JPH11108862A - Method for analyzing structure of metal multilayered film by measuring x-ray reflectivity and fluorescent x-rays and standard sample and apparatus used therein - Google Patents

Method for analyzing structure of metal multilayered film by measuring x-ray reflectivity and fluorescent x-rays and standard sample and apparatus used therein

Info

Publication number
JPH11108862A
JPH11108862A JP9268750A JP26875097A JPH11108862A JP H11108862 A JPH11108862 A JP H11108862A JP 9268750 A JP9268750 A JP 9268750A JP 26875097 A JP26875097 A JP 26875097A JP H11108862 A JPH11108862 A JP H11108862A
Authority
JP
Japan
Prior art keywords
ray
measurement
sample
measuring
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9268750A
Other languages
Japanese (ja)
Other versions
JP3883267B2 (en
Inventor
Yoshiaki Hara
嘉昭 原
Yasuhiro Kitade
康博 北出
Takuya Uzumaki
拓也 渦巻
Yutaka Shimizu
豊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26875097A priority Critical patent/JP3883267B2/en
Publication of JPH11108862A publication Critical patent/JPH11108862A/en
Application granted granted Critical
Publication of JP3883267B2 publication Critical patent/JP3883267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately analyze the structure of a metal multilayered film within a short time. SOLUTION: The sensitivity coefficient to a membrane of a fluorescent X-ray measuring apparatus is determined by measuring the X-ray reflectivity and fluorescent X-rays of a standard sample (steps S1-4). An unknown sample is measured by the fluorescent X-ray measuring apparatus corrected in its sensitivity coefficient (step S5) and the X-ray reflectivity of the same unknown sample is measured (step S6). In the analysis of the measurement of X-ray reflectivity, by selecting a structure parameter not contradictory to the adhesion amt. of each layer of the unknown sample obtained by the measurement of fluorescent of X-rays, the structure of the unknown sample is determined (steps S1, 8).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属多層膜の密
度、膜厚、界面ラフネスなどの構造を解析するための方
法及びそれに用いる標準試料及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a structure such as a density, a film thickness, and an interface roughness of a metal multilayer film, and a standard sample and an apparatus used for the method.

【0002】[0002]

【従来の技術】金属多層膜の構造を解析する方法として
は、X線反射率測定法及び蛍光X線装置を用いる方法が
ある。X線反射率測定法は、金属多層膜の膜構造を非破
壊で評価できる方法として近年注目されている。X線反
射率測定による金属多層膜の構造解析は、理論上では反
射率プロファイルを解析することで可能である。しか
し、実際の測定データは様々なエラーを含んでいるた
め、評価精度が低下する。
2. Description of the Related Art As methods for analyzing the structure of a metal multilayer film, there are an X-ray reflectivity measuring method and a method using a fluorescent X-ray apparatus. The X-ray reflectivity measurement method has recently attracted attention as a method capable of non-destructively evaluating the film structure of a metal multilayer film. Structural analysis of a metal multilayer film by X-ray reflectivity measurement is theoretically possible by analyzing a reflectivity profile. However, the actual measurement data contains various errors, and the evaluation accuracy is reduced.

【0003】特に、X線に対する屈折率が近い複数の層
が相互に近接して配置されている積層膜では、合計膜厚
は評価できるものの、層を分離して評価することが比較
的難しい。このような積層膜の合計膜厚の内訳を分離し
て評価するためには、測定時間を長くするなどにより、
十分に高精度な測定が必要となる。しかし、汎用のX線
反射率装置では、一枚のサンプルの測定に数時間もの時
間が必要となり、応用面で問題が発生する。また、試料
に対し非常に小さな角度でX線を入射するため、X線と
試料のアライメントが難しいなどの問題がある。
[0003] In particular, in a laminated film in which a plurality of layers having a close refractive index to X-rays are arranged close to each other, the total film thickness can be evaluated, but it is relatively difficult to evaluate by separating the layers. In order to separate and evaluate the breakdown of the total film thickness of such a laminated film, by increasing the measurement time,
Sufficiently accurate measurement is required. However, a general-purpose X-ray reflectivity apparatus requires several hours to measure one sample, which causes a problem in application. Further, since the X-rays are incident on the sample at a very small angle, there is a problem that it is difficult to align the X-rays with the sample.

【0004】蛍光X線測定による方法は、試料に含まれ
る各元素の特性X線を検出して構造を解析するため、屈
折率が近い層が近接して配置された場合でも、各層の分
離評価が容易に行える。しかし、一般に蛍光X線測定
は、定量したい元素についての感度係数、即ち、構造の
分かっている標準試料に対し理論的に計算される蛍光X
線の出力と実測値との比を知る必要がある。これは、試
料の膜厚に応じて装置の感度係数が大幅に異なるため、
標準試料を用いて装置の絶対値(感度係数)を補正して
構造解析をする必要があるためである。通常、バルク試
料に対する感度係数値は求められているが、バルク試料
での蛍光X線出力は、薄膜試料に比べて100〜100
0倍も大きい。そのように全く出力の異なる領域で求め
られた感度係数を薄膜の場合に適用することはできな
い。
In the method based on X-ray fluorescence measurement, the characteristic X-rays of each element contained in a sample are detected and the structure is analyzed. Therefore, even when layers having a similar refractive index are arranged close to each other, the separation evaluation of each layer is performed. Can be easily performed. However, X-ray fluorescence measurement generally uses a sensitivity coefficient for an element to be quantified, that is, an X-ray fluorescence that is theoretically calculated for a standard sample having a known structure.
It is necessary to know the ratio between the output of the line and the measured value. This is because the sensitivity coefficient of the device varies greatly depending on the thickness of the sample,
This is because it is necessary to correct the absolute value (sensitivity coefficient) of the apparatus by using a standard sample and perform a structural analysis. Usually, the sensitivity coefficient value for the bulk sample is determined, but the fluorescent X-ray output of the bulk sample is 100 to 100 times smaller than that of the thin film sample.
0 times larger. Such a sensitivity coefficient obtained in an area having a completely different output cannot be applied to a thin film.

【0005】また、磁気ヘッドなどの、各膜厚が数十Å
程の薄膜試料を蛍光X線により定量する場合、これま
で、蛍光X線測定に用いる標準試料として薄膜試料と同
等の膜厚を有し、構造が明確に決定されており、かつ、
標準試料として安定に存在し得る試料がなかった。とい
うのは、従来、数十Åほどの薄膜の構造を決定する手段
がなかったこと、薄膜の状態では、材料の酸化などを防
ぎ試料を安定に保つことが困難なことから、適当な標準
試料を得ることができなかった。したがって、磁気ヘッ
ドなどの薄膜試料を蛍光X線で測定する場合に、その絶
対値の評価精度が低かった。
In addition, each film thickness of a magnetic head or the like is several tens of millimeters.
When the thin film sample is quantified by X-ray fluorescence, it has a film thickness equivalent to that of the thin film sample as a standard sample used for X-ray fluorescence measurement, the structure is clearly determined, and
There was no sample that could be stably present as a standard sample. This is because there has been no means to determine the structure of a thin film of several tens of meters, and it is difficult to keep the sample stable by preventing oxidation of the material in the thin film state. Could not get. Therefore, when a thin film sample such as a magnetic head is measured by X-ray fluorescence, the evaluation accuracy of the absolute value is low.

【0006】さらに、X線反射率測定法は、金属多層膜
の密度、膜厚、界面ラフネスなどの多様な構造を評価で
きるが、蛍光X線測定法は、付着量の評価しかできない
という問題もある。
Further, the X-ray reflectivity measurement method can evaluate various structures such as the density, film thickness, and interface roughness of a metal multilayer film, but the fluorescent X-ray measurement method can only evaluate the amount of adhesion. is there.

【0007】[0007]

【発明が解決しようとする課題】上述のように、従来の
蛍光X線測定による薄膜試料の構造解析は、蛍光X線測
定装置の感度係数を決定するための信頼できる標準試料
がないため、絶対精度の高い測定ができないという問題
がある。また、X線反射率測定による金属多層膜の構造
解析は、屈折率の近い層の分離が困難であるという問題
がある。このように、従来の金属多層膜の構造解析にお
いては、正確かつ短時間に行える膜構造の評価方法がな
かった。
As described above, the structure analysis of a thin film sample by the conventional X-ray fluorescence measurement has been difficult because there is no reliable standard sample for determining the sensitivity coefficient of the X-ray fluorescence measurement apparatus. There is a problem that highly accurate measurement cannot be performed. Further, structural analysis of a metal multilayer film by X-ray reflectivity measurement has a problem in that it is difficult to separate layers having similar refractive indexes. As described above, in the conventional structure analysis of the metal multilayer film, there is no accurate and short-time evaluation method of the film structure.

【0008】本発明は、金属多層膜の構造解析を正確か
つ短時間で行える方法及び装置を提供することを目的と
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus capable of analyzing the structure of a metal multilayer film accurately and in a short time.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するためなされたものである。本発明のX線反射率測
定及び蛍光X線測定による金属多層膜の構造解析方法
は、蛍光X線測定装置により未知試料を測定する段階
と、この蛍光X線測定による結果を解析して前記未知試
料の付着量を算出する段階と、X線反射率測定により前
記未知試料を測定する段階と、このX線反射率測定によ
る結果を解析し、その解析により得た前記未知試料の付
着量と前記蛍光X線測定装置によって得た付着量との間
で矛盾が生じない構造パラメータを選択することによ
り、前記未知試料の構造を決定する段階とからなる。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object. The method for analyzing the structure of a metal multilayer film by X-ray reflectivity measurement and X-ray fluorescence measurement according to the present invention comprises the steps of: measuring an unknown sample with an X-ray fluorescence measurement device; Calculating the amount of adhesion of the sample, measuring the unknown sample by X-ray reflectance measurement, analyzing the result of the X-ray reflectance measurement, and determining the amount of adhesion of the unknown sample obtained by the analysis and Determining the structure of the unknown sample by selecting a structural parameter that does not cause any inconsistency with the adhesion amount obtained by the X-ray fluorescence spectrometer.

【0010】未知試料に屈折率の近い複数の層が相互に
近接して配置されていると、X線反射率測定では、各層
ごとの付着量を評価することはできないが、近接する各
層の合計の付着量が得られる。一方、蛍光X線測定によ
れば、同じ未知試料について金属多層膜の各層ごとの付
着量を算出することができる。したがって、X線反射率
測定により得た解析結果について、蛍光X線測定により
得た解析結果との間で矛盾しない構造パラメータを選択
することにより、未知試料の密度、膜厚、ラフネスなど
の各種構造を評価することができる。
When a plurality of layers having a similar refractive index are arranged close to each other on an unknown sample, the amount of adhesion of each layer cannot be evaluated by X-ray reflectivity measurement, but the total amount of the adjacent layers cannot be evaluated. Is obtained. On the other hand, according to the fluorescent X-ray measurement, it is possible to calculate the adhesion amount of each metal multilayer film for the same unknown sample. Therefore, by selecting structural parameters that do not contradict the analysis results obtained by X-ray reflectivity measurement with the analysis results obtained by X-ray fluorescence measurement, various structures such as the density, film thickness, and roughness of unknown samples can be obtained. Can be evaluated.

【0011】また、本発明においては、蛍光X線測定装
置の感度係数を正確に設定するための標準試料を提供す
る。この標準試料は、定量しようとする金属材料からな
る単層の金属薄膜と、この金属薄膜と異なる屈折率を有
し、かつ安定な材料で形成され、前記単層の金属薄膜の
上下を挟んで成膜された2層の薄膜とから構成される。
この標準試料は屈折率の近い層が近接して配置されるこ
とがないので、X線反射率測定によりその構造を決定す
ることができる。
Further, the present invention provides a standard sample for accurately setting a sensitivity coefficient of a fluorescent X-ray measuring device. The standard sample is a single-layer metal thin film made of a metal material to be quantified, and has a refractive index different from that of the metal thin film, and is formed of a stable material. And two thin films formed.
The structure of this standard sample can be determined by measuring the X-ray reflectivity since layers having a similar refractive index are not arranged close to each other.

【0012】また、この標準試料を使用してX線反射率
測定を行い、その測定結果を解析することによりその標
準試料の構造を決定する段階と、この解析結果から、前
記標準試料の特性X線の理論強度を算出する段階と、前
記蛍光X線測定装置により前記標準試料の蛍光X線測定
を行い、前記標準試料の特性X線の実測値を得る段階
と、前記特性X線の理論強度と前記特性X線の実測値と
から前記蛍光X線測定装置の感度係数を得る段階とか
ら、蛍光X線測定装置の感度係数を補正することができ
る。
Further, X-ray reflectivity measurement is performed using the standard sample, and the measurement result is analyzed to determine the structure of the standard sample. From the analysis result, the characteristic X of the standard sample is determined. Calculating the theoretical intensity of the X-ray; performing the fluorescent X-ray measurement of the standard sample with the fluorescent X-ray measuring device to obtain an actual measured value of the characteristic X-ray of the standard sample; From the step of obtaining the sensitivity coefficient of the X-ray fluorescence measuring device from the measured values of the characteristic X-rays, the sensitivity coefficient of the X-ray fluorescence measuring device can be corrected.

【0013】これにより、薄膜構造の金属多層膜を測定
する際の蛍光X線測定装置の感度係数を正確に決定する
ことができるので、上述の金属多層膜の構造解析方法に
おける精度を向上させることができる。さらに、本発明
は、上述の金属多層膜の構造解析を行う装置を、X線反
射率測定装置と、蛍光X線測定装置と、標準試料及び未
知試料を前記X線反射率測定装置と前記蛍光X線測定装
置の測定位置に搬送する装置と、前記標準試料を、前記
X線反射率測定装置と前記蛍光X線測定装置により測定
した測定結果から、前記蛍光X線測定装置の感度係数を
設定する感度係数決定部と、前記未知試料を、前記感度
係数が設定された前記蛍光X線測定装置と前記X線反射
率測定装置により測定し、各測定結果を相補的に解析し
て、最適な解析解を得て構造を決定する構造決定部とか
ら構成することができる。
[0013] This makes it possible to accurately determine the sensitivity coefficient of the X-ray fluorescence spectrometer when measuring a metal multilayer film having a thin film structure, thereby improving the accuracy in the above-described method for analyzing the structure of the metal multilayer film. Can be. Further, the present invention provides an apparatus for analyzing the structure of the above-mentioned metal multilayer film, an X-ray reflectometer, a fluorescent X-ray analyzer, a standard sample and an unknown sample, and the X-ray reflectometer and the fluorescent sample. The sensitivity coefficient of the fluorescent X-ray measuring device is set based on the measurement result obtained by measuring the standard sample with the X-ray measuring device using the X-ray reflectivity measuring device and the fluorescent X-ray measuring device. The sensitivity coefficient determination unit to perform, the unknown sample is measured by the fluorescent X-ray measurement device and the X-ray reflectance measurement device in which the sensitivity coefficient is set, and each measurement result is analyzed in a complementary manner, so that the optimum And a structure determining unit that determines a structure by obtaining an analytical solution.

【0014】この装置によれば、標準試料による蛍光X
線測定装置の感度係数の補正から、未知試料の構造解析
までを、自動的に短時間に行うことができる。
According to this apparatus, the fluorescence X of the standard sample
From the correction of the sensitivity coefficient of the line measuring device to the analysis of the structure of the unknown sample can be automatically performed in a short time.

【0015】[0015]

【発明の実施の形態】本発明の実施形態について図を用
いて説明する。図1は、本発明を適用した金属多層膜の
構造解析装置の構成を示す。図1において、1は構造解
析装置で、X線反射率測定装置2と蛍光X線測定装置3
と構造解析部4と自動搬送装置7と表示装置10を具備
する。X線反射率測定装置2と蛍光X線測定装置3は公
知のものが使用される。構造解析部4はコンピユータに
より構成される。構造解析部4は、蛍光X線測定装置3
の感度係数を決定するための感度係数決定部5と、構造
決定部6を有する。自動搬送装置7は、標準試料8及び
未知試料9をX線反射率測定装置2及び蛍光X線測定装
置3の測定位置へ搬送する。なお、この自動搬送装置7
の制御については説明を省略する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a metal multilayer structure analysis apparatus to which the present invention is applied. In FIG. 1, reference numeral 1 denotes a structural analysis device, which is an X-ray reflectance measuring device 2 and a fluorescent X-ray measuring device 3
, A structural analysis unit 4, an automatic transfer device 7, and a display device 10. Known X-ray reflectivity measuring devices 2 and fluorescent X-ray measuring devices 3 are used. The structure analysis unit 4 is constituted by a computer. The structural analysis unit 4 includes the fluorescent X-ray measurement device 3
And a structure determining unit 6 for determining the sensitivity coefficient of the image. The automatic transport device 7 transports the standard sample 8 and the unknown sample 9 to the measurement positions of the X-ray reflectance measuring device 2 and the fluorescent X-ray measuring device 3. In addition, this automatic transfer device 7
The description of the control is omitted.

【0016】図2に、構造解析部4のハード構成を示
す。構造解析部4は、CPU11と、RAM又はハード
ディスクなどのメモリ12と、インターフェース13と
を具備し、インターフェース13には、X線反射率測定
装置2、蛍光X線測定装置3、表示装置10、外部メモ
リ装置14が接続される。CPU11は、外部メモリ装
置14が読み取るCD−ROM又はFDなどの記憶媒体
15に記憶されたプログラムによって、以下に説明する
処理を実行する。なお、プログラムを記憶した記憶媒体
としては、メモリ12を使用することも、或いは、図示
しない回線などに接続されたメモリを使用することもで
きる。
FIG. 2 shows a hardware configuration of the structure analysis unit 4. The structure analysis unit 4 includes a CPU 11, a memory 12 such as a RAM or a hard disk, and an interface 13. The interface 13 includes an X-ray reflectometer 2, a fluorescent X-ray detector 3, a display device 10, and an external device. The memory device 14 is connected. The CPU 11 executes processing described below by a program stored in a storage medium 15 such as a CD-ROM or FD read by the external memory device 14. As the storage medium storing the program, the memory 12 or a memory connected to a line (not shown) can be used.

【0017】ここで、図1に示した構造解析装置1の動
作の概略を説明する。標準試料8としては、定量したい
層の厚さを変えた数枚の試料が用意される。自動搬送装
置7は、最初に標準試料8をX線反射率測定装置2へ運
び、標準試料8についてX線反射率測定を行い、次い
で、蛍光X線測定装置3へ運び、蛍光X線測定を行う。
構造解析部4の感度係数決定部5は、X線反射率測定の
結果と蛍光X線測定の結果に基づいて、蛍光X線測定装
置3の感度係数を決定し、蛍光X線測定装置3にその感
度係数を設定する。
Here, an outline of the operation of the structural analysis apparatus 1 shown in FIG. 1 will be described. As the standard sample 8, several samples in which the thickness of the layer to be quantified is changed are prepared. The automatic transport device 7 first carries the standard sample 8 to the X-ray reflectivity measuring device 2, measures the X-ray reflectivity of the standard sample 8, and then carries it to the fluorescent X-ray measuring device 3 to perform the fluorescent X-ray measurement. Do.
The sensitivity coefficient determining unit 5 of the structural analysis unit 4 determines the sensitivity coefficient of the fluorescent X-ray measuring device 3 based on the result of the X-ray reflectance measurement and the result of the fluorescent X-ray measurement, and The sensitivity coefficient is set.

【0018】次に、自動搬送装置7は、スピンバルブ膜
などの未知試料9を順次、X線反射率測定装置2と蛍光
X線測定装置3へ搬送する。構造解析部4の構造決定部
6では、X線反射率測定の結果と蛍光X線測定の結果に
基づいて、未知試料9の構造解析を行い、表示装置10
へ密度、膜厚、界面ラフネスなどの構造解析結果を表示
する。
Next, the automatic transfer device 7 transfers the unknown sample 9 such as a spin valve film to the X-ray reflectivity measuring device 2 and the fluorescent X-ray measuring device 3 sequentially. The structure determination unit 6 of the structure analysis unit 4 performs the structure analysis of the unknown sample 9 based on the result of the X-ray reflectance measurement and the result of the fluorescent X-ray measurement, and
Displays structural analysis results such as density, film thickness, and interface roughness.

【0019】次に、構造解析部4における構造解析処理
について詳細に説明する。図3は、構造解析部4におけ
る処理動作を示すフローチャートである。図3におい
て、ステップS1〜S4が、感度係数決定部5により標
準試料8を用いて蛍光X線測定装置3の感度係数を決定
する処理を示す。また、ステップS5〜S9が、構造決
定部6により未知試料9の構造を決定する処理を示す。
Next, the structure analysis processing in the structure analysis unit 4 will be described in detail. FIG. 3 is a flowchart showing a processing operation in the structure analysis unit 4. In FIG. 3, steps S <b> 1 to S <b> 4 show processing in which the sensitivity coefficient determination unit 5 uses the standard sample 8 to determine the sensitivity coefficient of the fluorescent X-ray measurement device 3. Steps S <b> 5 to S <b> 9 show processing in which the structure of the unknown sample 9 is determined by the structure determining unit 6.

【0020】図4に、本例において使用される標準試料
8と未知試料9の構造を示す。図4(A)は標準試料8
の構造を示す。X線反射率測定装置2は、X線に対する
屈折率が近い層を分離して評価することが困難である
が、屈折率が異なるTa(タンタル)と3d磁性金属層
との分離は容易に行える。標準試料8は、このX線反射
率の性質を利用するため、単層の3d磁性金属層を安定
なTaで挟んだ膜を成膜して作成する。
FIG. 4 shows the structures of the standard sample 8 and the unknown sample 9 used in this example. FIG. 4A shows a standard sample 8.
The structure of is shown. Although it is difficult for the X-ray reflectometer 2 to separate and evaluate a layer having a close refractive index to X-rays, it is easy to separate a 3d magnetic metal layer from Ta (tantalum) having different refractive indexes. . In order to utilize the property of the X-ray reflectivity, the standard sample 8 is formed by forming a film in which a single 3d magnetic metal layer is sandwiched by stable Ta.

【0021】具体的には、Si基板上に、50Å厚のT
a層、xÅ厚のX層、100Å厚のTa層を成膜してい
る。ただし、xÅは膜厚を表し、Xは、NiFe,Co
Fe,Cuなどの3d磁性金属層を表す。なお、以下の
説明においては、図示の薄膜構造をSi/Ta(50)
/X(x)/Ta(100)のように表す。ここで上下
のTa層の膜厚は厳密に50,100Åである必要はな
く、およそ同一レベルであばよい。
More specifically, a 50 ° thick T
An a layer, an X layer having a thickness of xÅ, and a Ta layer having a thickness of 100Å are formed. Here, xÅ represents the film thickness, and X represents NiFe, Co
Represents a 3d magnetic metal layer of Fe, Cu, etc. In the following description, the illustrated thin film structure is referred to as Si / Ta (50).
/ X (x) / Ta (100). Here, the thicknesses of the upper and lower Ta layers need not be strictly 50, 100 °, but may be approximately the same level.

【0022】本例では、標準試料8の金属層Xとして後
述の未知試料9の1つの金属層であるCoFeを使用
し、その膜厚xとして、35Å、55Å、75Åの3種
類の標準試料を使用する。なお、この膜厚としては、未
知試料のCoFe層の膜厚と同一レベルにあれば良く厳
密に同一である必要はない。また、3種類の膜厚を用意
するのは感度係数の決定の精度を向上させるためであっ
て、1種類の標準試料を用意するだけでも良いものであ
る。
In this example, CoFe, which is one metal layer of an unknown sample 9 described later, is used as the metal layer X of the standard sample 8, and three standard samples of 35 °, 55 °, and 75 ° are used as the film thickness x. use. The film thickness need not be exactly the same as long as it is at the same level as the film thickness of the CoFe layer of the unknown sample. Also, the three types of film thickness are prepared to improve the accuracy of determination of the sensitivity coefficient, and only one type of standard sample may be prepared.

【0023】図4(B)に示す未知試料は、Si/Ta
(50)/NiFe(20)/CoFe(55)/Ta
(100)の構造を有するものとする。図3のステップ
S1で、定量すべき層の厚さが異なる3種類の標準試料
〔Si/Ta(50)/CoFe(x)/Ta(10
0),x=35,55,75Å〕についてX線反射率測
定装置2によりX線反射率測定を行う。
The unknown sample shown in FIG.
(50) / NiFe (20) / CoFe (55) / Ta
It has the structure of (100). In step S1 of FIG. 3, three types of standard samples [Si / Ta (50) / CoFe (x) / Ta (10
0), x = 35, 55, 75 °] is measured by the X-ray reflectometer 2.

【0024】ステップS2で、X線反射率測定の結果を
解析して構造を決定する。この構造決定は公知の手法を
使用して実現できる。図5に、実測したX線反射率曲線
を点で、フィッティング結果を実線で示す。図5の横軸
はX線の入力角度(deg)を示し、縦軸は測定された
反射量を示す。いずれの試料に対しても、2θ≦7de
gの広い角度範囲で微細な構造まで測定データを良く再
現している。図中に示したR値はフィッティングの良し
悪しの指標であり、およそ2%であった。
In step S2, the structure is determined by analyzing the result of the X-ray reflectivity measurement. This structure determination can be realized using a known method. In FIG. 5, the measured X-ray reflectance curve is indicated by a point, and the fitting result is indicated by a solid line. The horizontal axis in FIG. 5 indicates the input angle (deg) of the X-ray, and the vertical axis indicates the measured reflection amount. For any sample, 2θ ≦ 7de
The measurement data is well reproduced up to a fine structure in a wide angle range of g. The R value shown in the figure is an index of the quality of the fitting, and was about 2%.

【0025】図6に、評価パラメータをまとめて示す。
なお、図6におけるTa2 5 は、Ta層の表面にでき
た酸化膜層を表している。図3のステップS3で、蛍光
X線測定装置3により蛍光X線測定を行う。ステップS
4で蛍光X線測定装置の感度補正を行う。感度補正のた
め、最初に、図6の評価パラメータを基に、3種類の標
準試料ごとにFundamental Parameter method(FP法)
を用いてCoKα線の理論強度を計算する。
FIG. 6 shows the evaluation parameters collectively.
Incidentally, Ta 2 O 5 in FIG. 6 represents an oxide film layer formed on the surface of the Ta layer. In step S3 of FIG. 3, X-ray fluorescence measurement is performed by the X-ray fluorescence measurement apparatus 3. Step S
In step 4, the sensitivity of the X-ray fluorescence measuring apparatus is corrected. First, for sensitivity correction, Fundamental Parameter method (FP method) for each of the three standard samples based on the evaluation parameters in FIG.
Is used to calculate the theoretical intensity of CoKα radiation.

