JPH1110784A - Ultrafine particle titanium oxide supporting material - Google Patents

Ultrafine particle titanium oxide supporting material

Info

Publication number
JPH1110784A
JPH1110784A JP9200702A JP20070297A JPH1110784A JP H1110784 A JPH1110784 A JP H1110784A JP 9200702 A JP9200702 A JP 9200702A JP 20070297 A JP20070297 A JP 20070297A JP H1110784 A JPH1110784 A JP H1110784A
Authority
JP
Japan
Prior art keywords
titanium oxide
support
ultrafine particle
supporting material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP9200702A
Other languages
Japanese (ja)
Inventor
Misaku Yoshida
美作 吉田
Kazuo Sakai
和夫 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Pigment Co Ltd
Original Assignee
Fuji Pigment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Pigment Co Ltd filed Critical Fuji Pigment Co Ltd
Priority to JP9200702A priority Critical patent/JPH1110784A/en
Publication of JPH1110784A publication Critical patent/JPH1110784A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the retaining of ultrafine particle titanium oxide stably on a supporting material without spoiling any photochemical effect of the titanium oxide by a method wherein the ultrafine particle titanium is retained on the supporting material through a layer, consisting of silicon oxide, under a condition that at least one part of the surface of the ultrafine particle titanium oxide is exposed. SOLUTION: The ultrafine particle of titanium oxide 3 is employed to develop the oxidizing activity of the same more effectively. The ultrafine particle type titanium oxide 3 has sometimes larger affecting force than the crystalline type titanium oxide 3 due to the activity of the same and, therefore, it is not required to stick to the crystalline type titanium oxide. A silicon oxide layer 2 is a free surface existing under a condition that one surface thereof is welded to a supporting material 1 while the other surface thereof is welded to the surface by one part of the surface of particle of the titanium oxide particle 3 and the layer 2 can be obtained by a method wherein solution, resolving alkyl tri-alkoxysilane into isopropyl alcohol or the like together with a condensation catalyst, is applied on the supporting material 1 and is condensed by heating. One part of the titanium oxide particle 3 is exposed without being covered by the silicon oxide 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 超微粒子酸化チタンの光化学的
活性を利用して化学反応を行う分野が、本発明の利用分
野である。
The field of application of the present invention is in the field of performing a chemical reaction utilizing the photochemical activity of ultrafine titanium oxide.

【0002】[0002]

【従来の技術】 超微粒子酸化チタンが光化学的に活性
であり、その表面上で光照射下に、NOやSOの不
完全酸化物や一酸化炭素が安定な完全酸化物にまで酸化
されること、あるいは、黴や細菌の殺菌や浮遊原油、悪
臭物質の酸化分解等の生じることが判明している。その
際超微粒子酸化チタンは微粉体のまま、あるいは支持体
上に接着剤で固着して使用する実験により、上記の効果
が確認されている。しかし微粉体では実用上取り扱いが
困難であるし、接着剤で固着して取り扱いを容易にして
も、チタンの活性で接着剤が早期に劣化してチタンが脱
落してしまうといった欠点があった。また、接着剤とし
て劣化しにくい無機材料を用いて固着してもチタンの効
果が悪化してしまうので、安定で効果的な保持体が求め
られている。
BACKGROUND OF THE INVENTION Ultra-fine particles of titanium dioxide are photochemically active, its on under light irradiation surface, incomplete oxide and carbon monoxide of the NO x and SO x is oxidized to a stable full oxides Or sterilization of molds and bacteria and oxidative decomposition of floating crude oil and malodorous substances. At this time, the above effects have been confirmed by experiments in which ultrafine titanium oxide is used as it is as fine powder or fixed on a support with an adhesive. However, it is difficult to handle the fine powder in practical use, and even if the powder is fixed with an adhesive to facilitate the handling, there is a disadvantage that the adhesive deteriorates early due to the activity of titanium and the titanium falls off. Further, even if the adhesive is fixed by using an inorganic material which is not easily deteriorated, the effect of titanium is deteriorated. Therefore, a stable and effective holder is required.

【0003】[0003]

【発明が解決しようとする課題】 本発明は、超微粒子
酸化チタンを安定に、しかも酸化チタンの光化学的効果
を損なうことなく支持体上に保持することを実現しよう
とするものである。
An object of the present invention is to realize ultra-fine titanium oxide stably held on a support without impairing the photochemical effect of the titanium oxide.

【0004】[0004]

【課題を解決するための手段】 本発明は、超微粒子酸
化チタンを、その作用が有効なように酸化チタンの表面
の少なくとも一部が露出した状態において、実質的に酸
化ケイ素からなる層を介して支持体上に安定に保持する
ことで、課題を解決する。
Means for Solving the Problems According to the present invention, ultrafine titanium oxide is formed through a layer substantially consisting of silicon oxide in a state where at least a part of the surface of titanium oxide is exposed so that its action is effective. The problem is solved by stably holding it on the support.

