivative monomer having the liquid crystalline substituent A and another alkylene oxide derivative monomer at a predetermined compounding ratio using a conventionally known ring-opening polymerization catalyst. However, the present invention is not limited to this. The mixing ratio is such that the alkylene oxide unit having the liquid crystal compound is 1: 1 to 1:50 with respect to other alkylene oxide units. Outside this range, when the number of alkylene oxide units having a liquid crystal compound is small, the mechanical strength of the polymer electrolyte is reduced, and when it is large, the ion conductivity is reduced. Particularly preferred is a balance between 1: 5 and 1:30.

【0020】本発明に用いる液晶性置換基を有するアル
キレンオキサイド誘導体モノマーは一般的には従来知ら
れているグリシジルエーテル類の製造方法を応用するこ
とにより得られる。例えば、エピハロヒドリンと末端を
水酸基で置換した液晶性化合物とをアルカリ金属水酸化
物を用いて反応させることにより合成することができる
が、これに限定されるものではない。
The alkylene oxide derivative monomer having a liquid crystalline substituent used in the present invention can be generally obtained by applying a conventionally known method for producing glycidyl ethers. For example, the compound can be synthesized by reacting epihalohydrin with a liquid crystal compound having a terminal substituted with a hydroxyl group using an alkali metal hydroxide, but is not limited thereto.

【0021】また、開環重合触媒としては、塩基性触媒
(例えば水酸化ナトリウム、水酸化カリウム、炭酸リチ
ウム等)、酸性触媒(例えばボロントリフルオライド
等)、及びアミン系触媒(例えばトリメチルアミン、ト
リエチルアミン等)等の公知のものを使用できるが、こ
れらに限定されるものではない。
Examples of the ring-opening polymerization catalyst include basic catalysts (eg, sodium hydroxide, potassium hydroxide, lithium carbonate, etc.), acidic catalysts (eg, boron trifluoride, etc.), and amine catalysts (eg, trimethylamine, triethylamine, etc.). ) Can be used, but the present invention is not limited thereto.

【0022】本発明に用いるイオン性化合物は、非水系
有機溶媒に溶解可能であれば特に限定されないが、大き
な電圧を容易に取り出せるイオン化傾向の大きい金属の
塩類を挙げることができる。より具体的には周期律表第
1族または第2族金属塩を例示できる。特にLiClO
4 、LiAsF6 、LiPF6 、LiBF4 、LiCF
3 SO3 、LiN(CF3 SO2 2 またはLiN(C
2 5 SO2 2 等のリチウム塩から選ばれるものが好
ましい。
The ionic compound used in the present invention is not particularly limited as long as it can be dissolved in a non-aqueous organic solvent. Examples of the ionic compound include salts of metals having a high ionization tendency which can easily extract a large voltage. More specifically, a metal salt of Group 1 or Group 2 of the periodic table can be exemplified. Especially LiClO
4, LiAsF 6, LiPF 6, LiBF 4, LiCF
3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C
2 F 5 SO 2) is preferably one selected from lithium salt of 2, and the like.

【0023】本発明において、前記高分子化合物と前記
イオン性化合物の比は、特に限定されないが、高分子化
合物1kgに対してイオン性化合物が0.1−2モルの
割合であれば特に好ましい。イオン性化合物の割合が多
くなると、次第に有機溶媒または可塑剤に溶解し難くな
り、過大な場合は析出する可能性がある。析出した場
合、電解質中にイオンの移動に対する障害物が生じ、イ
オン伝導性の低下及び力学的特性の低下を招く。またイ
オン性化合物の割合が過小な場合はイオン伝導性が低
く、実用レベルを維持できない。
In the present invention, the ratio of the polymer compound to the ionic compound is not particularly limited, but it is particularly preferable that the ratio of the ionic compound is 0.1 to 2 mol per 1 kg of the polymer compound. When the proportion of the ionic compound increases, it becomes gradually difficult to dissolve in an organic solvent or a plasticizer, and when the proportion is excessive, precipitation may occur. In the case of deposition, an obstacle to the movement of ions is generated in the electrolyte, which causes a decrease in ionic conductivity and a decrease in mechanical properties. On the other hand, when the proportion of the ionic compound is too small, the ionic conductivity is low and the practical level cannot be maintained.

【0024】本発明に用いる可塑剤としては、前記アル
キレンオキサイド誘導体の共重合体を可塑化できる有機
溶媒であれば良い。具体的には、環状炭酸エステル(例
えばプロピレンカーボネート、エチレンカーボネート
等)、非環状炭酸エステル(例えばジメチルカーボネー
ト、メチルエチルカーボネート等)、環状エステル(例
えばγ−ブチロラクトン等)、エーテル類(例えば1,
3−ジオキサン、1,2−ジメトキシエタン等)、ニト
リル類(例えばアセトニトリル、ベンゾニトリル等)、
及びアミド類(例えばN−メチルホルムアミド、N,N
−ジメチルホルムアミド等)などの有機溶媒が挙げられ
る。特に好ましくは、エチレンカーボネート、プロピレ
ンカーボネート、ジメチルカーボネート、ジエチルカー
ボネート、メチルエチルカーボネート、及びγ−ブチロ
ラクトン等が挙げられるが、これらに限定されるもので
はなく、これらの溶媒を単独でまたは2種以上の混合物
でも使用可能であり、その混合割合及び方法は任意であ
る。
The plasticizer used in the present invention may be any organic solvent capable of plasticizing the above-mentioned copolymer of the alkylene oxide derivative. Specifically, cyclic carbonates (eg, propylene carbonate, ethylene carbonate, etc.), non-cyclic carbonates (eg, dimethyl carbonate, methyl ethyl carbonate, etc.), cyclic esters (eg, γ-butyrolactone, etc.), ethers (eg, 1,
3-dioxane, 1,2-dimethoxyethane, etc.), nitriles (eg, acetonitrile, benzonitrile, etc.),
And amides (eg, N-methylformamide, N, N
-Dimethylformamide and the like). Particularly preferably, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, and the like, are not limited thereto, these solvents alone or two or more Mixtures can be used, and the mixing ratio and method are arbitrary.

【0025】本発明において、前記高分子化合物と前記
可塑剤の重量比は、特に限定されないが、高分子化合
物:可塑剤=80:20−15:85の範囲であれば特
に好ましい。可塑剤の割合が85%より多い場合は力学
的特性が低下し、また20%より少ない場合はイオン伝
導性が低下する。
In the present invention, the weight ratio of the high molecular compound to the plasticizer is not particularly limited, but it is particularly preferable that the high molecular compound: plasticizer = 80: 20-15: 85. When the proportion of the plasticizer is more than 85%, the mechanical properties are lowered, and when it is less than 20%, the ionic conductivity is lowered.