【0026】図7に、CoKα線の理論強度と実測値と
の関係を示す。横軸は計算して求めた理論強度で、縦軸
はステップS3で測定した実測値である。3種類の標準
試料(x=35,55,75Å)ごとの結果をプロット
すると、図示のとおりとなり、理論強度と実測値との間
には良い比例関係が成り立ち、その傾きがCoKα線に
対する蛍光X線測定装置3の感度係数f=4.04とな
る。なお、標準試料8の個数は、1個だけとしても精度
の良い結果を得ることができる。
FIG. 7 shows the relationship between the theoretical intensity of CoKα radiation and the actually measured value. The horizontal axis is the calculated theoretical intensity, and the vertical axis is the actual value measured in step S3. The results for each of the three standard samples (x = 35, 55, 75 °) are plotted, as shown in the figure. A good proportional relationship is established between the theoretical intensity and the measured value, and the slope is the fluorescence X to the CoKα ray. The sensitivity coefficient f of the line measuring device 3 is 4.04. Note that accurate results can be obtained even if the number of the standard samples 8 is only one.

【0027】なお、同一測定装置を用いてバルク試料を
測定した場合、感度係数としてf=4.64が得られ
た。このように、薄膜の場合とバルク試料の場合では、
感度係数に約13%のずれが生じる。したがって、蛍光
X線測定装置に対して、薄膜標準試料を用いて感度係数
を補正する必要性があることが理解できる。図2に示す
構造解析部4の感度係数決定部5は、以上のようにし
て、標準試料から感度係数を決定し、これにより、蛍光
X線測定装置3の感度を設定する。このように、本例に
おいては、蛍光X線測定装置3の感度係数を薄膜の標準
試料の測定に基づいて設定するので、以下に説明する未
知試料の構造の決定を正確に行うことが可能となる。
When a bulk sample was measured using the same measuring apparatus, a sensitivity coefficient of f = 4.64 was obtained. Thus, in the case of the thin film and the case of the bulk sample,
A shift of about 13% occurs in the sensitivity coefficient. Therefore, it can be understood that it is necessary to correct the sensitivity coefficient of the fluorescent X-ray measuring device using the thin film standard sample. The sensitivity coefficient determination unit 5 of the structure analysis unit 4 shown in FIG. 2 determines the sensitivity coefficient from the standard sample as described above, and thereby sets the sensitivity of the fluorescent X-ray measurement device 3. As described above, in this example, since the sensitivity coefficient of the fluorescent X-ray measurement device 3 is set based on the measurement of the thin film standard sample, it is possible to accurately determine the structure of the unknown sample described below. Become.

【0028】図3のステップS5で、定量しようとする
未知試料9がX線反射率測定装置2へ運ばれ、X線反射
率測定が行われる。図8に、未知試料〔Si/Ta(5
0)/NiFe(20)/CoFe(55)/Ta(1
00)〕に対するX線反射率の測定結果を示す。ステッ
プS6で、感度係数が補正された蛍光X線測定装置3へ
未知試料9が運ばれ、蛍光X線測定が行われ、その結果
から公知の手法により付着量が算出される。図9に、上
記未知試料9の解析結果により算出された付着量の例を
示す。蛍光X線測定装置3は、前述のように、屈折率が
近い層(NiFe層,CoFe層)が近接して配置され
た場合でも、各層を分離して評価をすることができる。
そして、蛍光X線測定装置3は、感度係数が正確に設定
されている。したがって、蛍光X線測定装置3により解
析した図9に示す付着量は正確である。
In step S5 of FIG. 3, the unknown sample 9 to be quantified is carried to the X-ray reflectometer 2, where the X-ray reflectivity is measured. FIG. 8 shows an unknown sample [Si / Ta (5
0) / NiFe (20) / CoFe (55) / Ta (1
00)] shows the measurement results of the X-ray reflectivity. In step S6, the unknown sample 9 is conveyed to the X-ray fluorescence measuring device 3 whose sensitivity coefficient has been corrected, X-ray fluorescence measurement is performed, and the amount of adhesion is calculated from the result by a known method. FIG. 9 shows an example of the adhesion amount calculated based on the analysis result of the unknown sample 9. As described above, the X-ray fluorescence measuring apparatus 3 can separate and evaluate the layers even when the layers (NiFe layer, CoFe layer) having a close refractive index are arranged close to each other.
The sensitivity coefficient of the X-ray fluorescence measuring apparatus 3 is set accurately. Therefore, the amount of adhesion shown in FIG. 9 analyzed by the fluorescent X-ray measurement device 3 is accurate.

【0029】ステップS7で、X線反射率測定の結果を
解析して、付着量を算出する。このX線反射率測定装置
2では、前述のように、屈折率が近い層(NiFe層,
CoFe層)が近接して配置された場合、各層を分離し
て評価できないので、ここでは、NiFeの膜厚を順次
異なる値に固定して、各層ごとの付着量を算出する。図
10に、X線反射率測定の結果を公知の方法により解析
して各パラメータを変化させてフィッティングを試みた
結果を示す。パラメータの1例として、(a)評価膜
厚、(b)付着量(=評価密度×評価膜厚)、(c)フ
ィッティングの精度R値を示す。(a)〜(c)におい
て、横軸は固定したNiFeの膜厚(Å)である。
(a)の縦軸は各層の膜厚(Å)を示し、(b)の縦軸
は、CoFe層とNiFe層の付着量(μg/cm2
を示し、(c)の縦軸は、フィッティングの精度R値
(%)を示す。この(c)に示されたように、屈折率が
近い層が近接する場合、フィッティングの善し悪しの指
標であるR値の変化は緩やかで、最適なパラメータを決
定することが困難であることを示している。
In step S7, the result of the X-ray reflectivity measurement is analyzed to calculate the amount of adhesion. In the X-ray reflectivity measuring apparatus 2, as described above, a layer having a close refractive index (NiFe layer,
When the (CoFe layers) are arranged close to each other, the layers cannot be separated and evaluated. Therefore, here, the film thickness of NiFe is fixed to sequentially different values, and the adhesion amount for each layer is calculated. FIG. 10 shows the results of an attempt to perform fitting by analyzing the results of X-ray reflectance measurement by a known method and changing each parameter. As one example of the parameters, (a) evaluation film thickness, (b) adhesion amount (= evaluation density × evaluation film thickness), and (c) fitting accuracy R value are shown. In (a) to (c), the horizontal axis represents the film thickness (Å) of the fixed NiFe.
The vertical axis of (a) shows the film thickness (Å) of each layer, and the vertical axis of (b) shows the adhesion amount (μg / cm 2 ) between the CoFe layer and the NiFe layer.
The vertical axis in (c) shows the fitting precision R value (%). As shown in (c), when the layers having similar refractive indices are close to each other, the change in the R value, which is an index of the quality of the fitting, is gradual, indicating that it is difficult to determine the optimal parameters. ing.