【0005】本発明において、光化学的に活性とは、酸
化チタンが光、特に紫外線または太陽光はもちろん蛍光
灯などに含まれる紫外線に曝された際に、酸化チタンが
発揮する酸化作用を言う。酸化チタン等の金属酸化物
は、電子の存在しうるエネルギー状態がバンド構造をと
っている。価電子帯の上端と伝導帯の下端の間のエネル
ギー差、即ちバンドギャップエネルギーEgが酸化チタ
ンでは3.0eVであり、これ以上のエネルギーが照射
されると電子は、価電子帯から伝導帯へ励起され、伝導
帯には自由電子、価電子帯には正孔のペアが生じる。こ
の正孔は、酸化チタン表面の吸着水や酸化されやすい化
合物に捕捉され、酸化力の強いフリーラジカルを発生さ
せる。一方、自由電子は、結晶内の四価のチタンを三価
のチタンに還元する。このとき空気中の酸素が三価のチ
タンに吸着され、三価のチタンは四価に、そして酸素は
フリーラジカルとなり、このフリーラジカルもまた酸化
力を発揮する。こうして紫外線と水分又は酸化されやす
い化合物並びに酸素が酸化チタンに供給される限り、酸
化チタン粒子周辺の物質が酸化分解を受ける。これを酸
化チタンの光触媒反応と呼んでいる。
[0005] In the present invention, the term "photochemically active" refers to an oxidizing action of titanium oxide when the titanium oxide is exposed to light, particularly ultraviolet light or sunlight, as well as ultraviolet light contained in a fluorescent lamp or the like. Metal oxides such as titanium oxide have a band structure in an energy state where electrons can exist. The energy difference between the upper end of the valence band and the lower end of the conduction band, that is, the bandgap energy Eg is 3.0 eV for titanium oxide, and when the energy is further irradiated, electrons move from the valence band to the conduction band. When excited, a pair of free electrons is generated in the conduction band and a pair of holes is generated in the valence band. These holes are trapped by the water adsorbed on the titanium oxide surface or the easily oxidizable compound, and generate free radicals having strong oxidizing power. On the other hand, free electrons reduce tetravalent titanium in the crystal to trivalent titanium. At this time, oxygen in the air is adsorbed by the trivalent titanium, the trivalent titanium becomes tetravalent, and the oxygen becomes free radicals, and these free radicals also exert oxidizing power. In this way, as long as ultraviolet rays, moisture, or a compound that is easily oxidized, and oxygen are supplied to the titanium oxide, substances around the titanium oxide particles undergo oxidative decomposition. This is called a photocatalytic reaction of titanium oxide.

【0006】酸化チタンに紫外線が照射され、酸化チタ
ンが光をエネルギーとして吸収すると、その表面に強力
な酸化力が発生し、雑菌、カビの繁殖が抑制されたり、
有機物や空気中の窒素酸化物等が酸化分解を受ける。こ
の酸化チタンの表面酸化活性を利用して、脱臭、大気浄
化、汚れの分解、水質改善、排水浄化、抗菌等の用途に
適用されてようとしている。しかし現実の使用にあたっ
ては、未だ有効な支持体がない。
When the titanium oxide is irradiated with ultraviolet rays and the light absorbs the light as energy, a strong oxidizing power is generated on the surface of the titanium oxide, thereby suppressing the growth of various bacteria and fungi,
Organic substances and nitrogen oxides in the air undergo oxidative decomposition. Utilizing the surface oxidation activity of this titanium oxide, it is about to be applied to applications such as deodorization, air purification, decomposition of dirt, water quality improvement, wastewater purification, and antibacterial. However, in actual use, there is no effective support yet.

【0007】従来、微粒子酸化チタンの光化学活性を証
明利用活用するためにとられた酸化チタンの使用形態
は、直接支持体にチタンのアルコキシドの薄膜を形成さ
せ、これをゲル化させて使用することをはじめ、酸化チ
タンを粉体のまま、または粒状体として使用することは
もとより、水系ゾル、分散スラリー状態等の流動体とし
て、あるいは支持体上に塗布して固着させる方法等が提
案されてきた。しかし、酸化チタンゲル化被膜を紫外線
ランプまたは蛍光灯管の外表面に施したものも実用に供
されているが、光化学的効果を得るためにはその製膜施
工が煩雑で得られた製品が高価であったりする。また、
流動体では実用上不便であるし、支持体上の固着では、
固着のための接着剤が酸化チタンを覆ってしまい、酸化
チタンと被酸化物との接触を阻害して、酸化チタンの活
性が発揮されないとか、接着剤が酸化されて酸化チタン
が支持体から脱落するというような不都合があった。本
発明者らは、簡便で且つ安価に酸化チタンの光化学的効
果を活用するための酸化チタンの支持体上への固着方法
を材料の種類や結合様式の観点から検討し、実質的に酸
化ケイ素からなる層で酸化チタンを支持体上に接着保持
することで、接着剤の酸化劣化による酸化チタンの脱落
が起こらず、しかも、酸化チタンの表面が接着剤層であ
る酸化ケイ素中に埋没することなく、表面の一部が露出
している状態で保持されるようにすることで、酸化チタ
ンの活性を有効に利用できることを見いだして本発明に
到達したものである。
Conventionally, the use of titanium oxide, which has been used to prove and utilize the photochemical activity of fine-particle titanium oxide, is to form a titanium alkoxide thin film directly on a support and gel it before use. In addition to the use of titanium oxide as a powder or as a granular material, a method of applying and fixing it as a fluid such as an aqueous sol or a dispersed slurry or on a support has been proposed. . However, a titanium oxide gelled coating applied to the outer surface of an ultraviolet lamp or a fluorescent lamp tube is also in practical use, but in order to obtain a photochemical effect, the film formation is complicated and the product obtained is expensive. And so on. Also,
It is practically inconvenient for fluids, and for fixing on a support,
The adhesive for fixing covers the titanium oxide and inhibits the contact between the titanium oxide and the oxide, preventing the activity of the titanium oxide from being exhibited or the adhesive being oxidized and the titanium oxide falling off the support There was an inconvenience of doing so. The present inventors studied a method of fixing titanium oxide on a support in a simple and inexpensive manner to utilize the photochemical effect of titanium oxide from the viewpoint of the type of material and the bonding mode, and substantially examined silicon oxide. By holding titanium oxide on the support with a layer consisting of, the titanium oxide does not fall off due to the oxidative deterioration of the adhesive, and the surface of the titanium oxide is buried in the silicon oxide as the adhesive layer Instead, the present inventors have found that the activity of titanium oxide can be effectively utilized by keeping a part of the surface in an exposed state, and arrived at the present invention.

【0008】酸化チタンには光(紫外線)エネルギーを
受けると強い酸化作用が発現する。この酸化作用の活性
は、酸化チタンの表面状態並びにその粒子径と密接な関
係があり、活性に好適な粒子径が存在する。表面積が大
きいほど、つまりその粒子径が小さいほどその活性は大
きくなり、酸化チタンの酸化活性をより有効に発揮させ
るため、超微粒子として使用される。超微粒子酸化チタ
ンは、その製法からして種々の形状をした一次粒子とそ
の凝集体からなっている。本発明においては、酸化チタ
ンの光化学活性を確保するため、その長径が0.3μm
以下、好ましくは0.1μm以下の酸化チタンを使用す
る。より大きな粒子の使用は活性が低いので実質的に無
意味である。より小さな粒子はそれが一次粒子であれ凝
集体であれ、活性が高いので好ましいが、あまりにも小
さいと取り扱いが難しくなるので、大略0.005μm
以上が好ましい。
[0008] Titanium oxide exerts a strong oxidizing action when it receives light (ultraviolet) energy. The activity of this oxidizing action is closely related to the surface state of titanium oxide and its particle size, and there is a particle size suitable for the activity. The activity increases as the surface area increases, that is, as the particle size decreases, and the titanium oxide is used as ultrafine particles to more effectively exhibit the oxidation activity of titanium oxide. Ultrafine titanium oxide is composed of primary particles of various shapes and their aggregates according to the production method. In the present invention, in order to ensure the photochemical activity of titanium oxide, its major axis is 0.3 μm.
Hereafter, preferably, titanium oxide of 0.1 μm or less is used. The use of larger particles is substantially meaningless due to the lower activity. Smaller particles are preferred because of their high activity, whether they are primary particles or aggregates, but too small are difficult to handle, so
The above is preferred.

【0009】酸化チタンにはルチル、アナターゼ等の結
晶型があり、光化学活性はアナターゼ型の方が高い。し
かし、結晶型よりも粒子径のほうが活性により大きな影
響力を有している場合もあり、結晶型にはとらわれなく
ても良い。
Titanium oxide has crystal forms such as rutile and anatase, and the photochemical activity of the anatase type is higher. However, in some cases, the particle size has a greater influence on the activity than the crystal type, and it is not necessary to be limited to the crystal type.

【0010】本発明における酸化チタンの純度は、95
%以上であれば良い。これは必ずしも限界的ではなく、
低純度品では活性が低く、95%以上では高活性で純度
による活性の差が認められないことによる。かかる純度
で、上述のような超微粒子である酸化チタンは、すでに
市販されていて、容易に入手可能である。
The purity of titanium oxide in the present invention is 95
% Or more. This is not necessarily limiting,
This is because the activity of the low-purity product is low, and the activity is high at 95% or more, and no difference in activity due to purity is observed. Titanium oxide having such purity and being ultrafine particles as described above is already commercially available and easily available.

【0011】本発明における酸化ケイ素層は、実質的に
酸化ケイ素からなり、厚さが0.1μm以上数十μm以
下で、一面は支持体に接着し、他面はその表層に酸化チ
タン粒子が粒子表面の一部で接着した状態で存在する自
由表面である。この層は、例えば、アルキルトリアルコ
キシシランやテトラアルコキシシランあるいはそれらの
予備縮合体を少量の縮合触媒とともにイソプロピルアル
コール等の媒体に溶かした溶液の所定量を支持体上に塗
布し、加熱して縮合反応を進めることで形成できる。縮
合副成物や媒体は加熱時蒸発して系外に去る。この反応
はゾルーゲル反応としてセラミックス等の学会や業界で
は既に公知であり、容易に実施可能である。本発明にお
いて、酸化チタン粒子は縮合反応が完結する以前に反応
体表面に散布または吹き付けてのち、縮合反応を完結す
ることにより表層に接着して存在せしめることになる。
酸化チタン粒子を酸化ケイ素層表面に確実に結合させる
ために、縮合反応の後期とくに終末期に酸化チタン粒子
を反応体表面に散布または吹き付けてのち、縮合反応を
完結するのが良い。
The silicon oxide layer in the present invention is substantially composed of silicon oxide, has a thickness of 0.1 μm or more and several tens μm or less, has one surface adhered to a support, and the other surface has titanium oxide particles on its surface. It is a free surface that is present in a bonded state on a part of the particle surface. For this layer, for example, a predetermined amount of a solution of alkyl trialkoxysilane or tetraalkoxysilane or a precondensate thereof dissolved in a medium such as isopropyl alcohol together with a small amount of a condensation catalyst is coated on a support, and the mixture is heated and condensed. It can be formed by advancing the reaction. The condensation by-products and the medium evaporate during heating and leave the system. This reaction is already known as a sol-gel reaction in academic societies and the industry of ceramics and the like, and can be easily carried out. In the present invention, the titanium oxide particles are sprayed or sprayed on the surface of the reactant before the completion of the condensation reaction, and then adhere to the surface layer by completing the condensation reaction.
In order to ensure that the titanium oxide particles are bonded to the surface of the silicon oxide layer, the condensation reaction is preferably completed after the titanium oxide particles are sprayed or sprayed on the surface of the reactant at a later stage of the condensation reaction, particularly at a final stage.

【0012】酸化ケイ素層の厚さが0.1μm以下で
は、層の支持体や酸化チタンとの接着力の斑が発生しや
すく、使用時の耐久性が低下して好ましくない。酸化ケ
イ素層の厚さが数十μm以上では、層にクラックが入り
やすく、層の支持体への付着安定性が低下気味で経済性
でも得る所がない。
[0012] When the thickness of the silicon oxide layer is 0.1 µm or less, unevenness in the adhesive strength between the layer and the support or titanium oxide is likely to occur, and the durability during use is undesirably reduced. When the thickness of the silicon oxide layer is several tens μm or more, the layer is liable to crack, the adhesion stability of the layer to the support tends to decrease, and there is no place to be obtained even with economical efficiency.

【0013】本発明において、酸化チタン粒子の表面の
一部は酸化ケイ素に覆われることなく露出している。酸
化チタン粒子が酸化ケイ素層に埋没して露出部分がない
場合、染料溶液を保持体表面に塗布、乾燥して、大気中
で太陽光に暴露すると、時間とともに染料の退色が進行
するが、その速度は同一条件の紙の上の染料の退色速度
と同じである。一方、酸化チタンが露出している場合に
は、染料の退色はより速く急激に進行する。このことか
らだけでも酸化チタンによる酸化において、酸化チタン
の露出の決定的な重要性が判る。露出部分と接着部分の
比率は、粒子が微細であるため定量的に測定し記述する
ことは難しいが、電子顕微鏡写真から判定して大略70
〜30:30〜70の範囲が好適である。露出部分の比
率が高いと活性を維持しやすいが、酸化チタンの支持体
への保持性が劣り、使用時の耐久性が不満足になる。
In the present invention, a part of the surface of the titanium oxide particles is exposed without being covered with silicon oxide. If the titanium oxide particles are buried in the silicon oxide layer and there is no exposed part, the dye solution is applied to the surface of the support, dried, and exposed to sunlight in the air, the dye fades with time, The speed is the same as the fade speed of the dye on paper under the same conditions. On the other hand, when the titanium oxide is exposed, the fading of the dye proceeds more rapidly and rapidly. This alone indicates the critical importance of the exposure of titanium oxide in the oxidation by titanium oxide. It is difficult to quantitatively measure and describe the ratio between the exposed portion and the bonded portion because the particles are fine, but the ratio is approximately 70% as determined from an electron micrograph.
A range of 30 to 30 to 70 is preferable. When the ratio of the exposed portion is high, the activity is easily maintained, but the retention of titanium oxide on the support is poor, and the durability during use becomes unsatisfactory.

【0014】本発明において、酸化ケイ素層に担持され
る超微粒子酸化チタンの量に制限はなく、担持できる限
り担持させることにより、より大きな効果が期待でき、
実際的には、支持体表面に露出する酸化チタンの量が多
ければ多いほどその効果は大きい。支持体に埋没した酸
化チタンを出来得るだけ少なく、且つ表面に露出した酸
化チタンを出来得る限り多くすることが肝要である。担
持量は支持体の膜厚により一概に規定はできないが、そ
の担持量が多いと酸化チタンの支持体への保持性が劣る
ことから、単位面積当たりの担持量としては、20乃至
200グラム/平方メートルが実用的に効果が認めら
れ、使用に好適な量である。
In the present invention, the amount of the ultrafine titanium oxide supported on the silicon oxide layer is not limited, and by supporting it as much as possible, a greater effect can be expected.
In practice, the greater the amount of titanium oxide exposed on the surface of the support, the greater the effect. It is important to reduce the amount of titanium oxide buried in the support as much as possible and increase the amount of titanium oxide exposed on the surface as much as possible. The amount of the support cannot be unequivocally determined by the thickness of the support, but if the amount of the support is large, the retention of titanium oxide on the support is inferior. Therefore, the amount of the support per unit area is from 20 to 200 g / unit. The square meter is practically effective and is suitable for use.

【0015】本発明のもう一つの特徴は、酸化ケイ素層
が多孔質層の場合である。これは酸化チタンの周囲に被
酸化物の存在空間を増すことで有用である。多孔質酸化
ケイ素層は例えば、先述のゾルーゲル法において、原料
ゾルにグリセリンやポリエチレングリコール等の水溶性
物質を添加して縮合反応を完結し、しかる後に当該水溶
性物質を水で抽出することで実現できる。このこと以外
は先述と同様である。なお、水溶性物質の種類と添加量
で孔の大きさや孔の量が変更可能であるが、酸化ケイ素
層の強度も、また酸化チタンの結合強度も変わるので、
本発明の保持体の使用状況に応じて適宜選択するのが良
い。
Another feature of the present invention is that the silicon oxide layer is a porous layer. This is useful by increasing the space where the oxide is present around the titanium oxide. The porous silicon oxide layer is realized, for example, by adding a water-soluble substance such as glycerin or polyethylene glycol to the raw material sol in the aforementioned sol-gel method to complete the condensation reaction, and thereafter extracting the water-soluble substance with water. it can. Other than this, it is the same as described above. The size and amount of pores can be changed by the type and amount of the water-soluble substance, but the strength of the silicon oxide layer also changes because the binding strength of titanium oxide also changes.
It is good to select appropriately according to the use condition of the holder of the present invention.

【0016】本発明の酸化チタン保持体の基板となる支
持体は、保持体の使用環境に適した材質や形状であれば
よく、使用者の選択に任される。材質の例として、鉄や
アルミニウム等の金属、木材、コンクリート等のセラミ
ックス、ポリ塩化ビニルやポリブロピレン等のプラスチ
ックス、ゴム、あるいはこれら材質の各種塗料による塗
装面等々が挙げられる。本発明者らの検討によれば、ゾ
ルーゲル法による酸化ケイ素層は、幸いにも各種材質表
面に十分な接着力で接着することが認められている。支
持体の形状の例としては、平板、波板や円筒状物等の曲
面、あるいはこれらに単純形状の孔やスリットを設けた
有孔物やさらにはハニカム構造体や繊維編織体等々が挙
げられる。
The support for the substrate of the titanium oxide support of the present invention may be any material and shape suitable for the environment in which the support is used, and is left to the choice of the user. Examples of the material include metals such as iron and aluminum, ceramics such as wood and concrete, plastics such as polyvinyl chloride and polypropylene, rubber, and painted surfaces of these materials with various paints. According to the study of the present inventors, it has been found that the silicon oxide layer formed by the sol-gel method is fortunately adhered to the surface of various materials with a sufficient adhesive force. Examples of the shape of the support include a curved surface such as a flat plate, a corrugated plate or a cylindrical object, or a perforated object provided with holes or slits of a simple shape in these, or a honeycomb structure or a fiber knitted fabric. .

【0017】以上に述べた本発明の保持体は、超微粒酸
化チタンの光酸化活性を有効に利用するのに役立つもの
であり、酸化チタンの支持体への結合に耐久性のある酸
化ケイ素層を選び、かつ、酸化チタンが酸化ケイ素層に
埋没してしまうことなくその表面の一部を露出している
状態にすることで酸化チタンの活性を確保することを特
徴としている。そして太陽や紫外線灯や蛍光灯による紫
外光と大気中等からの酸素の供給があれば、長期にわた
って酸化力を発揮するので、街頭とくに自動車の往来の
多い街頭や室内の空気浄化、軽度汚染水の浄化等々に有
効である。
The above-described support of the present invention is useful for effectively utilizing the photooxidation activity of ultrafine titanium oxide, and is a silicon oxide layer which is durable for bonding titanium oxide to a support. Is selected, and the activity of the titanium oxide is ensured by leaving a part of the surface exposed without the titanium oxide being buried in the silicon oxide layer. And, if there is a supply of oxygen from the sun and ultraviolet light or fluorescent light and oxygen from the atmosphere, etc., it will exert oxidizing power over a long period of time. It is effective for purification and so on.

【0018】以下、本発明について実施例を挙げて説明
する。
Hereinafter, the present invention will be described with reference to examples.

【0019】(実施例−1)テトラエトキシシラン(T
EOS)、エタノール、ブタノール、水、硝酸(モル組
成比=1:7:13:11:0.01)からなるゾル液
に、アルミ板(サイズ:10センチ×10センチ)を浸
し、ディップコーティング(引き上げ速度:3mm/
s)し、室温で15分風乾する。これに超微粒子酸化チ
タンP−25(日本アエロジル社製、一次粒子径:約2
1ナノメータ)を吹き付ける。100℃、15分間加熱
処理を行い、アルミ板上に酸化ケイ素層をコートし、こ
れに超微粒子酸化チタン表面を支持体から一部露出して
担持せしめた無機複合薄膜を作製した。この超微粒子酸
化チタンが保持体から一部露出して担持したアルミ板
に、染料オイルレッド6Bのイソプロピルアルコール溶
液を塗布する。風乾後、塗布アルミ板の半分が太陽光に
曝されないように新たなアルミ板で覆い、これを大気中
太陽光に暴露する。また、比較のため、染料オイルレッ
ド6Bをアクリックタリアーに溶解した塗料液を白色の
紙(サイズ:10センチ×10センチ)に塗布する。こ
れも半分をアルミ板で覆い、同時に大気中太陽光に曝
す。退色度の判定は、目視並びに色差計のΔEにより行
った。 かっこ内の数値は、遮蔽のためにアルミ板で覆った部分
と覆っていない部分との色差計のΔEの読みの差で表
す。太陽光の照射により退色した超微粒子酸化チタン担
持アルミ板に再び染料オイルレッドのイソプロピルアル
コール溶液を塗布し、太陽光に曝す。この塗布と暴露を
三十回繰り返しても超微粒子酸化チタンの染料を退色さ
せる性能に変化は起こらなかった。
Example 1 Tetraethoxysilane (T
An aluminum plate (size: 10 cm × 10 cm) is immersed in a sol solution composed of EOS), ethanol, butanol, water, and nitric acid (molar composition ratio 1: 7: 13: 11: 0.01), and is subjected to dip coating ( Pulling speed: 3mm /
s) and air dry at room temperature for 15 minutes. Ultrafine titanium oxide P-25 (produced by Nippon Aerosil Co., Ltd., primary particle diameter: about 2
(1 nanometer). A heat treatment was performed at 100 ° C. for 15 minutes to coat an aluminum plate with a silicon oxide layer, and an inorganic composite thin film was formed in which an ultrafine titanium oxide surface was partially exposed from the support and supported. An isopropyl alcohol solution of dye oil red 6B is applied to an aluminum plate on which the ultrafine titanium oxide is partially exposed and supported from the support. After air drying, half of the coated aluminum plate is covered with a new aluminum plate so that it is not exposed to sunlight, and this is exposed to sunlight in the atmosphere. For comparison, a coating liquid in which Dye Oil Red 6B is dissolved in Acrytalia is applied to white paper (size: 10 cm × 10 cm). Again, half of this is covered with an aluminum plate, and at the same time it is exposed to sunlight in the atmosphere. The determination of the degree of fading was made visually and by ΔE of a color difference meter. The numerical value in parentheses is represented by the difference in the ΔE reading of the color difference meter between the portion covered with the aluminum plate for shielding and the portion not covered. An isopropyl alcohol solution of dye oil red is applied again to the ultrafine titanium oxide-carrying aluminum plate which has faded due to irradiation with sunlight, and is exposed to sunlight. Even if this coating and exposure were repeated thirty times, no change occurred in the performance of the dye of the ultrafine titanium oxide for fading the dye.

【0020】(参考例−1) 酸化チタンの埋没例 実施例−1で得られた超微粒子酸化チタン担持アルミ板
に更にゾル液をディップコートして熱処理を施した超微
粒子酸化チタンが支持体に埋没したアルミ板に染料液を
塗布し、実施例−1の染料退色試験を行ったが、染料の
退色劣化は見られなかった。 (参考例−2)実施例−1において超微粒子酸化チタン
P−25の代わりに顔料用酸化チタンCR−50(平均
粒子径:0.25μm)を使用すること以外に実施例−
1と同様に調整したアルミ板を用いた場合、染料の退色
劣化は見られなかった。 (参考例−3)実施例−1においてゾル液の代わりに、
粘着剤ポリブテン(日本石油化学社製)、樹脂クィント
ン(日本ゼオン社製)、キシレン(重量比:2:8:1
0)を用いてなる実施例−1と同様のアルミ板を調整
し、これに超微粒子酸化チタンを吹き付け、超微粒子酸
化チタンを有機系接着剤に担持したアルミ板を作製し
た。これに実施例−1と同様に染料液を塗布し、太陽光
に暴露した。染料液の塗布と太陽光への暴露を繰り返
し、3日間経過すると、染料を塗布した塗板の退色劣化
の程度が低下しはじめ、酸化チタンが支持体から一部脱
落し始め、5日間経過した後では支持体から酸化チタン
が脱落してしまい、殆ど塗板の退色劣化が認められなく
なり、保持体の役目を果たさなくなった。
Reference Example 1 Tungsten oxide burying example The ultrafine titanium oxide obtained by dip-coating the ultrafine titanium oxide-supporting aluminum plate obtained in Example 1 with a sol solution and heat-treated was used as a support. The dye solution was applied to the buried aluminum plate, and the dye fading test of Example 1 was carried out. No deterioration of the fading of the dye was observed. (Reference Example-2) Example- except that titanium oxide CR-50 for pigment (average particle diameter: 0.25 µm) was used instead of ultrafine titanium oxide P-25 in Example-1.
When an aluminum plate adjusted in the same manner as in No. 1 was used, no fading deterioration of the dye was observed. (Reference Example-3) Instead of the sol liquid in Example-1,
Adhesive polybutene (Nippon Petrochemical Co., Ltd.), resin Quinton (Nippon Zeon Co., Ltd.), xylene (weight ratio: 2: 8: 1)
An aluminum plate was prepared in the same manner as in Example-1 using (0), and ultrafine titanium oxide was sprayed on the aluminum plate to produce an aluminum plate having the ultrafine titanium oxide supported on an organic adhesive. A dye solution was applied thereto in the same manner as in Example 1 and exposed to sunlight. After repeating the application of the dye solution and exposure to sunlight, after 3 days, the degree of fading deterioration of the coated plate coated with the dye starts to decrease, and titanium oxide begins to partially drop off from the support, and after 5 days, In this case, titanium oxide was dropped from the support, and almost no fading deterioration of the coated plate was recognized, and the support did not serve as a support.

【0021】(実施例−2)テトラエトキシシラン(T
EOS)、エタノール、ブタノール、グリセリン、水、
硝酸(モル組成比=1:7:13:1:11:0.0
1)からなるゾル液に、ガラス板(サイズ:10センチ
×10センチ)を浸し、ディップコーティング(引き上
げ速度:3mm/s)し、室温で15分風乾する。これ
に超微粒子酸化チタンP−25(日本アエロジル社製)
を吹き付ける。100℃、5分間加熱処理を行い、グリ
セリンを抽出させるため水に浸漬した後再び100℃1
5分間熱処理する事により、ガラス板上に多孔質状にシ
リカ層をコートし、これに超微粒子酸化チタンを担持し
た無機複合薄膜を作製した。この多孔質状シリカ層に超
微粒子酸化チタンを担持したガラス板を、紫外線ランプ
(ケミカルランプ)、ガス流入口、ガス排出口を備えた
ガラス製容器に入れ、亜硫酸ガスを満たした後、石英ガ
ラス窓を通してガラス容器の外部から紫外線を照射す
る。一昼夜紫外線を照射した後、ガス分析を行うと、全
いおう酸化物濃度が半減していた。また、このガラス板
を洗った水溶液はpH1の酸性を示した。ガラス板を水
洗し、改めてガラス容器に入れ、亜硫酸ガスをこのガラ
ス容器に導入し、紫外線照射を一昼夜行う。この操作を
10回繰り返しても超微粒子酸化チタンによる亜硫酸ガ
スの酸化分解の性能に変化は起こらなかった。
Example 2 Tetraethoxysilane (T
EOS), ethanol, butanol, glycerin, water,
Nitric acid (molar composition ratio = 1: 7: 13: 1: 11: 0.0
A glass plate (size: 10 cm × 10 cm) is immersed in the sol solution of 1), subjected to dip coating (pulling speed: 3 mm / s), and air-dried at room temperature for 15 minutes. Ultrafine titanium oxide P-25 (manufactured by Nippon Aerosil Co., Ltd.)
Spray. Heat treatment at 100 ° C for 5 minutes, immersion in water to extract glycerin, and then again at 100 ° C
By heat-treating for 5 minutes, a silica layer was coated on a glass plate in a porous manner, and an inorganic composite thin film carrying ultrafine titanium oxide was prepared. A glass plate having ultrafine titanium oxide supported on the porous silica layer is placed in a glass container provided with an ultraviolet lamp (chemical lamp), a gas inlet and a gas outlet, and filled with sulfurous acid gas. Ultraviolet rays are irradiated from the outside of the glass container through the window. Gas analysis after UV irradiation for 24 hours revealed that the total sulfur oxide concentration was reduced by half. Further, the aqueous solution obtained by washing the glass plate showed an acidity of pH 1. The glass plate is washed with water, put into a glass container again, sulfur dioxide gas is introduced into the glass container, and ultraviolet irradiation is performed all day and night. Even if this operation was repeated 10 times, no change occurred in the performance of the oxidative decomposition of the sulfur dioxide by the ultrafine titanium oxide.

【0022】(参考例−4)実施例−2においてゾル液
の代わりに、粘着剤ポリブテン(日本石油化学社製)、
樹脂クィントン(日本ゼオン社製)、キシレン(重量
比:2:8:10)を用いてなる実施例−2と同様のガ
ラス板を調整し、これに超微粒子酸化チタンを吹き付
け、超微粒子酸化チタンを有機系接着剤に担持したガラ
ス板を作製した。これを実施例−2と同様にガラス容器
に入れ、亜硫酸ガス存在下に紫外線照射を行った。一昼
夜の一回目の照射では、その効果が認められたが、二回
目の照射を行うための水洗の際には一部の酸化チタンが
支持体から脱落し、亜硫酸ガスの酸化分解能が著しく低
下し、三回目の照射のための水洗の際には全ての酸化チ
タンが支持体から脱落してしまい、保持体としての機能
を失ってしまった。
(Reference Example-4) Instead of the sol solution in Example-2, an adhesive polybutene (manufactured by Nippon Petrochemical Co., Ltd.)
A glass plate similar to that in Example 2 using resin Quinton (manufactured by Zeon Corporation) and xylene (weight ratio: 2: 8: 10) was prepared, and ultrafine titanium oxide was sprayed on the same glass plate. Was supported on an organic adhesive to produce a glass plate. This was placed in a glass container in the same manner as in Example 2, and was irradiated with ultraviolet light in the presence of sulfur dioxide. The effect was observed in the first irradiation all day and night, but during the water washing for the second irradiation, some titanium oxide fell off the support, and the oxidation resolution of sulfurous acid gas was significantly reduced. At the time of washing for the third irradiation, all of the titanium oxide was dropped from the support, and lost its function as a support.

【0023】[0023]

【発明の効果】本発明は、超微粒酸化チタンの光酸化力
を活用するための、酸化チタン保持体を提供できるもの
である。
The present invention can provide a titanium oxide holder for utilizing the photo-oxidizing power of ultrafine titanium oxide.

【0024】[0024]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例−1に示した保持体断面の模式図であ
る。
FIG. 1 is a schematic diagram of a cross section of a holder shown in Example-1.

【図2】実施例−2に示した保持体断面の模式図であ
る。
FIG. 2 is a schematic diagram of a cross section of a holder shown in Example-2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 支持体表面上に設けた実質的に酸化ケイ
素からなる層の外表面に、超微粒子酸化チタンが埋没し
てしまうことなく、その表面の少なくとも一部が露出し
た状態で結合して存在せしめたことを特徴とする、超微
粒子酸化チタン保持体。
An ultrafine titanium oxide is bonded to an outer surface of a layer substantially made of silicon oxide provided on a surface of a support in a state where at least a part of the surface is exposed without being buried. An ultrafine titanium oxide holder, characterized in that it is present.
【請求項2】 支持体表面上に設けた実質的に酸化ケイ
素からなる多孔質層の外表面に、超微粒子酸化チタンが
埋没してしまうことなく、その表面の少なくとも一部が
露出した状態で結合して存在せしめたことを特徴とす
る、超微粒子酸化チタン保持体。
2. The ultrafine titanium oxide is not buried on the outer surface of a porous layer substantially made of silicon oxide provided on the surface of the support, and at least a part of the surface is exposed. An ultrafine titanium oxide support, characterized by being bonded and present.
JP9200702A 1997-06-20 1997-06-20 Ultrafine particle titanium oxide supporting material Ceased JPH1110784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9200702A JPH1110784A (en) 1997-06-20 1997-06-20 Ultrafine particle titanium oxide supporting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9200702A JPH1110784A (en) 1997-06-20 1997-06-20 Ultrafine particle titanium oxide supporting material

Publications (1)

Publication Number Publication Date
JPH1110784A true JPH1110784A (en) 1999-01-19

Family

ID=16428820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9200702A Ceased JPH1110784A (en) 1997-06-20 1997-06-20 Ultrafine particle titanium oxide supporting material

Country Status (1)

Country Link
JP (1) JPH1110784A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258069A (en) * 1989-03-31 1990-10-18 Babcock Hitachi Kk Plate-shaped laminated catalyst
JPH05253544A (en) * 1992-03-13 1993-10-05 Toto Ltd Production of plate-shape member having deodorizing function
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH09173865A (en) * 1995-12-25 1997-07-08 Toshiba Lighting & Technol Corp Photocatalyst, lamp and lighting appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258069A (en) * 1989-03-31 1990-10-18 Babcock Hitachi Kk Plate-shaped laminated catalyst
JPH05253544A (en) * 1992-03-13 1993-10-05 Toto Ltd Production of plate-shape member having deodorizing function
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH09173865A (en) * 1995-12-25 1997-07-08 Toshiba Lighting & Technol Corp Photocatalyst, lamp and lighting appliance

Similar Documents

Publication Publication Date Title
Mills et al. Thick titanium dioxide films for semiconductor photocatalysis
EP1027924B1 (en) Use of titanium dioxide as a photocatalyst
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2005531477A (en) Ceramic molded object having a photocatalytic coating and method for producing the same
JPH07171408A (en) Photocatalytic body and its production
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JPH11343426A (en) Photocatalytic coating
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
JP3461227B2 (en) Article having a silica film containing titanium dioxide
CN114308050B (en) Base material with photocatalyst and photocatalytic device
JP4112661B2 (en) Photocatalyst and its use
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JPH08133919A (en) Solid substance having antimicrobial action, its production and antimicrobial action on liquid and its flow channel
JPH09613A (en) Article with silica film containing powder of functional substance
JP2010150434A (en) Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
JPH1110784A (en) Ultrafine particle titanium oxide supporting material
JP3978636B2 (en) Coating composition for photocatalyst film formation
WO2005026276A1 (en) Coating material
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
JPH09314714A (en) Functional film and article having it
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20070529