【0026】本発明の高分子固体電解質、または高分子
ゲル電解質は、ポリアルキレンオキサイド主鎖に側鎖と
して液晶性化合物が導入されているため、電子線等によ
る架橋を行わなくても液晶性化合物の持つ剛直性または
凝集性により、電荷キャリヤーを保持するためのマトリ
ックスを形成することができる。且つマトリックスは実
用レベルで十分な力学的強度を有する。従って、高エネ
ルギー密度を維持したまま電池を軽量化、薄型化でき
る。また、液晶性化合物を側鎖に有するため、低温にお
いてもアルキレンオキサイド主鎖の分子運動が阻害され
ず、広範な温度域において良好なイオン伝導性が維持さ
れる。
In the polymer solid electrolyte or polymer gel electrolyte of the present invention, since a liquid crystal compound is introduced as a side chain into the polyalkylene oxide main chain, the liquid crystal compound is not required to be crosslinked by an electron beam or the like. Due to its rigidity or cohesiveness, a matrix for retaining charge carriers can be formed. And the matrix has sufficient mechanical strength at a practical level. Therefore, the battery can be reduced in weight and thickness while maintaining a high energy density. In addition, since the liquid crystal compound is included in the side chain, the molecular motion of the alkylene oxide main chain is not hindered even at a low temperature, and good ion conductivity is maintained in a wide temperature range.

【0027】本発明に用いる高分子電解質は、種々の方
法でコイン型、薄膜等の形態に作製することができる。
高分子固体電解質の場合、本発明の液晶性側鎖を有する
高分子化合物は種々の低沸点有機溶媒に溶解可能である
ため、例えば前記高分子化合物と有機溶媒に可溶である
イオン性化合物とを低沸点溶媒に溶解し、室温付近にて
溶液を調製後、キャスティングして低沸点溶媒を除去す
ることにより、優れた力学的強度を有する高分子固体電
解質薄膜を得ることができる。高分子ゲル電解質の場合
は、前記溶液を調製する際に低沸点溶液に替えて可塑剤
となる有機溶媒を用いて、例えば室温付近にて溶液を調
製後、キャスティングすることにより、高分子ゲル電解
質を得ることができる。さらに、前記高分子化合物を従
来知られている方法で予め薄膜とし、前記イオン性化合
物を溶解した低沸点溶媒を含浸させた後、低沸点溶媒を
除去することにより高分子固体電解質薄膜を得ることも
できる。なお、高分子ゲル電解質の場合は、可塑剤を溶
媒として用いるため、溶媒の除去は行わない。
The polymer electrolyte used in the present invention can be formed into a coin shape, a thin film or the like by various methods.
In the case of a polymer solid electrolyte, since the polymer compound having a liquid crystalline side chain of the present invention can be dissolved in various low-boiling organic solvents, for example, the polymer compound and an ionic compound that is soluble in an organic solvent Is dissolved in a low-boiling solvent, a solution is prepared at about room temperature, and the low-boiling solvent is removed by casting to obtain a polymer solid electrolyte thin film having excellent mechanical strength. In the case of a polymer gel electrolyte, a polymer gel electrolyte is prepared by using an organic solvent as a plasticizer instead of a low boiling point solution when preparing the solution, for example, preparing a solution at around room temperature, and then casting. Can be obtained. Further, the polymer compound is previously thinned by a conventionally known method, and after impregnating with a low-boiling solvent in which the ionic compound is dissolved, a low-boiling solvent is removed to obtain a polymer solid electrolyte thin film. Can also. In the case of a polymer gel electrolyte, the plasticizer is used as a solvent, and thus the solvent is not removed.

【0028】二次電池に関する本発明は、正極、負極、
電解質を備えた電池において、この電解質が前記高分子
電解質である二次電池の発明である。さらに、本発明の
電池は、上記構成において正極活物質が遷移金属とリチ
ウムの複合金属酸化物(LiMnO2 、LiMn
2 4 、LiCoO2 、LiNiO2 等)、導電性高分
子(ポリアセチレン誘導体、ポリアニリン誘導体、ポリ
ピロール誘導体、ポリチオフェン誘導体、ポリパラフェ
ニレン誘導体等)、または一般式(R−Sm n 、(こ
こでRは脂肪族、または芳香族、Sは硫黄、m、mは夫
々、m≧2、n≧1の整数である)で示されるジスルフ
ィド化合物(例えば、ジチオグリコール、2,5−ジメ
ルカプト−1,3,4−チアジアゾール、S−トリアジ
ン−2,4,6−トリチオール等)等からなる。
The present invention relating to a secondary battery comprises a positive electrode, a negative electrode,
In a battery provided with an electrolyte, the present invention is a secondary battery in which the electrolyte is the polymer electrolyte. Further, in the battery of the present invention, the positive electrode active material is a composite metal oxide of a transition metal and lithium (LiMnO 2 , LiMn
2 O 4 , LiCoO 2 , LiNiO 2, etc., a conductive polymer (polyacetylene derivative, polyaniline derivative, polypyrrole derivative, polythiophene derivative, polyparaphenylene derivative, etc.), or a general formula ( RSm ) n (where R is aliphatic or aromatic, S is sulfur, m and m are integers of m ≧ 2 and n ≧ 1, respectively (for example, dithioglycol, 2,5-dimercapto-1, 3,4-thiadiazole, S-triazine-2,4,6-trithiol, etc.).

【0029】本発明に用いる正極活物質は、上記の通り
であるが、特に遷移金属とリチウムの複合酸化物が好ま
しい。また、本発明の電池は、上記構成において負極活
物質がリチウムイオンの吸蔵・放出が可能な物質または
リチウム金属よりなる所謂リチウムイオン型二次電池、
またはリチウム金属二次電池である。本発明の構成のリ
チウムニ次電池は、固体状態の高イオン伝導性高分子化
合物を電解質として用いるため、小型・軽量・薄型、且
つ高容量のエネルギー源を提供する。
The positive electrode active material used in the present invention is as described above, and a composite oxide of a transition metal and lithium is particularly preferable. In addition, the battery of the present invention is a so-called lithium ion secondary battery in which the negative electrode active material is a material capable of inserting and extracting lithium ions or lithium metal in the above configuration,
Or a lithium metal secondary battery. The lithium secondary battery having the configuration of the present invention provides a small, light, thin, and high-capacity energy source because the solid state high ion conductive polymer compound is used as the electrolyte.

【0030】本発明に用いる負極活物質としては、従来
知られているものを使用することができる。リチウムイ
オンの吸蔵・放出可能な物質として、例えば、天然黒
鉛、或は石炭・石油ピッチ等を高温で熱処理して得られ
る黒鉛化炭素のような結晶質カーボン、または石炭・石
油ピッチコークス、アセチレンピッチコークス等を熱処
理して得られる非晶質カーボン等が挙げられるが、これ
らに限定されるものではない。
As the negative electrode active material used in the present invention, conventionally known materials can be used. As a substance capable of occluding and releasing lithium ions, for example, natural graphite, crystalline carbon such as graphitized carbon obtained by heat-treating coal or petroleum pitch, or the like, or coal or petroleum pitch coke, acetylene pitch Examples include, but are not limited to, amorphous carbon obtained by heat treating coke or the like.

【0031】本発明において正極活物質層は、前記正極
活物質と適当なバインダーとを混合して形成することが
できる。例えば、正極活物質層の電子伝導性の確保のた
め、アセチレンブラック等の導電性付与剤、または前記
導電性高分子(例えば、ポリアセチレン誘導体、ポリア
ニリン誘導体、ポリピロール誘導体、ポリチオフェン誘
導体、ポリパラフェニレン誘導体等)の添加、さらに、
イオン伝導性確保のため、イオン伝導性高分子電解質好
ましくは本発明の高分子電解質との混合等が挙げられ
る。
In the present invention, the positive electrode active material layer can be formed by mixing the positive electrode active material and a suitable binder. For example, in order to secure the electron conductivity of the positive electrode active material layer, a conductivity-imparting agent such as acetylene black or the above-mentioned conductive polymer (for example, polyacetylene derivative, polyaniline derivative, polypyrrole derivative, polythiophene derivative, polyparaphenylene derivative, etc.) ), And
In order to ensure ion conductivity, a mixture with an ion-conductive polymer electrolyte, preferably the polymer electrolyte of the present invention, and the like can be given.

【0032】本発明において、正極は、例えば前記正極
活物質、第1の本発明の高分子電解質、イオン性化合物
を溶解した電解液、及び導電性付与剤を適当な溶媒に溶
解・分散したものを、正極集電体上に正極活物質層とし
てコーティングした後、溶媒を除去することにより形成
することができる。正極集電体としては、従来知られて
いるステンレス、銅、ニッケル、及びアルミニウム等の
薄膜、網状物、またはその他の形状のシートが使用でき
る。本発明において、負極、負極活物質層は、上記と同
様の方法で形成することができる。
In the present invention, the positive electrode is obtained by dissolving and dispersing, for example, the positive electrode active material, the polymer electrolyte of the first present invention, an electrolytic solution in which an ionic compound is dissolved, and a conductivity imparting agent in an appropriate solvent. Can be formed by coating as a positive electrode active material layer on a positive electrode current collector and then removing the solvent. As the positive electrode current collector, a conventionally known thin film such as stainless steel, copper, nickel, and aluminum, a reticulated material, or a sheet having another shape can be used. In the present invention, the negative electrode and the negative electrode active material layer can be formed by the same method as described above.

【0033】本発明の二次電池は、通常の方法で形成す
ることが可能である。例えば、電解質薄膜を予め形成し
た後、正極と負極の間に配置して形成、或は正極活物質
層または負極活物質層上に本発明の電解質層を所定の厚
みにコーティングして形成した後、これを挟むように負
極または正極を配置して形成することができる。
The secondary battery of the present invention can be formed by a usual method. For example, after forming an electrolyte thin film in advance, forming it by arranging it between the positive electrode and the negative electrode, or after forming the electrolyte layer of the present invention to a predetermined thickness on the positive electrode active material layer or the negative electrode active material layer, A negative electrode or a positive electrode may be arranged so as to sandwich the same.

【0034】本発明の二次電池の実装形態としては、円
筒型、角型、及びコイン型二次電池等が挙げられるが、
これらに限定されるものではない。
Examples of the mounting form of the secondary battery of the present invention include cylindrical, square and coin type secondary batteries.
It is not limited to these.

【0035】[0035]

【実施例】以下、実施例を以て本発明をより詳細に説明
するが、本発明はこれらの実施例により限定されるもの
ではない。なお、特に断らない限り、%は重量%であ
り、各実施例で得られた電解質、電池の性能測定は、次
に記す方法により行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified,% is% by weight, and the performance of the electrolyte and the battery obtained in each example was measured by the following method.

【0036】イオン伝導度測定:測定はアルゴンガス雰
囲気のグローブボックス内にて行った。本実施例で得た
所定厚みの高分子電解質を所定大きさに切り出し、2枚
の白金ブロッキング電極で挟み、電極から引き出したリ
ード線をエレクトロケミカル・ワークステーション(C
H Instruments,Model 604)に
接続して室温で測定した。測定周波数範囲は、0.1H
z−100kHz、印加電圧0.1Vであった。
Measurement of ion conductivity: The measurement was performed in a glove box in an argon gas atmosphere. A polymer electrolyte having a predetermined thickness obtained in this example is cut into a predetermined size, sandwiched between two platinum blocking electrodes, and a lead wire drawn out of the electrode is connected to an electrochemical workstation (C).
H Instruments, Model 604). The measurement frequency range is 0.1H
z-100 kHz and applied voltage of 0.1 V.

【0037】充放電測定:電流0.2Cで電池電圧が
4.5Vとなるまで充電し、30分の休止後、電流0.
2Cで電池電圧が2.0Vとなるまで放電した。以下、
前記操作を繰り返して電池の充放電特性を評価した。測
定装置は、北斗電工(株)製HJ−201を用いた。
Charge / discharge measurement: The battery was charged at a current of 0.2 C until the battery voltage reached 4.5 V.
The battery was discharged at 2 C until the battery voltage reached 2.0 V. Less than,
The above operation was repeated to evaluate the charge / discharge characteristics of the battery. As a measuring device, HJ-201 manufactured by Hokuto Denko KK was used.

【0038】[モノマー合成例1]パラー(トランス−
4−n−ペンチルシクロヘキシル)フェノール49.3
g(0.2mol)、エピクロロヒドリン74.0g
(0.8mol)、及びトリエチルベンジルアンモニウ
ムクロライド0.46g(2mmol)を攪拌機、環流
冷却器、及び温度計を備えた反応容器に入れ、30−4
0℃にて加熱・攪拌しながら50%NaOH水溶液2
0.0g(NaOH 0.25mol)を徐々に滴下し
た。滴下終了後、50−60℃にて加熱・攪拌し、12
時間、反応を行った。反応混合物を冷却し、エーテル抽
出にて有機層を分離し、水洗し、無水硫酸マグネシウム
にて乾燥し、減圧蒸留により目的のモノマーである1−
(パラ−トランス−4−n−ペンチルシクロヘキシルフ
ェノキシ)−2,3−エポキシプロパン45.5g(収
率75%)を得た。
[Synthesis Example 1 of Monomer]
4-n-pentylcyclohexyl) phenol 49.3
g (0.2 mol), 74.0 g of epichlorohydrin
(0.8 mol) and 0.46 g (2 mmol) of triethylbenzylammonium chloride in a reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer.
50% NaOH aqueous solution 2 while heating and stirring at 0 ° C
0.0 g (0.25 mol of NaOH) was gradually added dropwise. After completion of the dropwise addition, the mixture was heated and stirred at 50-60 ° C.
The reaction was performed for hours. The reaction mixture was cooled, the organic layer was separated by extraction with ether, washed with water, dried over anhydrous magnesium sulfate, and distilled under reduced pressure to obtain the desired monomer 1-.
45.5 g (75% yield) of (para-trans-4-n-pentylcyclohexylphenoxy) -2,3-epoxypropane were obtained.

【0039】[モノマー合成例2]合成例1においてパ
ラ−(トランス−4−n−ペンチルシクロヘキシル)フ
ェノ−ルに替えて、パラ−(トランス−4−n−プロピ
ルシクロヘキシル)フェノールを用いて同様の操作を行
い、1−(パラ−トランス−4−n−プロピルシクロヘ
キシルフェノキシ)−2,3−エポキシプロパン42.
8g(収率78%)を得た。
[Synthesis Example 2 of Monomer] The same procedure as in Synthesis Example 1 except that para- (trans-4-n-pentylcyclohexyl) phenol was used instead of para- (trans-4-n-pentylcyclohexyl) phenol. Performing the operation, 1- (para-trans-4-n-propylcyclohexylphenoxy) -2,3-epoxypropane
8 g (78% yield) was obtained.

【0040】[モノマー合成例3]塩酸及び亜硝酸ナト
リウムを入れ、温度計、環流冷却器、及び攪拌機を備え
た反応容器にパラ−ブチルアニリンとフェノールとを入
れ、50−60℃にて12時間、加熱・攪拌して反応さ
せた後、反応混合物を精製し、4−(4’−n−ブチ
ル)オキシアゾベンゼンを得た。次いで、上記アゾベン
ゼン誘導体50.9g(0.2mol)、エピクロロヒ
ドリン74.0g(0.8mol)、及びトリエチルベ
ンジルアンモニウムクロライド0.46g(2mmo
l)を温度計、環流冷却器、及び攪拌機を備えた反応容
器に入れ、30−40℃にて攪拌しながら50%NaO
H水溶液20.0g(NaOH 0.25mol)を徐
々に滴下した。滴下終了後、50−60℃にて12時
間、加熱・攪拌し反応を行った。反応混合物を冷却し、
エーテル抽出にて有機層を分離し、水洗し、無水亜硫酸
マグネシウムにて乾燥し、減圧蒸留により、目的物モノ
マーである1−(4−4’−n−ブチルアゾベンゾキ
シ)−2,3−エポキシプロパン46.7g(収率71
%)を得た。
[Monomer Synthesis Example 3] Hydrochloric acid and sodium nitrite were charged, and para-butylaniline and phenol were charged in a reaction vessel equipped with a thermometer, a reflux condenser, and a stirrer, and the mixture was heated at 50-60 ° C. for 12 hours. After the reaction by heating and stirring, the reaction mixture was purified to obtain 4- (4′-n-butyl) oxyazobenzene. Then, 50.9 g (0.2 mol) of the azobenzene derivative, 74.0 g (0.8 mol) of epichlorohydrin, and 0.46 g (2 mmol) of triethylbenzylammonium chloride
l) was placed in a reaction vessel equipped with a thermometer, a reflux condenser, and a stirrer, and stirred at 30-40 ° C. with 50% NaO.
20.0 g of an aqueous H solution (0.25 mol of NaOH) was gradually added dropwise. After the completion of the dropwise addition, the mixture was heated and stirred at 50-60 ° C. for 12 hours to carry out a reaction. Cool the reaction mixture,
The organic layer was separated by ether extraction, washed with water, dried over anhydrous magnesium sulfite, and distilled under reduced pressure to give 1- (4-4′-n-butylazobenzoxy) -2,3- 46.7 g of epoxypropane (yield 71
%).

【0041】[高分子化合物合成例1]上記モノマー合
成例1にて得られた液晶性置換基を有するアルキレンオ
キサイド誘導体であるモノマー34.0g(0.15m
ol)、メチルジエチレングリコールグリシジルエーテ
ル 792.9g(4.5mol)、およびKOH1.
9g(33mmol)を還流冷却器、温度計、及び撹拌
機を備えた反応容器に入れ、70−80℃にて12時
間、加熱・撹拌し重合を行った。反応混合物の精製を行
い、減圧下に100℃にて乾燥し、目的物である液晶性
側鎖を有する高分子化合物 719.4gを得た。
[Synthesis Example 1 of Polymer Compound] 34.0 g (0.15 m) of the monomer which is the alkylene oxide derivative having a liquid crystalline substituent obtained in Synthesis Example 1 of the monomer.
ol), 792.9 g (4.5 mol) of methyldiethylene glycol glycidyl ether, and 1.
9 g (33 mmol) was placed in a reaction vessel equipped with a reflux condenser, a thermometer, and a stirrer, and heated and stirred at 70 to 80 ° C. for 12 hours to perform polymerization. The reaction mixture was purified and dried at 100 ° C. under reduced pressure to obtain 719.4 g of a polymer having a liquid crystal side chain, which is the target substance.

【0042】[高分子化合物合成例2]上記高分子化合
物合成例1においてモノマー合成例1のアルキレンオキ
サイドモノマーとメチルジエチレングリコールグリシジ
ルエーテルのモル比を1:10とした以外は同様の操作
を行い、目的物である液晶性側鎖を有する高分子化合物
を得た。
[Synthesis Example 2 of Polymer Compound] The same operation was performed as in Synthesis Example 1 of the above-mentioned polymer except that the molar ratio of the alkylene oxide monomer to methyl diethylene glycol glycidyl ether in Synthesis Example 1 was changed to 1:10. As a result, a polymer compound having a liquid crystalline side chain was obtained.

【0043】[比較高分子合成例1]上記高分子化合物
合成例1においてモノマー合成例1のアルキレンオキサ
イドモノマーとメチルジエチレングリコールグリシジル
エーテルのモル比を1:100とした以外は同様の操作
を行い、液晶性側鎖を有する高分子化合物を得た。
[Comparative Polymer Synthesis Example 1] The same operation was carried out except that the molar ratio of the alkylene oxide monomer to methyldiethylene glycol glycidyl ether in Monomer Synthesis Example 1 was changed to 1: 100 in Synthesis Example 1 of the above-mentioned polymer compound. A polymer compound having a functional side chain was obtained.

【0044】[比較高分子合成例2]上記高分子化合物
合成例1においてモノマー合成例1のアルキレンオキサ
イドモノマーとメチルジエチレングリコールグリシジル
エーテルのモル比を1:0.2とした以外は同様の操作
を行い、液晶性側鎖を有する高分子化合物を得た。
[Comparative Polymer Synthesis Example 2] The same operation was performed as in the above polymer compound synthesis example 1 except that the molar ratio of the alkylene oxide monomer and methyldiethylene glycol glycidyl ether in the monomer synthesis example 1 was 1: 0.2. Thus, a polymer having a liquid crystal side chain was obtained.

【0045】[高分子化合物合成例3]上記高分子化合
物合成例1においてメチルジエチレングリコールグリシ
ジルエーテルをメチルトリエチレングリコールグリシジ
ルエーテルに替えた以外は同様の操作を行い、目的物で
ある液晶性側鎖を有する高分子化合物を得た。
[Synthesis Example 3 of Polymer Compound] The same operation was carried out except that methyl diethylene glycol glycidyl ether was changed to methyl triethylene glycol glycidyl ether in Synthesis Example 1 of the above-mentioned polymer compound, to thereby obtain a liquid crystalline side chain as an object. The obtained high molecular compound was obtained.

【0046】[高分子化合物合成例4]前記高分子化合
物合成例1において、モノマー合成例1で得たモノマー
に替えてモノマー合成例3で得たモノマーを用いて同様
な操作を行い、目的物である液晶性側鎖を有する高分子
化合物を得た。
[Synthesis Example 4 of Polymer Compound] The same operation as in Synthesis Example 1 of the polymer was carried out except that the monomer obtained in Synthesis Example 1 was replaced by the monomer obtained in Synthesis Example 3. A polymer compound having a liquid crystal side chain was obtained.

【0047】[実施例1] 高分子固体電解質の形成:上記高分子化合物合成例1で
得た高分子化合物、LiPF6 、及びテトラヒドロフラ
ン(以下THFと記す)を重量比12:1:100で混
合し、撹拌して溶解させた後、この溶液をステンレス板
上にキャスティングし、アルゴンガス雰囲気下に放置し
てTHFを蒸発させ、厚み91μmの自立性の有る本発
明の高分子固体電解質薄膜を得た。この薄膜を所定形状
に切り出し、イオン伝導度測定、及び二次電池の組立に
使用した。
Example 1 Formation of Polymer Solid Electrolyte: The polymer obtained in Synthesis Example 1 above, LiPF 6 , and tetrahydrofuran (hereinafter referred to as THF) were mixed at a weight ratio of 12: 1: 100. After stirring and dissolving, the solution was cast on a stainless steel plate and allowed to stand under an argon gas atmosphere to evaporate THF to obtain a 91 μm-thick self-supporting polymer solid electrolyte thin film of the present invention having a thickness of 91 μm. Was. This thin film was cut into a predetermined shape and used for measuring ion conductivity and assembling a secondary battery.

【0048】[実施例2]上記実施例1においてLiP
6 に替えてLiN(CF3 SO2 2 を用い、前記高
分子化合物、LiN(CF3 SO2 2 、及びTHFを
重量比12:2:100で混合した以外は同様の操作を
行い、厚み86μmの高分子固体電解質薄膜を得た。
[Embodiment 2] In the embodiment 1, the LiP
Using LiN (CF 3 SO 2) 2 in place of the F 6, the polymeric compound, LiN (CF 3 SO 2) 2, and the weight of THF ratio of 12: 2: performs the same operation except it was mixed in 100 Thus, a polymer solid electrolyte thin film having a thickness of 86 μm was obtained.

【0049】[比較例1]上記実施例1において高分子
化合物合成例1で得た高分子化合物に替えて比較高分子
合成例2で得た高分子化合物を用いた以外は同様な操作
を行い、厚み101μmの高分子固体電解質薄膜を得
た。
Comparative Example 1 The same operation was performed as in Example 1 except that the polymer obtained in Comparative Polymer Synthesis Example 2 was used instead of the polymer obtained in Polymer Synthesis Example 1. Thus, a polymer solid electrolyte thin film having a thickness of 101 μm was obtained.

【0050】[実施例3]上記実施例1で得た高分子化
合物、LiPF6 、プロピレンカーボネート、及びTH
Fを重量比20:3:20:12で混合し、撹拌して溶
解させた後、この溶液をステンレス板上にキャスティン
グし、アルゴンガス雰囲気下に約30分放置してTHF
のみを蒸発させ、可塑剤としてプロピレンカーボネート
を含む厚み91μmの自立性の有る高分子ゲル電解質薄
膜を得た。このゲル電解質薄膜を所定形状に切り出し、
イオン伝導度測定、及び二次電池の組立に使用した。
Example 3 The polymer compound obtained in Example 1 above, LiPF 6 , propylene carbonate, and TH
F was mixed at a weight ratio of 20: 3: 20: 12 and dissolved by stirring. The solution was cast on a stainless steel plate, and allowed to stand in an argon gas atmosphere for about 30 minutes to obtain THF.
Only this was evaporated to obtain a 91 μm-thick self-supporting polymer gel electrolyte thin film containing propylene carbonate as a plasticizer. Cut this gel electrolyte thin film into a predetermined shape,
Used for ionic conductivity measurement and secondary battery assembly.

【0051】[実施例4]上記実施例3においてプロピ
レンカーボネートに替えてγ−ブチロラクトンを用いた
他は同様な操作を行い、厚み98μmの高分子ゲル電解
質薄膜を得た。
Example 4 A polymer gel electrolyte thin film having a thickness of 98 μm was obtained in the same manner as in Example 3 except that γ-butyrolactone was used instead of propylene carbonate.

【0052】[実施例5]上記実施例3においてLiP
6 に替えてLiN(CF3 SO2 2 を用い、上記高
分子化合物合成例1で得た高分子化合物、LiN(CF
3 SO22 、プロピレンカーボネート、及びTHFを
重量比20:5:20:120で混合した以外は同様な
操作を行い、厚み94μmの高分子ゲル電解質薄膜を得
た。
Fifth Embodiment In the third embodiment, the LiP
Using LiN (CF 3 SO 2 ) 2 instead of F 6 , LiN (CF 3 SO 2 ) 2
The same operation was performed except that 3 SO 2 ) 2 , propylene carbonate, and THF were mixed at a weight ratio of 20: 5: 20: 120, to obtain a polymer gel electrolyte thin film having a thickness of 94 μm.

【0053】[比較例2]上記実施例3において高分子
化合物合成例1で得た高分子化合物に替えて比較高分子
合成例1で得た高分子化合物を用いた以外は同様な操作
を行ったが、自立性の有る高分子ゲル電解質薄膜は得ら
れなかった。
Comparative Example 2 The same operation was performed as in Example 3 except that the polymer compound obtained in Comparative Polymer Synthesis Example 1 was used instead of the polymer compound obtained in Polymer Compound Synthesis Example 1. However, a self-supporting polymer gel electrolyte thin film was not obtained.

【0054】[比較例3]上記実施例3において高分子
化合物合成例1で得た高分子化合物に替えて比較高分子
合成例2で得た高分子化合物を用いた以外は同様な操作
を行い、厚み104μmの高分子ゲル電解質薄膜を得
た。
Comparative Example 3 The same operation was performed as in Example 3 except that the polymer compound obtained in Comparative Polymer Synthesis Example 2 was used instead of the polymer compound obtained in Polymer Compound Synthesis Example 1. Thus, a polymer gel electrolyte thin film having a thickness of 104 μm was obtained.

【0055】表1に実施例1から5、及び比較例1から
3で得た高分子電解質薄膜のイオン伝導度を示す。
Table 1 shows the ionic conductivity of the polymer electrolyte thin films obtained in Examples 1 to 5 and Comparative Examples 1 to 3.

【0056】[0056]

【表1】 [Table 1]

【0057】[実施例6]本発明の二次電池の一実施態
様を例示する図1に従って、電池の作製例を説明する。
図1は、正極活物質に金属酸化物、電解質に高分子電解
質、負極活物質に炭素材料を用いて積層した構造に形成
された二次電池に、本発明の高分子電解質を適用したも
のの概略断面図である。
Example 6 A battery production example will be described with reference to FIG. 1 illustrating one embodiment of the secondary battery of the present invention.
FIG. 1 is a schematic diagram of a secondary battery formed to have a structure in which a metal oxide is used as a positive electrode active material, a polymer electrolyte is used as an electrolyte, and a carbon material is used as an anode active material, and the polymer electrolyte of the present invention is applied to the secondary battery. It is sectional drawing.

【0058】高分子化合物合成例1で得た高分子化合
物、LiPF6 、及びTHFを重量比12:1:100
で混合し溶液を調製した。またLiMn2 4 とアセチ
レンブラックとを重量比92:8で混練し、混練物を得
た。前記溶液と混練物を前記高分子化合物とLiMn2
4 との重量比が1:9となるように混合した。この混
合物からTHFのみを揮発させて除去し、ロールプレス
によりシート状に成形して適当な大きさに切断し、容量
が約25mAhで厚みが120μmの正極活物質層を形
成した。この活物質層を厚み20μmのアルミニウム箔
正極集電体の片面に貼り付けた。
Polymer Compound obtained in Synthesis Example 1, LiPF 6 , and THF were mixed at a weight ratio of 12: 1: 100.
To prepare a solution. LiMn 2 O 4 and acetylene black were kneaded at a weight ratio of 92: 8 to obtain a kneaded product. The solution and the kneaded product are mixed with the polymer compound and LiMn 2
The weight ratio of O 4 1 were mixed so that the 9. Only THF was volatilized and removed from the mixture, formed into a sheet by a roll press, and cut into a suitable size to form a positive electrode active material layer having a capacity of about 25 mAh and a thickness of 120 μm. This active material layer was attached to one surface of a 20 μm-thick aluminum foil positive electrode current collector.

【0059】上記正極活物質層の形成時に用いたものと
同じ電解質溶液に、粉末石油コークスとアセチレンブラ
ックとの混練物(重量比20:1)を加えて撹拌し、混
合物を調製した。前記溶液と混練物との混合比は、高分
子化合物と粉末石油コークスとの重量比が5:95にな
るようにした。この混合物からTHFのみを揮発させて
除去し、ロールプレスによりシート状に成形して適当な
大きさに切断し、容量が約25mAhで厚みが150μ
mの負極活物質層を形成し、厚み10μmの銅箔負極集
電体の片面に貼りつけた。
A kneaded product of powdered petroleum coke and acetylene black (20: 1 by weight) was added to the same electrolyte solution used for forming the positive electrode active material layer and stirred to prepare a mixture. The mixing ratio between the solution and the kneaded material was such that the weight ratio of the polymer compound to the petroleum petroleum coke was 5:95. Only THF is volatilized and removed from the mixture, formed into a sheet by a roll press, cut into an appropriate size, and has a capacity of about 25 mAh and a thickness of 150 μm.
m of the negative electrode active material layer was formed and attached to one surface of a copper foil negative electrode current collector having a thickness of 10 μm.

【0060】正極集電体の正極活物質層の上に実施例1
の高分子電解質を乗せ、また正極集電体外周部の上に、
加熱圧着タイプのホットメルトが高分子電解質を封止す
るようにホットメルトを乗せ、次いで負極活物質層が高
分子電解質を挟むように負極を合わせ、加熱により集電
体外周部をホットメルトで完全に封止して二次電池を完
成した。この電池の特性評価を60℃で行い、図2に放
電特性を、図3に充放電サイクル特性を示した。何れも
要求性能を満足する結果を得た。
Example 1 on the positive electrode active material layer of the positive electrode current collector
Of the polymer electrolyte, and on the outer periphery of the positive electrode current collector,
The hot melt is placed so that the thermocompression-bonding type hot melt seals the polymer electrolyte, then the negative electrode is aligned so that the negative electrode active material layer sandwiches the polymer electrolyte, and the outer periphery of the current collector is completely heated with hot melt. To complete the secondary battery. The characteristics of this battery were evaluated at 60 ° C., and FIG. 2 shows the discharge characteristics and FIG. 3 shows the charge / discharge cycle characteristics. In each case, the required performance was satisfied.

【0061】[実施例7]上記実施例6においてLiM
2 4 に替えてLiCoO2 を用いた他は同様に操作
して、二次電池を作製した。この電池について実施例6
と同様に放電特性及び充放電サイクル特性を評価し、同
様に良好な結果を得た。
[Example 7] In Example 6, LiM
A secondary battery was fabricated in the same manner except that LiCoO 2 was used instead of n 2 O 4 . Example 6 of this battery
The discharge characteristics and the charge / discharge cycle characteristics were evaluated in the same manner as in the above, and similarly good results were obtained.

【0062】[実施例8]上記実施例6において高分子
化合物合成例1で得られた高分子化合物、LiPF6
プロピレンカーボネート及びTHFを重量比20:3:
20:120で混合した以外は同様に操作して、二次電
池を作製した。この電池の特性評価を25℃で行った。
放電特性を図4に、充放電サイクル特性を図5に示す。
何れも要求性能を満足する良好な結果であった。
Example 8 The polymer compound obtained in the polymer compound synthesis example 1 in Example 6 described above, LiPF 6 ,
Propylene carbonate and THF in a weight ratio of 20: 3:
A secondary battery was produced in the same manner except that the mixture was mixed at 20: 120. The characteristics of this battery were evaluated at 25 ° C.
FIG. 4 shows the discharge characteristics, and FIG. 5 shows the charge / discharge cycle characteristics.
All were good results satisfying the required performance.

【0063】[実施例9]上記実施例8においてLiM
2 4 に替えてLiCoO2 を用いた他は同様に操作
して二次電池を作製し、同様に放電特性、及び充放電サ
イクル特性を評価し、実施例8と同様な良好な結果を得
た。
[Embodiment 9] In Example 8, the LiM
A secondary battery was fabricated in the same manner except that LiCoO 2 was used instead of n 2 O 4 , and the discharge characteristics and charge / discharge cycle characteristics were evaluated in the same manner. The same good results as in Example 8 were obtained. Obtained.

【0064】[比較例4]従来の電解質溶液とセパレー
タを用いたコイン型リチウムイオン二次電池の構成例を
図6の断面図に示した。上記実施例8と同様な正極及び
負極を使用して図6に倣い従来型の二次電池を次のよう
に作製した。
Comparative Example 4 FIG. 6 is a sectional view showing an example of the configuration of a coin-type lithium ion secondary battery using a conventional electrolyte solution and a separator. Using the same positive electrode and negative electrode as in Example 8, a conventional secondary battery was fabricated as shown in FIG. 6 as follows.

【0065】正極缶内に円板状に切断した前記正極を設
置し、正極缶外周部をポリプロピレン製環状ガスケット
で覆い、プロピレンカーボネート、ジメチルカーボネー
ト、及びLiPF6 を重量比で10:10:3の組成に
調製した電解質溶液を正極活物質上に0.05ml滴下
した。その上に正極活物質表面を完全に覆うようにプロ
ピレン製セパレータで被覆し、前記電解質溶液を0.0
5ml滴下した。セパレータの上に円板状に切断した負
極を配置し、その上に負極缶を配置した。環状ガスケッ
トを介して正極缶と負極缶を重ね、両缶の外周部をかし
めてコイン型リチウムイオン二次電池を得た。この従来
型電池の放電特性を図4に、充放電サイクル特性を図5
に示す。
[0065] the positive electrode was placed cut in a disc shape in a cathode can, covered with a polypropylene annular gasket cathode can outer peripheral portion, propylene carbonate, dimethyl carbonate, and LiPF 6 in a weight ratio of 10: 10: 3 0.05 ml of the prepared electrolyte solution was dropped on the positive electrode active material. It was covered with a propylene separator so as to completely cover the surface of the positive electrode active material,
5 ml was added dropwise. The negative electrode cut into a disk shape was arranged on the separator, and the negative electrode can was arranged thereon. The positive electrode can and the negative electrode can were overlapped via an annular gasket, and the outer peripheral portions of both cans were caulked to obtain a coin-type lithium ion secondary battery. FIG. 4 shows the discharge characteristics of this conventional battery, and FIG.
Shown in

【0066】実施例6から9及び比較例4の結果から、
本発明の高分子電解質を使用した二次電池は、従来の電
解質溶液を使用した二次電池とほぼ同等の性能が得られ
たことが判る。また、実施例1から9の結果から本発明
の二次電池の厚みは400μm前後であり、比較例4の
金属缶を用いるコイン型二次電池に比べ格段に薄型化で
きたことが判る
From the results of Examples 6 to 9 and Comparative Example 4,
It can be seen that the secondary battery using the polymer electrolyte of the present invention has almost the same performance as the secondary battery using the conventional electrolyte solution. Further, the results of Examples 1 to 9 indicate that the thickness of the secondary battery of the present invention was about 400 μm, which was much thinner than the coin-type secondary battery using the metal can of Comparative Example 4.

【0067】[0067]

【発明の効果】本発明の高分子固体電解質、または高分
子ゲル電解質は、ポリアルキレンオキサイド主鎖に側鎖
として液晶性化合物が導入されているため、電子線等に
よる架橋を行わなくても、液晶性化合物の持つ剛直性ま
たは凝集性により実用レベルで充分な力学的強度を有す
る。また液晶性を側鎖に付与しているため、ポリアルキ
レンオキサイド主鎖の分子運動は低温においても阻害さ
れず、広範な温度域において良好なイオン伝導性が維持
される。
The polymer solid electrolyte or polymer gel electrolyte of the present invention has a liquid crystal compound introduced as a side chain into the polyalkylene oxide main chain, so that it does not need to be crosslinked by an electron beam or the like. Due to the rigidity or cohesion of the liquid crystal compound, it has sufficient mechanical strength at a practical level. Further, since liquid crystallinity is imparted to the side chain, the molecular motion of the polyalkylene oxide main chain is not hindered even at a low temperature, and good ionic conductivity is maintained over a wide temperature range.

【0068】本発明の二次電池は、高イオン伝導性電解
質を用いるため、電解液の液漏れが無く且つ力学的強度
が高い。従って、従来の電解液を用いた二次電池とほぼ
同様な高エネルギー二次電池を作製した場合、実施例に
示されたように400μm前後に薄型化、小型化するこ
とができる。
Since the secondary battery of the present invention uses a highly ion-conductive electrolyte, there is no electrolyte leakage and the mechanical strength is high. Therefore, when a high-energy secondary battery substantially similar to a secondary battery using a conventional electrolytic solution is manufactured, the thickness and the size can be reduced to about 400 μm as shown in the examples.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池の一実施態様を示す断面図で
ある。
FIG. 1 is a sectional view showing one embodiment of a secondary battery of the present invention.

【図2】本発明の二次電池の一例(実施例6)の特性を
例示する放電チ性図である。
FIG. 2 is a discharge characteristic diagram illustrating characteristics of an example (Example 6) of the secondary battery of the present invention.

【図3】本発明の二次電池の一例(実施例6)の特性を
例示する充放電サイクル特性図である。
FIG. 3 is a charge / discharge cycle characteristic diagram illustrating characteristics of an example (Example 6) of the secondary battery of the present invention.

【図4】本発明の二次電池の一例(実施例8)及び比較
例4の特性を例示する放電特性図である。
FIG. 4 is a discharge characteristic diagram illustrating characteristics of an example (Example 8) and a comparative example 4 of the secondary battery of the present invention.

【図5】本発明の二次電池の一例(実施例8)及び比較
例4の特性を例示する充放電サイクル特性図である。
FIG. 5 is a charge / discharge cycle characteristic diagram illustrating characteristics of an example (Example 8) and Comparative Example 4 of the secondary battery of the present invention.

【図6】従来のコイン型リチウムイオン二次電池の一例
(比較例4)を示す断面図である。
FIG. 6 is a cross-sectional view illustrating an example of a conventional coin-type lithium ion secondary battery (Comparative Example 4).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 長谷川 悦雄 東京都港区芝五丁目7番1号 日本電気株 式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z (72) Inventor Etsuo Hasegawa 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation Inside

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】液晶性化合物からなる置換基を有するアル
キレンオキサイド誘導体(化1)と、それとは異なるア
ルキレンオキサイド誘導体(化2)との共重合体よりな
る高分子化合物、及び非水系有機溶媒に溶解可能なイオ
ン性化合物からなる高分子電解質。 【化1】 【化2】 (繰返単位を示す化1式においてAは、液晶性を示す化
合物からなる置換基、またはその化合物と類似した構造
を有する置換基であり、化2式においてRは、アルキル
基、アルコキシ基、フルオロアルキル基、フルオロアル
コキシ基、アリール基、アルキレンオキサイド、または
水素である。)
1. A polymer compound comprising a copolymer of a substituted alkylene oxide derivative (Chemical Formula 1) composed of a liquid crystalline compound and a different alkylene oxide derivative (Chemical Formula 2), and a non-aqueous organic solvent. A polymer electrolyte composed of a soluble ionic compound. Embedded image Embedded image (In Formula 1, which represents a repeating unit, A is a substituent composed of a compound exhibiting liquid crystallinity, or a substituent having a structure similar to that of the compound. In Formula 2, R is an alkyl group, an alkoxy group, A fluoroalkyl group, a fluoroalkoxy group, an aryl group, an alkylene oxide, or hydrogen.)
【請求項2】前記高分子化合物1kgに対して前記イオ
ン性化合物が0.1−2モルの割合からなる請求項1記
載の高分子電解質。
2. The polymer electrolyte according to claim 1, wherein the ionic compound is contained in a ratio of 0.1 to 2 mol per 1 kg of the polymer compound.
【請求項3】請求項1記載の前記高分子化合物及び前記
イオン性化合物に更に可塑剤となる有機溶媒を含むこと
を特徴とする高分子電解質。
3. A polymer electrolyte, wherein the polymer compound and the ionic compound according to claim 1 further contain an organic solvent serving as a plasticizer.
【請求項4】前記高分子化合物1kgに対して前記イオ
ン性化合物が0.1−2モルの割合であり、前記高分子
化合物と前記可塑剤となる有機溶媒との重量比が80:
20−15:85である請求項3記載の高分子電解質。
4. The polymer compound according to claim 1, wherein said ionic compound is present in an amount of 0.1 to 2 moles per 1 kg of said polymer compound, and a weight ratio of said polymer compound to said organic solvent as said plasticizer is 80:
The polymer electrolyte according to claim 3, wherein the ratio is 20-15: 85.
【請求項5】液晶性化合物からなる置換基Aを有するア
ルキレンオキサイド誘導体と、それとは異なるアルキレ
ンオキサイド誘導体との共重合比が1:1から1:50
である請求項1−4のいずれか1項記載の高分子電解
質。
5. A copolymerization ratio of an alkylene oxide derivative having a substituent A composed of a liquid crystal compound and an alkylene oxide derivative different therefrom is from 1: 1 to 1:50.
The polymer electrolyte according to any one of claims 1 to 4, wherein
【請求項6】液晶性化合物からなる置換基Aが一般式化
3で示される構造を有する請求項1−5のいずれか1項
記載の高分子電解質。 【化3】 (化3式においてW、Yは、同素環式化合物または複素
環式化合物であり、同一または異なっていても良く、置
換基を有していても良い。Xは、アルキレン基、ビニレ
ン基、エチニレン基、カルボキシル基、アゾメチン基、
アゾ基、アゾキシ基であり、またはXが存在せずにWと
Yが直接結合していても良い。Zは、アルキル基、アル
コキシ基、フルオロアルキル基、フルオロアルコキシ
基、アリール基、ハロゲンまたは水素である。)
6. The polymer electrolyte according to claim 1, wherein the substituent A comprising the liquid crystalline compound has a structure represented by the general formula (3). Embedded image (In the formula 3, W and Y are homocyclic compounds or heterocyclic compounds, which may be the same or different and may have a substituent. X is an alkylene group, a vinylene group, Ethynylene group, carboxyl group, azomethine group,
It may be an azo group or an azoxy group, or W and Y may be directly bonded without X. Z is an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, halogen or hydrogen. )
【請求項7】イオン性化合物が周期律表第1族または第
2族金属塩である請求項1−6のいずれか1項記載の高
分子電解質。
7. The polymer electrolyte according to claim 1, wherein the ionic compound is a metal salt of Group 1 or Group 2 of the periodic table.
【請求項8】金属塩がLiClO4 、LiAsF6 、L
iPF6 、LiBF4 、LiCF3SO3 、LiN(C
3 SO22 、またはLiN(C25 SO22
ある請求項1−7のいずれか1項記載の高分子電解質。
8. The method according to claim 8, wherein the metal salt is LiClO 4 , LiAsF 6 , L
iPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C
F 3 SO 2) 2, or LiN (C 2 F 5 SO 2 ) 2 in which the polymer electrolyte of any one of claims 1-7.
【請求項9】請求項3記載の可塑剤となる有機溶媒が環
状若しくは非環状炭酸エステル、環状エステル、エーテ
ル類、ニトリル類、アミド類から選ばれた少なくとも1
種を含む有機溶媒である請求項3−8のいずれか1項記
載の高分子電解質。
9. The organic solvent as a plasticizer according to claim 3, wherein the organic solvent is at least one selected from a cyclic or acyclic carbonate, a cyclic ester, an ether, a nitrile, and an amide.
The polymer electrolyte according to any one of claims 3 to 8, which is an organic solvent containing a seed.
【請求項10】可塑剤がエチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、メチルエチルカーボネート、及びγ−ブチ
ロラクトンから選ばれた少なくとも1種を含む有機溶媒
である請求項9記載の高分子電解質。
10. The polymer electrolyte according to claim 9, wherein the plasticizer is an organic solvent containing at least one selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone.
【請求項11】正極、負極、電解質を備えた電池におい
て、電解質が請求項1−10のいずれか1項記載の高分
子電解質である二次電池。
11. A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the electrolyte is the polymer electrolyte according to any one of claims 1 to 10.
【請求項12】正極、負極、電解質を備えた電池におい
て、正極が金属酸化物であり、負極がリチウムイオンの
吸蔵・放出が可能な物質、またはリチウム金属である請
求項11記載のリチウム二次電池。
12. The lithium secondary battery according to claim 11, wherein in the battery provided with a positive electrode, a negative electrode, and an electrolyte, the positive electrode is a metal oxide, and the negative electrode is a substance capable of inserting and extracting lithium ions, or lithium metal. battery.
【請求項13】金属酸化物がLiMnO2 、LiMn2
4 、LiCoO2 、またはLiNiO2 である請求項
12記載のリチウム二次電池。
13. The method according to claim 13, wherein the metal oxide is LiMnO 2 , LiMn 2
O 4, LiCoO 2 or lithium secondary battery of claim 12 wherein the LiNiO 2,.
JP9288236A 1997-10-21 1997-10-21 Polymer electrolyte and secondary battery using the same Expired - Lifetime JP3045120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9288236A JP3045120B2 (en) 1997-10-21 1997-10-21 Polymer electrolyte and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9288236A JP3045120B2 (en) 1997-10-21 1997-10-21 Polymer electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH11116792A true JPH11116792A (en) 1999-04-27
JP3045120B2 JP3045120B2 (en) 2000-05-29

Family

ID=17727603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9288236A Expired - Lifetime JP3045120B2 (en) 1997-10-21 1997-10-21 Polymer electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3045120B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202995A (en) * 2000-01-17 2001-07-27 Fuji Photo Film Co Ltd Electrolyte composition, electrochemical cell and ionic liquid crystal monomer
JP2002246066A (en) * 2001-02-15 2002-08-30 Fuji Photo Film Co Ltd Electrolyte component, electrochemical cell, photo- electrochemical cell, and nonaqueous secondary cell
KR100371400B1 (en) * 1999-07-15 2003-02-07 주식회사 엘지화학 Polymer battery using pan based electrolyte with graphite anode
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2013254740A (en) * 2005-12-14 2013-12-19 Lg Chem Ltd Nonaqueous electrolyte and secondary battery including the same
WO2018044128A1 (en) * 2016-09-02 2018-03-08 주식회사 엘지화학 Polymer electrolyte and lithium secondary battery including same
CN108780921A (en) * 2016-09-02 2018-11-09 株式会社Lg化学 Polymer dielectric and lithium secondary battery including the polymer dielectric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020296B2 (en) 2000-12-21 2007-12-12 キヤノン株式会社 Ionic conduction structure, secondary battery and method for producing them

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371400B1 (en) * 1999-07-15 2003-02-07 주식회사 엘지화학 Polymer battery using pan based electrolyte with graphite anode
JP2001202995A (en) * 2000-01-17 2001-07-27 Fuji Photo Film Co Ltd Electrolyte composition, electrochemical cell and ionic liquid crystal monomer
JP4636644B2 (en) * 2000-01-17 2011-02-23 富士フイルム株式会社 Electrolyte composition, electrochemical cell and ionic liquid crystal monomer
JP2002246066A (en) * 2001-02-15 2002-08-30 Fuji Photo Film Co Ltd Electrolyte component, electrochemical cell, photo- electrochemical cell, and nonaqueous secondary cell
JP2013254740A (en) * 2005-12-14 2013-12-19 Lg Chem Ltd Nonaqueous electrolyte and secondary battery including the same
US9093720B2 (en) 2005-12-14 2015-07-28 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2018044128A1 (en) * 2016-09-02 2018-03-08 주식회사 엘지화학 Polymer electrolyte and lithium secondary battery including same
CN108780921A (en) * 2016-09-02 2018-11-09 株式会社Lg化学 Polymer dielectric and lithium secondary battery including the polymer dielectric
EP3407415A4 (en) * 2016-09-02 2019-03-20 LG Chem, Ltd. Polymer electrolyte and lithium secondary battery including same
US10700379B2 (en) 2016-09-02 2020-06-30 Lg Chem, Ltd. Polymer electrolyte and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP3045120B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US8101302B2 (en) Redox shuttles for high voltage cathodes
JP4605133B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte battery using the same, and method for producing nonaqueous electrolyte
KR101705250B1 (en) Cathode active material, and cathode and lithium battery containing the material
JP6842557B2 (en) Lithium sulphate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
US9130240B2 (en) Ionic liquid, lithium secondary battery electrolyte comprising the ionic liquid, and lithium secondary battery comprising the electrolyte
US6479192B1 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
WO2007043624A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
JP2000285929A (en) Solid electrolyte battery
JPH11191431A (en) Nonaqueous electrolyte battery
JP4210440B2 (en) Gel-like electrolyte and lithium battery using the same
WO2016024496A1 (en) Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same
JP2005285491A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP3045120B2 (en) Polymer electrolyte and secondary battery using the same
JPH1167211A (en) Nonaqueous electrolyte secondary battery
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
KR100969130B1 (en) Nonaqueous electrolyte having improved water-resistance and lithium secondary battery comprising the same
JPH11339851A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH0864203A (en) Electrode, manufacture thereof, and secondary battery using it
CN101606267B (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2004342575A (en) Secondary battery
JP2003317803A (en) Nonaqueous electrolytic solution, and lithium secondary cell using the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
KR100594474B1 (en) Non-aqueous electrolytic solutions and secondary battery containing the same
JP5598850B2 (en) Electrolyte and lithium ion secondary battery
KR102135218B1 (en) Electrolyte for aqueous rechargeable lithium ion battery, and aqueous rechargeable lithium ion battery comprising the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

EXPY Cancellation because of completion of term