【0030】図3のステップS8で、蛍光X線測定の結
果から求めたNiFe層とCoFe層の付着量と、X線
反射率測定から解析したNiFe層とCoFe層の付着
量が等しいか否かを判定する。ここで、両者が等しくな
い場合は、ステップS7へ戻り、X線反射率測定の解析
においてNiFe層の固定膜厚を変化させて、NiFe
層とCoFe層の付着量を算出し、この値を用いて更に
ステップS8で比較を行う。
In step S8 in FIG. 3, it is determined whether the amount of adhesion between the NiFe layer and the CoFe layer obtained from the result of the fluorescent X-ray measurement is equal to the amount of adhesion between the NiFe layer and the CoFe layer analyzed from the X-ray reflectivity measurement. Is determined. If the two are not equal, the process returns to step S7 to change the fixed film thickness of the NiFe layer in the analysis of the X-ray reflectivity measurement to change the NiFe layer.
The amount of adhesion between the layer and the CoFe layer is calculated, and a comparison is made in step S8 using this value.

【0031】図10に示した例では、図9のNiFe層
の付着量1.49(μg/cm2 )及びCoFe層の付
着量4.50(μg/cm2 )とほぼ等しくなる評価パ
ラメータの組み合わせは、NiFe層を16(Å)とし
たときに得られることが分かる(図10(b))。図3
のステップS8で、蛍光X線測定の結果とX線反射率測
定の結果がほぼ等しくなった場合は、ステップS9へ進
み、等しくなったときのNiFe層の固定膜厚を用い
て、構造を決定する。
In the example shown in FIG. 10, the evaluation parameters of the NiFe layer 1.49 (μg / cm 2 ) and the CoFe layer 4.50 (μg / cm 2 ) of FIG. It can be seen that the combination is obtained when the NiFe layer is set to 16 (() (FIG. 10B). FIG.
In step S8, if the result of the fluorescent X-ray measurement and the result of the X-ray reflectivity measurement are substantially equal, the process proceeds to step S9, and the structure is determined using the fixed film thickness of the NiFe layer when the results are equal. I do.

【0032】なお、ステップS7及び8の変形例とし
て、ステップS7で、図10に示す範囲の解析を全て実
行し、ステップS8でその解析結果の中から最も蛍光X
線測定の結果に近いNiFe層の固定膜厚を用いて構造
を決定することもできる。このように、各構成層の付着
量(=評価密度×評価膜厚)が蛍光X線測定の結果と一
致するという条件を付加することで、反射率測定の解析
精度を向上させることができる。また、この解析方法を
自動で行うプログラムにより、簡便かつ高速に解析が可
能となり、実際の製造プロセスで利用可能な評価技術と
なる。
As a modification of steps S7 and S8, in step S7, the analysis of the entire range shown in FIG. 10 is executed, and in step S8, the fluorescent X
The structure can also be determined by using the fixed film thickness of the NiFe layer close to the result of the line measurement. As described above, by adding the condition that the amount of adhesion of each constituent layer (= evaluation density × evaluation film thickness) matches the result of the fluorescent X-ray measurement, the analysis accuracy of the reflectance measurement can be improved. In addition, a program that automatically performs this analysis method enables simple and high-speed analysis, and is an evaluation technique that can be used in an actual manufacturing process.

【0033】[0033]

【発明の効果】本発明によれば、これまで正確に膜構造
を評価することが困難であった金属多層膜の構造解析が
正確に行えるようになる。
According to the present invention, it is possible to accurately analyze the structure of a metal multilayer film, which has been difficult to accurately evaluate the film structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した金属多層膜の構造解析装置の
構成を示す図。
FIG. 1 is a diagram showing a configuration of a metal multilayer structure analysis apparatus to which the present invention is applied.

【図2】図1の構造解析部の構成を示す図。FIG. 2 is a diagram showing a configuration of a structural analysis unit in FIG. 1;

【図3】図1の構造解析部の動作を説明するフローチャ
ート。
FIG. 3 is a flowchart for explaining the operation of the structure analysis unit in FIG. 1;

【図4】図1の構造解析装置で使用する標準試料及び未
知試料の構造を示す図。
FIG. 4 is a view showing the structures of a standard sample and an unknown sample used in the structure analyzing apparatus of FIG. 1;

【図5】図4の標準試料のX線反射率曲線及びフィッテ
ィング結果Rを示す図。
FIG. 5 is a view showing an X-ray reflectance curve and a fitting result R of the standard sample of FIG. 4;

【図6】図5から得た評価パラメータを示す図。FIG. 6 is a diagram showing evaluation parameters obtained from FIG. 5;

【図7】蛍光X線測定装置で得たCoKα線の理論強度
と実測値との関係を示す図。
FIG. 7 is a view showing the relationship between the theoretical intensity of CoKα radiation obtained by a fluorescent X-ray measuring apparatus and an actually measured value.

【図8】図4の未知試料のX線反射率曲線及びフィッテ
ィング結果Rを示す図。
FIG. 8 is a view showing an X-ray reflectance curve and a fitting result R of the unknown sample in FIG. 4;

【図9】蛍光X線測定装置により未知試料から得た付着
量の例を示す図。
FIG. 9 is a diagram showing an example of the amount of adhesion obtained from an unknown sample by a fluorescent X-ray measurement apparatus.

【図10】X線反射率測定の結果をNiFe固定膜厚に
対する評価パラメータを示す図。
FIG. 10 is a view showing evaluation parameters of the results of X-ray reflectivity measurement with respect to a fixed film thickness of NiFe.

【符号の説明】[Explanation of symbols]

1…構造解析装置 2…X線反射率測定装置 3…蛍光X線測定装置 4…構造解析部 5…感度係数決定部 6…構造決定部 7…自動搬送装置 8…標準試料 9…未知試料 10…表示装置 11…CPU 12…メモリ 13…インターフェース 14…外部メモリ装置 15…記憶媒体 DESCRIPTION OF SYMBOLS 1 ... Structural analyzer 2 ... X-ray reflectivity measuring device 3 ... X-ray fluorescence measuring device 4 ... Structural analysis part 5 ... Sensitivity coefficient determination part 6 ... Structural determination part 7 ... Automatic conveyance device 8 ... Standard sample 9 ... Unknown sample 10 ... Display device 11 ... CPU 12 ... Memory 13 ... Interface 14 ... External memory device 15 ... Storage medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渦巻 拓也 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 清水 豊 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuya Whirlpool 4-1, 1-1 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Yutaka Shimizu 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture No. 1 Inside Fujitsu Limited

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蛍光X線測定装置により未知試料を測定
する段階と、 この蛍光X線測定による結果を解析して前記未知試料の
付着量を算出する段階と、 X線反射率測定により前記未知試料を測定する段階と、 このX線反射率測定による結果を解析し、その解析によ
り得た前記未知試料の付着量と前記蛍光X線測定装置に
よって得た付着量との間で矛盾が生じない構造パラメー
タを選択することにより、前記未知試料の構造を決定す
る段階とを具備するX線反射率測定及び蛍光X線測定に
よる金属多層膜の構造解析方法。
1. A step of measuring an unknown sample by a fluorescent X-ray measuring device; a step of analyzing a result of the fluorescent X-ray measurement to calculate an adhesion amount of the unknown sample; and a step of measuring the unknown by X-ray reflectance measurement. Measuring the sample and analyzing the result of the X-ray reflectivity measurement, and there is no inconsistency between the adhesion amount of the unknown sample obtained by the analysis and the adhesion amount obtained by the fluorescent X-ray measurement device Determining a structure of the unknown sample by selecting a structure parameter. A method for analyzing the structure of a metal multilayer film by X-ray reflectance measurement and X-ray fluorescence measurement.
【請求項2】 標準試料のX線反射率測定を行い、その
測定結果を解析することによりその標準試料の構造を決
定する段階と、 この解析結果から、前記標準試料の特性X線の理論強度
を算出する段階と、 前記蛍光X線測定装置により前記標準試料の蛍光X線測
定を行い、前記標準試料の特性X線の実測値を得る段階
と、 前記特性X線の理論強度と前記特性X線の実測値とから
前記蛍光X線測定装置の感度係数を得る段階と、 この感度係数に設定された前記蛍光X線測定装置により
未知試料を測定する段階と、 この蛍光X線測定による結果を解析して前記未知試料の
付着量を算出する段階と、 X線反射率測定により前記未知試料を測定する段階と、 このX線反射率測定による結果を解析し、その解析によ
り得た前記未知試料の付着量と前記蛍光X線測定装置に
よって得た付着量との間で矛盾が生じない構造パラメー
タを選択することにより、前記未知試料の構造を決定す
る段階とを具備するX線反射率測定及び蛍光X線測定に
よる金属多層膜の構造解析方法。
2. A step of measuring the X-ray reflectivity of the standard sample, determining the structure of the standard sample by analyzing the measurement result, and calculating the theoretical intensity of the characteristic X-ray of the standard sample from the analysis result. Calculating the X-ray fluorescence of the standard sample by the X-ray fluorescence measurement apparatus to obtain an actual measured value of the characteristic X-ray of the standard sample; and the theoretical intensity of the characteristic X-ray and the characteristic X Obtaining a sensitivity coefficient of the fluorescent X-ray measuring device from the measured values of the X-rays; measuring an unknown sample with the fluorescent X-ray measuring device set to the sensitivity coefficient; Analyzing and calculating the amount of adhesion of the unknown sample; measuring the unknown sample by X-ray reflectance measurement; analyzing the result of the X-ray reflectance measurement; and obtaining the unknown sample by the analysis. And the amount of Determining the structure of the unknown sample by selecting a structural parameter that does not cause inconsistency with the amount of adhesion obtained by the optical X-ray measuring device. Structure analysis method for metal multilayer film.
【請求項3】 請求項2に記載のX線反射率及び蛍光X
線測定による金属多層膜の構造解析方法に使用する標準
試料であって、 定量しようとする金属材料からなる単層の金属薄膜と、 この金属薄膜と異なる屈折率を有し、かつ安定な材料で
形成され、前記単層の金属薄膜の上下を挟んで成膜され
た2層の薄膜とからなる標準試料。
3. X-ray reflectivity and fluorescent X-ray according to claim 2.
A standard sample used for the method of analyzing the structure of a metal multilayer film by linear measurement, comprising a single-layer metal thin film made of the metal material to be quantified, and a stable material having a different refractive index from this metal thin film. A standard sample comprising two layers of thin films formed so as to sandwich the single-layer metal thin film above and below.
【請求項4】 前記単層の金属薄膜が3d磁性金属であ
って、前記2層の薄膜がTaである請求項3に記載の標
準試料。
4. The standard sample according to claim 3, wherein the single-layer metal thin film is a 3d magnetic metal, and the two-layer thin film is Ta.
【請求項5】 X線反射率測定装置と、 蛍光X線測定装置と、 標準試料及び未知試料を前記X線反射率測定装置と前記
蛍光X線測定装置の測定位置に搬送する装置と、 前記標準試料を、前記X線反射率測定装置と前記蛍光X
線測定装置により測定した測定結果から、前記蛍光X線
測定装置の感度係数を設定する感度係数決定部と、 前記未知試料を、前記感度係数が設定された前記蛍光X
線測定装置と前記X線反射率測定装置により測定し、各
測定結果を相補的に解析して、最適な解析解を得て構造
を決定する構造決定部とを具備するX線反射率及び蛍光
X線測定による金属多層膜の構造解析装置。
5. An X-ray reflectance measuring device, an X-ray fluorescence measuring device, an apparatus for transporting a standard sample and an unknown sample to measurement positions of the X-ray reflectance measuring device and the X-ray fluorescence measuring device, The standard sample was analyzed by the X-ray reflectometer and the fluorescent X
A sensitivity coefficient determining unit for setting a sensitivity coefficient of the fluorescent X-ray measuring device from a measurement result measured by the X-ray measuring device;
X-ray reflectivity and fluorescence comprising a structure measuring unit for measuring by the X-ray measuring device and the X-ray reflectivity measuring device and analyzing each measurement result complementarily to obtain an optimal analytical solution and determine the structure. An apparatus for analyzing the structure of a metal multilayer film by X-ray measurement.
【請求項6】 蛍光X線測定装置に未知試料を測定させ
る手順と、 この蛍光X線測定による結果を解析して前記未知試料の
付着量を算出させる手順と、 X線反射率測定に前記未知試料を測定させる段階と、 このX線反射率測定による結果を解析し、その解析によ
り得た前記未知試料の付着量と前記蛍光X線測定装置に
よって得た付着量との間で矛盾が生じない構造パラメー
タを選択することにより、前記未知試料の構造を決定さ
せる段階とをコンピユータに実行させるプログラムを記
憶したコンピユータ読み取り可能な記載媒体。
6. A procedure for causing an X-ray fluorescence measuring apparatus to measure an unknown sample, a procedure for analyzing a result of the X-ray fluorescence measurement to calculate an adhesion amount of the unknown sample, and a procedure for measuring the unknown quantity in the X-ray reflectivity measurement. Measuring the sample; analyzing the result of the X-ray reflectivity measurement; there is no inconsistency between the amount of adhesion of the unknown sample obtained by the analysis and the amount of adhesion obtained by the fluorescent X-ray measurement device; A computer-readable medium storing a program for causing a computer to execute a step of determining a structure of the unknown sample by selecting a structure parameter.
【請求項7】 標準試料のX線反射率測定を行い、測定
結果を解析することによりその標準試料の構造を決定さ
せる手順と、 この解析結果から、前記標準試料の特性X線の理論強度
を算出させる手順と、 前記蛍光X線測定装置に前記標準試料の蛍光X線測定を
行わせ、前記標準試料の特性X線の実測値を得させる手
順と、 前記特性X線の理論強度と前記特性X線の実測値とから
前記蛍光X線測定装置の感度係数を得させる手順と、 この感度係数に設定された前記蛍光X線測定装置に未知
試料を測定させる手順と、 この蛍光X線測定による結果を解析して前記未知試料の
付着量を算出させる手順と、 X線反射率測定に前記未知試料を測定させる手順と、 このX線反射率測定による結果を解析し、その解析によ
り得た前記未知試料の付着量と前記蛍光X線測定装置に
よって得た付着量との間で矛盾が生じない構造パラメー
タを選択することにより、前記未知試料の構造を決定さ
せる段階とをコンピユータに実行させるプログラムを記
憶したコンピユータ読み取り可能な記載媒体。
7. A procedure for measuring the X-ray reflectivity of a standard sample and determining the structure of the standard sample by analyzing the measurement result, and determining the theoretical intensity of characteristic X-rays of the standard sample from the analysis result. A step of calculating; a step of causing the X-ray fluorescence measuring apparatus to perform X-ray fluorescence measurement of the standard sample to obtain an actual measured value of characteristic X-rays of the standard sample; and a theoretical intensity of the characteristic X-ray and the characteristic A procedure for obtaining a sensitivity coefficient of the X-ray fluorescence measurement apparatus from the measured value of the X-ray; a procedure for measuring the unknown sample by the X-ray fluorescence measurement apparatus set to this sensitivity coefficient; A step of analyzing the result to calculate the amount of adhesion of the unknown sample; a step of measuring the unknown sample by X-ray reflectivity measurement; analyzing the result of the X-ray reflectivity measurement; The amount of unknown sample A computer-readable program storing a program for causing a computer to execute a step of determining the structure of the unknown sample by selecting a structural parameter that does not cause inconsistency with the amount of adhesion obtained by the X-ray fluorescence spectrometer. Description medium.
JP26875097A 1997-10-01 1997-10-01 Structure analysis method of metal multilayer film by X-ray reflectivity measurement and fluorescent X-ray measurement, and standard sample and apparatus used therefor Expired - Fee Related JP3883267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26875097A JP3883267B2 (en) 1997-10-01 1997-10-01 Structure analysis method of metal multilayer film by X-ray reflectivity measurement and fluorescent X-ray measurement, and standard sample and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26875097A JP3883267B2 (en) 1997-10-01 1997-10-01 Structure analysis method of metal multilayer film by X-ray reflectivity measurement and fluorescent X-ray measurement, and standard sample and apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH11108862A true JPH11108862A (en) 1999-04-23
JP3883267B2 JP3883267B2 (en) 2007-02-21

Family

ID=17462825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26875097A Expired - Fee Related JP3883267B2 (en) 1997-10-01 1997-10-01 Structure analysis method of metal multilayer film by X-ray reflectivity measurement and fluorescent X-ray measurement, and standard sample and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3883267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055841A (en) * 1998-08-13 2000-02-25 Fujitsu Ltd X-ray analysis method
JP2000292141A (en) * 1999-04-07 2000-10-20 Fujitsu Ltd Film thickness measurement method using fluorescent x rays
JP2002039969A (en) * 2000-07-25 2002-02-06 Fujitsu Ltd Method for measuring density of thin film and magnetic disk device
JP2015179015A (en) * 2014-03-19 2015-10-08 セイコーインスツル株式会社 Measurement method of impurity density in thin film and measurement device thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055841A (en) * 1998-08-13 2000-02-25 Fujitsu Ltd X-ray analysis method
JP2000292141A (en) * 1999-04-07 2000-10-20 Fujitsu Ltd Film thickness measurement method using fluorescent x rays
JP2002039969A (en) * 2000-07-25 2002-02-06 Fujitsu Ltd Method for measuring density of thin film and magnetic disk device
JP2015179015A (en) * 2014-03-19 2015-10-08 セイコーインスツル株式会社 Measurement method of impurity density in thin film and measurement device thereof

Also Published As

Publication number Publication date
JP3883267B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US5552997A (en) Method of calibrating an analytical instrument
US8119991B2 (en) Method and apparatus for accurate calibration of VUV reflectometer
Dobson et al. U and Th zonation in Fish Canyon Tuff zircons: Implications for a zircon (U–Th)/He standard
JPH0134337B2 (en)
JP3726080B2 (en) Method for evaluating orientation of polycrystalline materials
KR100644390B1 (en) Method of measuring a thickness of a thin film for a semiconductor device and an apparatus for performing the method
US7399975B2 (en) Method and apparatus for performing highly accurate thin film measurements
JPH11108862A (en) Method for analyzing structure of metal multilayered film by measuring x-ray reflectivity and fluorescent x-rays and standard sample and apparatus used therein
JP3781245B2 (en) Manufacturing method of semiconductor device
JP3764407B2 (en) Density non-uniform multilayer analysis method and apparatus and system thereof
JP2009250783A (en) Method for measuring thickness of multilayer thin film
JP3329197B2 (en) Thin film laminate inspection method
JP3928714B2 (en) Analytical method of thin film multilayer structure using spectroscopic ellipsometer
US7969573B2 (en) Method and system for obtaining n and k map for measuring fly-height
JP4282878B2 (en) Thin film density measurement method
JP3389115B2 (en) Stacked structure inspection method and X-ray reflectivity device
Liu et al. Interference-aided spectrum-fitting method for accurate film thickness determination
JP3729186B2 (en) X-ray fluorescence analyzer
KR100879729B1 (en) Analysis method of multi-layer membrane where the density is uneven, device and system therefor
JP2000035408A (en) Film structure analysis method using x-ray reflectance method
JPH116804A (en) Method of improving detection sensitivity of thin film and analysis method
KR100721810B1 (en) Method for fourier analysis of x-ray reflectivity of ultra thin layer thickness measurement
JPH06222019A (en) Nondestructive quantitative analysis of multilayer thin film
JP2000121582A (en) Analytical method for x-ray reflectance profile of metal multilayer film, and storage medium
JPH05209847A (en) Fluorescent x-ray spectroscopy method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees