JPH11111508A - Thermistor element, manufacture of the same, and temperature sensor using thermistor element - Google Patents

Thermistor element, manufacture of the same, and temperature sensor using thermistor element

Info

Publication number
JPH11111508A
JPH11111508A JP9268471A JP26847197A JPH11111508A JP H11111508 A JPH11111508 A JP H11111508A JP 9268471 A JP9268471 A JP 9268471A JP 26847197 A JP26847197 A JP 26847197A JP H11111508 A JPH11111508 A JP H11111508A
Authority
JP
Japan
Prior art keywords
thermistor element
temperature
firing
element according
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9268471A
Other languages
Japanese (ja)
Other versions
JP3362644B2 (en
Inventor
Hironori Moriwake
博紀 森分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26847197A priority Critical patent/JP3362644B2/en
Publication of JPH11111508A publication Critical patent/JPH11111508A/en
Application granted granted Critical
Publication of JP3362644B2 publication Critical patent/JP3362644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermistor element having a large B constant at a specified temperature, by using a (Mg, Ni, Co)O-based composition as a principal constituent. SOLUTION: To provide a thermistor having a large B constant at 600 to 800 deg.C, (Mg, Ni, Co)O has a NaCl-type single-phase crystal structure. As the (Mg, Ni, Co)O, (Mgx , Niy , Coz )O is used (where 0.10<=x<=0.90, 0.10<=y<=0.90, 0.10<=z<=0.90, and x+y+z=1.0). To prevent CoO from changing to Co3 O4 in firing, the temperature is lowered at a rate not lower than 200 deg.C/h. Also, in firing, the oxygen partial pressure in a temperature lowering process is made lower than the oxygen partial pressure in a holding process, thus preventing CoO from changing to Co3 O4 . Moreover, reduction in the density of a sintered material is prevented by carrying out preliminary firing of the material. Also, the oxygen partial pressure in preliminary firing is made higher than the oxygen partial pressure in firing, thereby preventing CoO changed at the time of preliminary firing from changing to Co3 O4 due to firing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温領域で使用さ
れ、負の温度係数を有するサーミスタ素子とその製造方
法及びそのサーミスタ素子を用いた温度センサに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor element used in a high-temperature region and having a negative temperature coefficient, a method of manufacturing the same, and a temperature sensor using the thermistor element.

【0002】[0002]

【従来の技術】近年、環境問題や燃費向上等の要求によ
り、排気ガス対策用触媒が用いられているが、その触媒
性能を充分に発揮させるためには、触媒の温度を正確に
測定する必要がある。そのためには、サーミスタ素子の
サーミスタ定数Bが大きい方が望ましい。
2. Description of the Related Art In recent years, catalysts for exhaust gas countermeasures have been used due to environmental problems and demands for improved fuel efficiency. However, in order to sufficiently exhibit the catalytic performance, it is necessary to accurately measure the temperature of the catalyst. There is. For that purpose, it is desirable that the thermistor constant B of the thermistor element is large.

【0003】従来、最高使用温度700℃を超える高温
用サーミスタとしては、(Al,Cr,Fe)23系に
代表されるコランダム型のサーミスタ材料が用いられて
いた。
Conventionally, a corundum-type thermistor material represented by (Al, Cr, Fe) 2 O 3 has been used as a high temperature thermistor exceeding a maximum operating temperature of 700 ° C.

【0004】[0004]

【発明が解決しようとする課題】従来のサーミスタ材料
は600−800℃間のB定数が高々4000K程度と
低く、600−800℃での温度測定には不利であると
いう問題点を有していた。
The conventional thermistor material has a problem that the B constant between 600 and 800 ° C. is as low as about 4000 K at most, which is disadvantageous for temperature measurement at 600 to 800 ° C. .

【0005】そこで本発明は、600−800℃でのB
定数が大きいサーミスタ素子とその製造方法及びそのサ
ーミスタ素子を用いた温度センサを提供することを目的
としている。
[0005] Accordingly, the present invention provides a method for preparing B at 600-800 ° C.
It is an object of the present invention to provide a thermistor element having a large constant, a method of manufacturing the same, and a temperature sensor using the thermistor element.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明のサーミスタ素子は、(Mg,Ni,Co)
O系組成物を主成分とするものであり、600−800
℃でのB定数が大きいものとなる。
In order to achieve this object, the thermistor element of the present invention comprises (Mg, Ni, Co)
O-based composition as a main component, 600-800
The B constant at C is large.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、(Mg,Ni,Co)O系組成物を主成分とするサ
ーミスタ素子であり、600−800℃でのB定数が大
きいものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a thermistor element containing a (Mg, Ni, Co) O-based composition as a main component, and has a large B constant at 600 to 800 ° C. Things.

【0008】請求項2に記載の発明は、NaCl型の結
晶構造の(Mg,Ni,Co)O系組成物を用いる請求
項1に記載のサーミスタ素子であり、600−800℃
でのB定数が大きいものである。
According to a second aspect of the present invention, there is provided a thermistor element according to the first aspect, wherein the (Mg, Ni, Co) O-based composition having a NaCl-type crystal structure is used.
Is large.

【0009】請求項3に記載の発明は、(Mg,Ni,
Co)O系組成物として、(Mgx,Niy,Coz)O
(ただし、0.10≦x≦0.90,0.10≦y≦
0.90,0.10≦z≦0.90,x+y+z=1.
0)を用いる請求項1に記載のサーミスタ素子であり、
適切な抵抗値を有するものである。
According to a third aspect of the present invention, (Mg, Ni,
(Mg x , Ni y , Co z ) O
(However, 0.10 ≦ x ≦ 0.90, 0.10 ≦ y ≦
0.90, 0.10 ≦ z ≦ 0.90, x + y + z = 1.
The thermistor element according to claim 1, wherein 0) is used.
It has an appropriate resistance value.

【0010】請求項4に記載の発明は、NaCl型の結
晶構造の(Mgx,Niy,Coz)O(ただし、0.1
0≦x≦0.90,0.10≦y≦0.90,0.10
≦z≦0.90,x+y+z=1.0)を用いる請求項
3に記載のサーミスタ素子であり、適切な抵抗値を有す
るものである。
According to a fourth aspect of the present invention, there is provided (Mg x , Ni y , Co z ) O (0.1 0.1
0 ≦ x ≦ 0.90, 0.10 ≦ y ≦ 0.90, 0.10
.Ltoreq.z.ltoreq.0.90, x + y + z = 1.0), wherein the thermistor element has an appropriate resistance value.

【0011】請求項5に記載の発明は、少なくともMg
化合物と、Ni化合物と、Co化合物とを混合して成形
体を形成する第1の工程と、次にこの成形体を焼成する
第2の工程とを備え、この第2の工程の焼成は、昇温過
程と、保持過程と、降温過程とを有し、降温過程はCo
OがCo34に変化しないような速度で降温するサーミ
スタ素子の製造方法であり、適切な抵抗値を有するサー
ミスタ素子を得ることができる。
According to a fifth aspect of the present invention, at least Mg
A first step of forming a compact by mixing a compound, a Ni compound, and a Co compound, and a second step of subsequently baking the compact; and baking in the second step comprises: It has a heating step, a holding step, and a cooling step.
This is a method for manufacturing a thermistor element that cools at a rate such that O does not change to Co 3 O 4 , and a thermistor element having an appropriate resistance value can be obtained.

【0012】請求項6に記載の発明は、CoOがCo3
4に変化しないように、200℃/h以上の速度で降
温する請求項5に記載のサーミスタ素子の製造方法であ
り、適切な抵抗値を有するサーミスタ素子を得ることが
できる。
According to a sixth aspect of the present invention, when CoO is Co 3
The method for manufacturing a thermistor element according to claim 5, wherein the temperature is lowered at a rate of 200 ° C./h or more so as not to change to O 4 , and a thermistor element having an appropriate resistance value can be obtained.

【0013】請求項7に記載の発明は、第2の工程の焼
成において、保持過程の酸素分圧よりも降温過程の酸素
分圧を低くする請求項5あるいは請求項6に記載のサー
ミスタ素子の製造方法であり、CoOがCo34に変化
するのを防止できる。
According to a seventh aspect of the invention, there is provided a thermistor element according to the fifth or sixth aspect, wherein in the firing in the second step, the oxygen partial pressure in the temperature decreasing step is lower than the oxygen partial pressure in the holding step. This is a manufacturing method and can prevent CoO from changing to Co 3 O 4 .

【0014】請求項8に記載の発明は、第2の工程の焼
成において、保持過程の温度は、Co化合物がCoOに
変化する温度以上である請求項5〜請求項7のいずれか
一つに記載のサーミスタ素子の製造方法であり、NaC
l型の結晶構造のサーミスタ素子を得ることができる。
The invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein in the firing in the second step, the temperature in the holding step is equal to or higher than the temperature at which the Co compound changes to CoO. The method for producing a thermistor element according to
A thermistor element having an l-type crystal structure can be obtained.

【0015】請求項9に記載の発明は、第1の工程後、
成形体を仮焼する請求項5〜請求項8のいずれか一つに
記載のサーミスタ素子の製造方法であり、焼結体密度の
低下を防止できる。
[0015] According to a ninth aspect of the present invention, after the first step,
The method for producing a thermistor element according to any one of claims 5 to 8, wherein the molded body is calcined, and a reduction in sintered body density can be prevented.

【0016】請求項10に記載の発明は、仮焼の時の最
高温度を第2の工程の焼成における保持過程の温度より
も高くする請求項9に記載のサーミスタ素子の製造方法
であり、MgO,NiO,CoO以外の化合物を出発原
料に用いた場合、仮焼によりそれぞれMgO,NiO,
CoOに変化するので、焼結体密度の低下を防止でき
る。
A tenth aspect of the present invention is the method for manufacturing a thermistor element according to the ninth aspect, wherein the maximum temperature during the calcination is made higher than the temperature in the holding process in the second step. When compounds other than, NiO, and CoO are used as starting materials, MgO, NiO,
Since it changes to CoO, it is possible to prevent a decrease in sintered body density.

【0017】請求項11に記載の発明は、仮焼の時の酸
素分圧を第2の工程の焼成の時の酸素分圧よりも高くす
る請求項9あるいは請求項10に記載のサーミスタ素子
の製造方法であり、CoOがCo34に変化するのを防
止できる。
The invention according to claim 11 is the invention according to claim 9 or claim 10, wherein the oxygen partial pressure during calcination is higher than the oxygen partial pressure during calcination in the second step. This is a manufacturing method and can prevent CoO from changing to Co 3 O 4 .

【0018】請求項12に記載の発明は、Co化合物を
CoOに変化させてから用いる請求項5〜請求項11の
いずれか一つに記載のサーミスタ素子の製造方法であ
り、体積変化を防止することができる。
According to a twelfth aspect of the present invention, there is provided a method for manufacturing a thermistor element according to any one of the fifth to eleventh aspects, wherein a Co compound is converted into CoO and used to prevent a change in volume. be able to.

【0019】請求項13に記載の発明は、金属製の耐熱
キャップと、この耐熱キャップ内に収納したサーミスタ
素子と、このサーミスタ素子に電気的に接続するととも
に、前記耐熱キャップ外に引き出したリード線とを備
え、前記サーミスタ素子は(Mg,Ni,Co)Oを主
成分とするとともに、その表面を絶縁体でコーティング
されたものである温度センサであり、600−800℃
での高精度な温度測定が可能なものである。
According to a thirteenth aspect of the present invention, there is provided a heat-resistant cap made of metal, a thermistor element housed in the heat-resistant cap, and a lead wire electrically connected to the thermistor element and drawn out of the heat-resistant cap. A temperature sensor comprising (Mg, Ni, Co) O as a main component and having its surface coated with an insulator.
The temperature can be measured with high accuracy.

【0020】請求項14に記載の発明は、絶縁体をMg
Oを主成分とする請求項13に記載の温度センサであ
り、信頼性が向上する。
According to a fourteenth aspect of the present invention, the insulator is made of Mg.
The temperature sensor according to claim 13, wherein O is a main component, and the reliability is improved.

【0021】以下、本発明の一実施の形態を説明する。 (実施の形態1)図1は、本実施の形態における触媒温
度検知用の温度センサの断面図であり、サーミスタ素子
1を耐熱キャップ5内に密封し、白金パイプ2a,2b
には二芯管3のリード線4a,4bを溶接し、サーミス
タ素子1からリード線4a,4bを引き出していた。
Hereinafter, one embodiment of the present invention will be described. (Embodiment 1) FIG. 1 is a sectional view of a temperature sensor for detecting a catalyst temperature according to the present embodiment, in which a thermistor element 1 is sealed in a heat-resistant cap 5 and platinum pipes 2a, 2b
, The lead wires 4a, 4b of the two-core tube 3 were welded, and the lead wires 4a, 4b were pulled out from the thermistor element 1.

【0022】図2は図1の温度センサに用いるサーミス
タ素子1の斜視図であり、サーミスタ素子1に白金パイ
プ2a,2bを挿入して一体焼成したものである。
FIG. 2 is a perspective view of the thermistor element 1 used in the temperature sensor shown in FIG. 1, in which platinum pipes 2a and 2b are inserted into the thermistor element 1 and integrally fired.

【0023】図3は図2に示すサーミスタ素子を形成す
る材料のX線回折パターン図である。
FIG. 3 is an X-ray diffraction pattern diagram of a material forming the thermistor element shown in FIG.

【0024】まずMgO,NiO,CoOを(Mgx
Niy,Coz)Oにおいてx,y,zが(表1)及び
(表2)に示す組成になるように所定量秤量し、試料1
〜36を作製した。
First, MgO, NiO, and CoO are converted to (Mg x ,
Ni y , Co z ) O was weighed so that x, y, and z had the compositions shown in (Table 1) and (Table 2).
~ 36 were produced.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】次に試料1をボールミルにて16時間混合
し、1200℃で仮焼した後、再びボールミルで18時
間粉砕し、乾燥後5重量%のPVA(ポリビニルアルコ
ール)水溶液を10重量%添加して造粒を行い、最後に
図2に示す形状に成形し、白金パイプ2a,2bを挿入
した後、200℃/hで昇温し、1600℃で5時間保
持し、その後200℃/hで降温して焼成し、サーミス
タ素子を得た。試料2〜36についても同様に作製し
た。
Next, sample 1 was mixed in a ball mill for 16 hours, calcined at 1200 ° C., pulverized again in a ball mill for 18 hours, dried, and then added with 10% by weight of a 5% by weight aqueous PVA (polyvinyl alcohol) solution. After finally forming into the shape shown in FIG. 2 and inserting the platinum pipes 2a and 2b, the temperature is raised at 200 ° C./h, held at 1600 ° C. for 5 hours, and then at 200 ° C./h. The temperature was lowered and baked to obtain a thermistor element. Samples 2 to 36 were similarly prepared.

【0028】このようにして得られたサーミスタ素子1
の表面をMgOよりなる絶縁体で被覆した後、従来と同
様に図1に示す触媒温度検知用センサ中に組み込んだ。
なお耐熱キャップ5、二芯管3は耐熱材料であるSUS
310Sで形成されている。そして、600℃、800
℃における抵抗値を測定し、600−800℃間のB定
数を(数1)により算出し、(表1)、(表2)にR6
00、R800、B定数で示した。
The thermistor element 1 thus obtained
Was coated with an insulator made of MgO, and then incorporated in a catalyst temperature detection sensor shown in FIG.
The heat-resistant cap 5 and the two-core tube 3 are made of SUS which is a heat-resistant material.
310S. And 600 ° C, 800
The resistance at 600 ° C. was measured, and the B constant between 600 and 800 ° C. was calculated by (Equation 1).
00, R800 and B constant.

【0029】[0029]

【数1】 (Equation 1)

【0030】本実施の形態に示すように、(Mg,N
i,Co)Oによる電気伝導を導入する事により、測定
に好都合な抵抗値及び、600−800℃でのB定数を
増大させることが可能になる。
As shown in this embodiment, (Mg, N
Introducing electric conduction by (i, Co) O makes it possible to increase a resistance value convenient for measurement and a B constant at 600 to 800 ° C.

【0031】ここで本発明のポイントについて記載して
おく。 (1)B定数の大きなサーミスタ素子を得るために、
(Mg,Ni,Co)Oは、NaCl型単相の結晶構造
をとるようにする。
Here, the points of the present invention will be described. (1) To obtain a thermistor element having a large B constant,
(Mg, Ni, Co) O has a NaCl single phase crystal structure.

【0032】(2)(Mg,Ni,Co)O系組成とし
て、(Mgx,Niy,Coz)O(ただし、0.10≦
x≦0.90,0.10≦y≦0.90,0.10≦z
≦0.90,x+y+z=1.0)を用いることが、高
B定数及び温度センサとして適切な抵抗温度特性を得る
のに望ましい。
(2) As the (Mg, Ni, Co) O-based composition, (Mg x , Ni y , Co z ) O (provided that 0.10 ≦
x ≦ 0.90, 0.10 ≦ y ≦ 0.90, 0.10 ≦ z
.Ltoreq.0.90, x + y + z = 1.0) is desirable in order to obtain a high B constant and appropriate resistance-temperature characteristics as a temperature sensor.

【0033】(3)焼成時にCoOがCo34に変化し
ないように、200℃/h以上の速度で降温する。これ
よりも降温速度が小さいとCoOがCo34に変化し
て、NaCl型単相でなく、NaCl型とスピネル型の
2相になり、B定数が低くなってしまうからである。
(3) The temperature is lowered at a rate of 200 ° C./h or more so that CoO does not change to Co 3 O 4 during firing. If the temperature lowering rate is lower than this, CoO changes to Co 3 O 4 and becomes not NaCl-type single phase but two phases of NaCl-type and spinel-type, resulting in a lower B constant.

【0034】(4)焼成時に、保持過程の酸素分圧より
も降温過程の酸素分圧を低くして、CoOがCo34
変化するのを防止する。ただし降温過程の酸素分圧は、
サーミスタ素子を構成する金属酸化物が還元されて金属
にならない程度にすることが必要である。本実施の形態
ではNiOが還元されやすいので、気をつけなければな
らない。
(4) At the time of firing, the oxygen partial pressure in the temperature lowering process is set lower than the oxygen partial pressure in the holding process to prevent CoO from changing to Co 3 O 4 . However, the oxygen partial pressure during the cooling process is
It is necessary that the metal oxide constituting the thermistor element be reduced to a level that does not become a metal. In this embodiment, care must be taken since NiO is easily reduced.

【0035】(5)本実施の形態では、焼成時の保持過
程の温度を1600℃としたが、Co化合物がCoOに
変化する温度以上であればよく、大体1000℃以上で
ある。
(5) In the present embodiment, the temperature during the holding process during firing is set to 1600 ° C., but it is sufficient if the temperature is higher than the temperature at which the Co compound changes to CoO, and approximately 1000 ° C. or higher.

【0036】(6)原料を仮焼することにより、焼結体
密度の低下を防ぎ、サーミスタ素子の強度の低下を防止
することができる。ここでMgO,NiO,CoO以外
の化合物を出発原料として用いる場合、この仮焼の時の
最高温度を焼成の時の最高温度よりも高くして、それぞ
れMgO,NiO,CoOにしておくことが好ましい。
(6) By calcining the raw material, it is possible to prevent a decrease in the density of the sintered body and a decrease in the strength of the thermistor element. Here, when a compound other than MgO, NiO, and CoO is used as a starting material, it is preferable that the maximum temperature during the calcination be higher than the maximum temperature during the calcination to be MgO, NiO, and CoO, respectively. .

【0037】また仮焼の時の酸素分圧を焼成の時の酸素
分圧よりも高くすることにより、仮焼の時にCoOに変
化させたものが、焼成によりCo34に変化するのを防
止する。
Further, by changing the oxygen partial pressure during calcination to be higher than the oxygen partial pressure during calcination, it is possible to reduce the change from CoO during calcination to Co 3 O 4 due to calcination. To prevent.

【0038】(7)CoO以外のCo化合物はCoOに
変化させてから用いることにより、焼結体密度の低下を
防ぐことができる。
(7) By using a Co compound other than CoO after changing it to CoO, it is possible to prevent a decrease in sintered body density.

【0039】(8)温度センサに組み込む際、サーミス
タ素子の表面を絶縁体でコーティングすることにより、
温度センサとして使用中耐熱キャップ内が還元雰囲気に
なったとしても、サーミスタ素子が還元されるのを防止
できる。
(8) When incorporated in a temperature sensor, the surface of the thermistor element is coated with an insulator,
Even if the inside of the heat-resistant cap becomes a reducing atmosphere during use as a temperature sensor, it is possible to prevent the thermistor element from being reduced.

【0040】また絶縁体としては、MgOのようにサー
ミスタ素子と熱膨張係数が同程度のものを主成分とする
ことにより、絶縁体が破壊するのを防止できる。
The main component of the insulator, such as MgO, having the same coefficient of thermal expansion as that of the thermistor element, can prevent the insulator from being broken.

【0041】[0041]

【発明の効果】以上本発明によると、600−800℃
でのB定数が大きく、適切な抵抗値を有するサーミスタ
素子を得ることができる。そしてこのサーミスタ素子を
用いた温度センサは、600−800℃での高精度な温
度測定が可能で、信頼性の高いものである。
As described above, according to the present invention, 600-800 ° C.
And a thermistor element having an appropriate resistance value can be obtained. The temperature sensor using this thermistor element can measure the temperature with high accuracy at 600 to 800 ° C. and is highly reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における温度センサの断
面図
FIG. 1 is a sectional view of a temperature sensor according to an embodiment of the present invention.

【図2】図1に示す温度センサに用いたサーミスタ素子
の斜視図
FIG. 2 is a perspective view of a thermistor element used in the temperature sensor shown in FIG.

【図3】図2に示すサーミスタ素子を形成する材料のX
線回折パターン図
FIG. 3 is a graph showing the X of the material forming the thermistor element shown in FIG. 2;
Line diffraction pattern diagram

【符号の説明】[Explanation of symbols]

1 サーミスタ素子 2a 白金パイプ 2b 白金パイプ 4a リード線 4b リード線 5 耐熱キャップ DESCRIPTION OF SYMBOLS 1 Thermistor element 2a Platinum pipe 2b Platinum pipe 4a Lead wire 4b Lead wire 5 Heat resistant cap

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 (Mg,Ni,Co)O系組成物を主成
分とするサーミスタ素子。
1. A thermistor element comprising a (Mg, Ni, Co) O-based composition as a main component.
【請求項2】 (Mg,Ni,Co)O系組成物は、N
aCl型の結晶構造である請求項1に記載のサーミスタ
素子。
2. The (Mg, Ni, Co) O composition comprises N
The thermistor element according to claim 1, which has an aCl-type crystal structure.
【請求項3】 (Mg,Ni,Co)O系組成物とし
て、(Mgx,Niy,Coz)O(ただし、0.10≦
x≦0.90,0.10≦y≦0.90,0.10≦z
≦0.90,x+y+z=1.0)を用いる請求項1に
記載のサーミスタ素子。
3. A (Mg, Ni, Co) O-based composition comprising (Mg x , Ni y , Co z ) O (provided that 0.10 ≦
x ≦ 0.90, 0.10 ≦ y ≦ 0.90, 0.10 ≦ z
Thermistor element according to claim 1, wherein ≤ 0.90, x + y + z = 1.0).
【請求項4】 (Mgx,Niy,Coz)O(ただし、
0.10≦x≦0.90,0.10≦y≦0.90,
0.10≦z≦0.90,x+y+z=1.0)は、N
aCl型の結晶構造である請求項3に記載のサーミスタ
素子。
4. (Mg x , Ni y , Co z ) O (provided that
0.10 ≦ x ≦ 0.90, 0.10 ≦ y ≦ 0.90,
0.10 ≦ z ≦ 0.90, x + y + z = 1.0) is N
The thermistor element according to claim 3, which has an aCl-type crystal structure.
【請求項5】 少なくともMg化合物と、Ni化合物
と、Co化合物とを混合して成形体を形成する第1の工
程と、次にこの成形体を焼成する第2の工程とを備え、
この第2の工程の焼成は、昇温過程と、保持過程と、降
温過程とを有し、この降温過程はCoOがCo34に変
化しないような速度で降温するサーミスタ素子の製造方
法。
5. A first step of forming a compact by mixing at least an Mg compound, a Ni compound, and a Co compound, and a second step of firing the compact thereafter.
The firing in the second step includes a temperature raising step, a holding step, and a temperature lowering step, and the temperature lowering step is a method for manufacturing a thermistor element in which the temperature is lowered at such a rate that CoO does not change to Co 3 O 4 .
【請求項6】 CoOがCo34に変化しないような速
度は、200℃/h以上とする請求項5に記載のサーミ
スタ素子の製造方法。
6. The method for manufacturing a thermistor element according to claim 5, wherein the rate at which CoO does not change to Co 3 O 4 is 200 ° C./h or more.
【請求項7】 第2の工程の焼成において、保持過程の
酸素分圧よりも降温過程の酸素分圧を低くする請求項5
あるいは請求項6に記載のサーミスタ素子の製造方法。
7. The calcination in the second step, wherein the oxygen partial pressure in the temperature lowering step is lower than the oxygen partial pressure in the holding step.
Alternatively, a method for manufacturing a thermistor element according to claim 6.
【請求項8】 第2の工程の焼成において、保持過程の
温度は、Co化合物がCoOに変化する温度以上である
請求項5〜請求項7のいずれか一つに記載のサーミスタ
素子の製造方法。
8. The method for manufacturing a thermistor element according to claim 5, wherein in the firing in the second step, the temperature of the holding step is equal to or higher than the temperature at which the Co compound changes to CoO. .
【請求項9】 第1の工程後、成形体を仮焼する請求項
5〜請求項8のいずれか一つに記載のサーミスタ素子の
製造方法。
9. The method for manufacturing a thermistor element according to claim 5, wherein after the first step, the molded body is calcined.
【請求項10】 仮焼の時の最高温度は、第2の工程の
焼成における保持過程の温度よりも高い請求項9に記載
のサーミスタ素子の製造方法。
10. The method for manufacturing a thermistor element according to claim 9, wherein the maximum temperature during the calcination is higher than the temperature in the holding step in the firing in the second step.
【請求項11】 仮焼の時の酸素分圧を第2の工程の焼
成の時の酸素分圧よりも高くする請求項9あるいは請求
項10に記載のサーミスタ素子の製造方法。
11. The method for producing a thermistor element according to claim 9, wherein the oxygen partial pressure during calcination is higher than the oxygen partial pressure during calcination in the second step.
【請求項12】 Co化合物をCoOに変化させてから
用いる請求項5〜請求項11のいずれか一つに記載のサ
ーミスタ素子の製造方法。
12. The method for producing a thermistor element according to claim 5, wherein the Co compound is used after being changed to CoO.
【請求項13】 金属製の耐熱キャップと、この耐熱キ
ャップ内に収納したサーミスタ素子と、このサーミスタ
素子に電気的に接続するとともに、前記耐熱キャップ外
に引き出したリード線とを備え、前記サーミスタ素子は
(Mg,Ni,Co)Oを主成分とするとともに、その
表面を絶縁体でコーティングされたものである温度セン
サ。
13. A thermistor element comprising: a metal heat-resistant cap; a thermistor element housed in the heat-resistant cap; and a lead wire electrically connected to the thermistor element and drawn out of the heat-resistant cap. Is a temperature sensor whose main component is (Mg, Ni, Co) O and whose surface is coated with an insulator.
【請求項14】 絶縁体は、MgOを主成分とする請求
項13に記載の温度センサ。
14. The temperature sensor according to claim 13, wherein the insulator contains MgO as a main component.
JP26847197A 1997-10-01 1997-10-01 Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element Expired - Fee Related JP3362644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26847197A JP3362644B2 (en) 1997-10-01 1997-10-01 Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26847197A JP3362644B2 (en) 1997-10-01 1997-10-01 Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element

Publications (2)

Publication Number Publication Date
JPH11111508A true JPH11111508A (en) 1999-04-23
JP3362644B2 JP3362644B2 (en) 2003-01-07

Family

ID=17458971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26847197A Expired - Fee Related JP3362644B2 (en) 1997-10-01 1997-10-01 Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element

Country Status (1)

Country Link
JP (1) JP3362644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033343A (en) * 2009-07-29 2011-02-17 Ngk Spark Plug Co Ltd Temperature sensor
CN108439982A (en) * 2018-05-14 2018-08-24 济南大学 A kind of axial composite-rotor negative temperature coefficient thermal-sensitive ceramic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033343A (en) * 2009-07-29 2011-02-17 Ngk Spark Plug Co Ltd Temperature sensor
CN108439982A (en) * 2018-05-14 2018-08-24 济南大学 A kind of axial composite-rotor negative temperature coefficient thermal-sensitive ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3362644B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP5256897B2 (en) Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
CN107056273A (en) A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof
JP3453283B2 (en) Solid oxide fuel cell
WO2010086915A1 (en) Sintered metal oxide for thermistor, thermistor element, thermistor temperature sensor and method for producing sintered metal oxide for thermistor
JPH0799103A (en) Porcelain composition for thermistor, and thermistor element
JPH1171169A (en) Oxide-ion conductive ceramic and its production
KR100427900B1 (en) High temperature thermistor containing rare earth metal element
KR101511840B1 (en) Sintered metal oxide for temperature sensor and proess for producing same
JPH07201526A (en) Porcelain composition for thermistor
CN111704462B (en) Composite negative temperature coefficient thermistor suitable for temperature measurement of general aviation exhaust emission and preparation method thereof
JP3362644B2 (en) Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element
JP2008306086A (en) Thermistor element and manufacturing method of thermistor element
JP3350203B2 (en) Solid oxide fuel cell
JP2003323906A (en) Solid electrolyte fuel cell
JP4790978B2 (en) Oxygen ion conductive solid electrolyte, method for producing the same, electrochemical device using the same, and solid electrolyte fuel cell
JPS5947258B2 (en) Oxygen sensor and its manufacturing method
JPH0562805A (en) Material for high-temperature thermistor
JP2015078089A (en) Thermistor element and temperature sensor
JP2904007B2 (en) Temperature sensor
JP2985589B2 (en) Temperature sensor
JP2904002B2 (en) Temperature sensor
JP2002329602A (en) Method of manufacturing negative temperature coefficient thermistor device
JP6440641B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP2004217500A (en) Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor
JPS58201057A (en) Sensing element of gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees