JPH11107047A - Polyvinyl alcohol-based flame-retardant yarn and its production - Google Patents

Polyvinyl alcohol-based flame-retardant yarn and its production

Info

Publication number
JPH11107047A
JPH11107047A JP27403997A JP27403997A JPH11107047A JP H11107047 A JPH11107047 A JP H11107047A JP 27403997 A JP27403997 A JP 27403997A JP 27403997 A JP27403997 A JP 27403997A JP H11107047 A JPH11107047 A JP H11107047A
Authority
JP
Japan
Prior art keywords
wet
spinning
polymer
solvent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27403997A
Other languages
Japanese (ja)
Inventor
Shinya Inada
真也 稲田
Masahiro Sato
政弘 佐藤
Isao Tokunaga
勲 徳永
Akio Omori
昭夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27403997A priority Critical patent/JPH11107047A/en
Publication of JPH11107047A publication Critical patent/JPH11107047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject flame-retardant yarn having high strength, no melt drip, excellent durability of washing resistance, useful as protection clothing, etc., by spinning a spinning dope comprising a vinyl alcohol-based polymer, a halogen-containing polymer, etc., under specific conditions. SOLUTION: A spinning dope having a phase structure in which islands of a particle base having 2-10 μm particle diameters composed of a halogen- containing vinyl polymer 2 such as a vinyl chloride-based polymer, etc., exists in a solution of a vinyl alcohol-based polymer 1 is subjected to a wet or a dry and wet spinning in a solidifying bath obtained by mixing a solidifying solvent having solidifying ability of the component 1 with a dope solvent, drawn in a wet state at 1.5-3.0 times wet draw ratio, extracted, dried and further drawn in dry heat to give the objective polyvinyl alcohol-based flame-retardant yarn. Preferably, the spinning dope is mixed with 0.1-10 wt.% based on the total weight of the polymers of one or more compounds selected from the group consisting of a tin compound such as tin oxide and an antimony compound such as antimony pentoxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工程通過性の良好
なコストパフォーマンスに優れたポリビニルアルコール
(以下PVAと略す)系難燃繊維の製造方法に関するもの
であり、防護服向などの衣料、カーテンやカーペット向
などの産業資材、カーシートや車両バネ受け材向などの
産業資材など好適に用いることのできる繊維の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing polyvinyl alcohol (hereinafter abbreviated as PVA) flame retardant fibers having good processability and excellent cost performance. The present invention relates to a method for producing fibers that can be suitably used for industrial materials such as for car and carpet, and industrial materials such as for car seats and vehicle spring receiving materials.

【0002】[0002]

【従来の技術】従来、難燃繊維としては、難燃性コモノ
マーを共重合したアクリル繊維やポリエステル繊維、難
燃性薬剤を練り込んだり反応させたりした再生セルロー
ス繊維、ポリマー自身が難燃性の熱硬化性繊維やアラミ
ド繊維、難燃性薬剤で後加工した木綿や羊毛などが上市
されている。アクリル繊維は燃焼時シアンガスの発生、
ポリエステル繊維はメルトドリップ、熱硬化性繊維は繊
維強度が低い、アラミド繊維は極めて高価、木綿や羊毛
は後加工による風合い硬化や洗濯耐久性不良などの問題
があり、それぞれ改善の検討がなされている。
2. Description of the Related Art Conventionally, flame-retardant fibers include acrylic and polyester fibers copolymerized with a flame-retardant comonomer, regenerated cellulose fibers into which a flame-retardant agent has been kneaded or reacted, and the polymer itself having a flame-retardant property. Thermoset fibers, aramid fibers, cotton and wool post-processed with flame retardant agents are on the market. Acrylic fiber generates cyan gas when burning,
Polyester fiber has melt drip, thermosetting fiber has low fiber strength, aramid fiber is extremely expensive, cotton and wool have problems such as texture hardening due to post processing and poor washing durability, and improvements are being studied respectively. .

【0003】一方、PVA系の難燃繊維も例えば特公昭37-
12920号、特公昭49-10823号、特公昭51-19494号公報等
で知られており、防護服向などの衣料、カーテンやカー
ペット向などの生活資材、カーシートや車両バネ受け材
向などの産業資材などに用いられているが、用途によっ
てはコストパフォーマンスの点で不満足となって、更な
る拡販が困難な状況にある。
[0003] On the other hand, PVA-based flame-retardant fibers are also disclosed in
No. 12920, Japanese Patent Publication No. 49-10823, Japanese Patent Publication No. 51-19494, etc. are known, such as clothing for protective clothing, living materials such as curtains and carpets, car seats and vehicle spring receiving materials, etc. Although it is used for industrial materials, it is not satisfactory in terms of cost performance depending on the application, and it is difficult to further expand sales.

【0004】従来のPVA系難燃繊維は、PVXが水には溶解
しないため、安価な市販PVX粉末を使用することは不能
であり、小粒径の高価なポリ塩化ビニル(以下PVCと略
記)エマルジョンを使用せざるを得ない。 またPVAとPV
Cエマルジョンの混合水溶液は紡糸温度近辺の70〜100℃
で安定でなく、特にギヤポンプを通過する際の機械的安
定性が不十分であり、安定化のため低ケン化度のPVAを
使用したり、界面活性剤や水溶性高分子などを添加する
必要があり、更にコストを高くしている。
[0004] Since conventional PVA-based flame-retardant fibers do not dissolve PVX in water, it is impossible to use inexpensive commercial PVX powder, and expensive polyvinyl chloride having a small particle size (hereinafter abbreviated as PVC). I have to use an emulsion. Also PVA and PV
The mixed aqueous solution of C emulsion is 70 ~ 100 ℃ around spinning temperature
Insufficient mechanical stability, especially when passing through a gear pump, requires the use of low saponification PVA for stabilization and the addition of surfactants and water-soluble polymers And further increase costs.

【0005】また、従来のPVA系難燃繊維は、エマルジ
ョン粒径が0.01〜0.08μmのPVCの水系エマルジョンとPV
A水溶液を混合し、さらに難燃助剤として錫やアンチモ
ン化合物の水分散液を添加した液を紡糸原液とし、ぼう
硝水溶液からなる固化浴に湿式紡糸し、乾燥、乾熱延
伸、熱処理し、更に必要に応じて耐熱水性改善のためホ
ルマリンなどによりアセタール化処理して製造されてい
る。また高強度繊維を得るために、PVAとPVCエマルジョ
ン混合水溶液にほう酸を添加した紡糸原液を苛性ソーダ
とぼう硝の混合水溶液からなる固化浴に吐出し、ほう酸
架橋紡糸することも行われている。しかし、強力な脱水
性塩類であるぼう硝を固化浴として使用するため、得ら
れる繊維断面は不均一なスキンコア構造となり、断面中
央のコア構造部は結晶性が不十分となりやすい。また用
いるPVCエマルジョンの粒子径が0.01〜0.08μmと小さ
く、得られるPVAとPVCのブレンド繊維でのPVCの島径が
せいぜい0.05μmと小さく、数多く存在するため、マト
リックスを形成するPVA相はまとまった状態では存在し
がたい。従ってホルマール化などの耐熱水性改善処理を
行っても、寸法安定性、特に乾湿寸法安定性に改良の余
地がある。
The conventional PVA-based flame-retardant fiber is composed of an aqueous emulsion of PVC having an emulsion particle size of 0.01 to 0.08 μm and a PVA-based flame-retardant fiber.
A aqueous solution is mixed, and a liquid obtained by adding an aqueous dispersion of tin or an antimony compound as a flame retardant is used as a spinning solution, wet spinning is performed in a solidification bath composed of an aqueous solution of silica gel, drying, dry heat drawing, and heat treatment. Further, if necessary, it is produced by acetalization treatment with formalin or the like to improve hot water resistance. In order to obtain high-strength fibers, a spinning solution obtained by adding boric acid to a mixed aqueous solution of PVA and PVC emulsion is discharged into a solidification bath composed of a mixed aqueous solution of caustic soda and sodium nitrate, and spinning with boric acid is also performed. However, since the columnar salt, which is a strong dehydrating salt, is used as a solidification bath, the fiber cross section obtained has an uneven skin core structure, and the core structure at the center of the cross section tends to have insufficient crystallinity. In addition, the particle size of the PVC emulsion used is as small as 0.01 to 0.08 μm, and the resulting PVA / PVC blend fiber has a small PVC island size of at most 0.05 μm. It is hard to exist in the state. Therefore, even if a hot water improving treatment such as formalization is performed, there is room for improvement in dimensional stability, especially dimensional stability in wet and dry conditions.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来の
PVA系難燃繊維は他の難燃性繊維に比較すると優れた点
はあるが、コストパフォーマンスの点で用途が限定され
ていた。本発明は、工程通過性の良好なコストパフォー
マンスに優れた安価なPVA系難燃繊維の製造方法を提供
することを目的とするものであり、特に紡糸の際に抽出
浴ヘ繊維構成ポリマーの一部が脱落することにより生じ
る種々のトラブルを生じることがほとんどないPVA系難
燃繊維の製造方法に関する。
As described above, the conventional
PVA-based flame-retardant fibers have advantages over other flame-retardant fibers, but their use has been limited in terms of cost performance. An object of the present invention is to provide a method for producing an inexpensive PVA-based flame-retardant fiber having good process performance and excellent cost performance. The present invention relates to a method for producing a PVA-based flame-retardant fiber which hardly causes various troubles caused by dropping of a part.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、PV
A系ポリマー(1)と含ハロゲンポリマー(2)を共通の溶
媒に溶解し、得られた紡糸原液を(1)に対して固化能
を有する固化溶媒と原液溶媒とを混合した固化浴に湿式
または乾湿式紡糸し、湿延伸した後抽出し、そして乾燥
し、さらに乾熱延伸し、更に必要に応じて熱処理やアセ
タール化してPVA系難燃繊維を製造するにあたり、以
下の条件(a)と(b)、(a)紡糸原液が、(1)の溶液中
に、(2)の溶液からなる2〜100μmの粒子系の島が存
在している相構造であること、(b)湿延伸倍率が1.5
〜3.0倍であること、を満足することを特徴とするPV
A系難燃繊維の製造方法である。
That is, the present invention provides a PV
The A-based polymer (1) and the halogen-containing polymer (2) are dissolved in a common solvent, and the obtained spinning dope is wet-processed in a solidification bath obtained by mixing a solidifying solvent having a solidifying ability with (1) and a stock solution solvent. Alternatively, dry-wet spinning, extraction after wet-drawing, and drying, further dry-drawing, and heat treatment or acetalization as necessary to produce a PVA-based flame-retardant fiber, the following conditions (a) and (b), (a) the spinning dope has a phase structure in which 2 to 100 μm particle-based islands composed of the solution of (2) are present in the solution of (1), and (b) wet drawing 1.5 magnification
PV3.0 times
This is a method for producing A-based flame retardant fibers.

【0008】以下に本発明を詳細に説明する。本発明で
いうPVAとは、ビニルアルコールユニットを70モル%以上
有するポリマーを意味しており、従ってエチレン、酢酸
ビニル、イタコン酸、ビニルアミン、アクリルアミド、
ピバリン酸ビニル、無水マレイン酸、スルホン酸含有ビ
ニル化合物などのモノマーが30モル%未満の割合で共重
合されていてもよい。ケン化度は80モル%以上が好まし
く、配向結晶化のためには、全構成ユニットの95モル%
以上がビニルアルコールユニットであるPVAがより好ま
しく、更に好ましくは98モル%以上、もっと好ましくは9
9モル%以上、最も好ましくは99.8モル%以上がビニルア
ルコールユニットであるポリマーである。PVAの重合度
に関しては、特に限定はないが、高強度繊維とするため
には重合度500以上が好ましく、1500以上であると更に
好ましい。また耐熱水性改善のため、繊維化後ホルムア
ルデヒドで代表されるアルデヒド化合物などによりPVA
分子内および/または分子間アセタール化などの後反応
を施してもよい。
Hereinafter, the present invention will be described in detail. PVA in the present invention means a polymer having a vinyl alcohol unit of 70 mol% or more, and therefore, ethylene, vinyl acetate, itaconic acid, vinylamine, acrylamide,
Monomers such as vinyl pivalate, maleic anhydride, and sulfonic acid-containing vinyl compound may be copolymerized in a proportion of less than 30 mol%. The degree of saponification is preferably 80 mol% or more, and for orientation crystallization, 95 mol% of all the constituent units.
PVA is more preferably a vinyl alcohol unit, more preferably 98 mol% or more, more preferably 9 mol% or more.
At least 9 mol%, most preferably at least 99.8 mol%, of the polymer is a vinyl alcohol unit. The degree of polymerization of PVA is not particularly limited, but is preferably 500 or more, more preferably 1500 or more in order to obtain high-strength fibers. In order to improve hot water resistance, PVA is added to aldehyde compounds such as formaldehyde after fiberization.
A post-reaction such as intramolecular and / or intermolecular acetalization may be performed.

【0009】また本発明でいう含ハロゲンポリマー(以
下PVXと略す)とは、ハロゲン元素すなわちフッ素、塩
素、臭素、沃素を含有するユニットを50モル%以上有す
るビニルポリマーである。例えば、塩化ビニル系ポリマ
ー(PVC)、塩化ビニリデン系ポリマー、臭化ビニル系
ポリマー、臭化ビニリデン系ポリマー、塩素化ポリオレ
フィン、臭素化ポリオレフィンなどが包含される。中で
も、難燃性、耐熱分解性、コストの点でPVCが好まし
い。PVXは結晶性が甘く、繊維形成能がないかあるいは
繊維化しても低強度のものしか得られず、特にステープ
ル繊維のコストパフォーマンスに優れた製造法である湿
式紡糸法ではPVXの繊維は製造されていない。そこで、P
VXは本発明繊維では島成分として、難燃性付与のための
機能性ポリマーとして用いる。
The halogen-containing polymer (hereinafter abbreviated as PVX) in the present invention is a vinyl polymer having a unit containing a halogen element, that is, fluorine, chlorine, bromine or iodine in an amount of 50 mol% or more. For example, vinyl chloride polymer (PVC), vinylidene chloride polymer, vinyl bromide polymer, vinylidene bromide polymer, chlorinated polyolefin, brominated polyolefin and the like are included. Among them, PVC is preferred in terms of flame retardancy, heat decomposition resistance, and cost. PVX has a low degree of crystallinity, lacks fiber-forming ability, or has low strength even if it is formed into fibers.In particular, PVX fibers are manufactured by the wet spinning method, which is a cost-effective method for producing staple fibers. Not. So, P
VX is used as an island component in the fiber of the present invention and as a functional polymer for imparting flame retardancy.

【0010】PVAが海成分、PVXが島成分の海島構造をと
るには、PVAが55重量%以上、PVXが45重量%以下が好ま
しい。PVAが55重量%以下では一部PVXが海成分となる場
合があり好ましくない。またPVAが95重量%を超えて、P
VXが5重量%未満では、繊維中の塩素量が少なく難燃性
が不十分となるので好ましくない。難燃性、強度などの
バランスより、PVA/PVXの混合重量割合は90/10〜55/45
であると好ましく、80/20〜60/40であると更に好まし
い。なお本発明においてPVAとPVX以外の重合体が
本発明の目的を損なわない範囲内で添加されていてもよ
い。また各種安定剤や着色剤が添加されていてもよい。
In order to form a sea-island structure in which PVA is a sea component and PVX is an island component, the content of PVA is preferably 55% by weight or more and PVX is 45% by weight or less. When the content of PVA is 55% by weight or less, PVX may be partially a sea component, which is not preferable. When PVA exceeds 95% by weight, P
If VX is less than 5% by weight, the amount of chlorine in the fiber is small, and the flame retardancy becomes insufficient. From the balance of flame retardancy and strength, the mixed weight ratio of PVA / PVX is 90/10 ~ 55/45
And more preferably 80/20 to 60/40. In the present invention, a polymer other than PVA and PVX may be added as long as the object of the present invention is not impaired. Further, various stabilizers and coloring agents may be added.

【0011】紡糸原液はPVAとPVXを共通溶媒に溶解し紡
糸原液とする。共通の溶媒としては、ジメチルスルホキ
シド(以下DMSOと略記)、ジメチルアセトアミド、ジメ
チルホルムアミドなどの極性有機溶媒があげられる。特
に低温溶解性、ポリマー低分解性などの点よりDMSOが好
ましい。これに錫化合物およびアンチモン化合物からな
る群から選ばれる少なくとも1種の化合物を添加し、紡
糸原液を得る。原液中のポリマー濃度としては、10〜30
重量%の範囲が好ましい。
The spinning solution is prepared by dissolving PVA and PVX in a common solvent. Examples of the common solvent include polar organic solvents such as dimethylsulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, and dimethylformamide. In particular, DMSO is preferred from the viewpoints of low-temperature solubility and low polymer decomposability. To this, at least one compound selected from the group consisting of a tin compound and an antimony compound is added to obtain a spinning dope. The polymer concentration in the stock solution is 10-30
A range of weight% is preferred.

【0012】また紡糸原液は、PVA溶液中にPVXの溶液か
らなる2〜100μmの粒子系の島が存在している相構造で
なければならない。本発明で言う紡糸原液の相構造と
は、紡糸原液をスライドガラス上に約200μmの厚さ
に滴下し、オリンパス光学製微分干渉顕微鏡装置BX−
60型を用いて写真撮影し、測定した値である。また本
発明でいう粒子径とは、上記した微分干渉顕微鏡で観察
した場合に判別できる大多数がその範囲の径を有してい
ることを意味している。粒子径の大多数が100μmを
越える場合には、原液安定性および紡糸安定性の点で好
ましくない。また、大多数が2μm未満であるとPVAが明
確な海相を形成することができなくなる。より好ましく
は5〜80μmの粒子径を有している相構造である。粒子
径が20〜50μmであるともっと好ましい。
The spinning dope must have a phase structure in which PVA solution has islands of 2 to 100 μm particles composed of PVX solution. The phase structure of the spinning solution referred to in the present invention means that the spinning solution is dropped on a slide glass to a thickness of about 200 μm, and a differential interference microscope apparatus BX- manufactured by Olympus Optical Co., Ltd.
This is a value obtained by taking a photograph using a Model 60 and measuring it. Further, the particle diameter in the present invention means that the majority that can be distinguished when observed with the above-mentioned differential interference microscope has a diameter in the range. When the majority of the particle diameters exceeds 100 μm, it is not preferable from the viewpoint of stock solution stability and spinning stability. If the majority is less than 2 μm, the PVA cannot form a clear sea phase. More preferably, it has a phase structure having a particle size of 5 to 80 μm. More preferably, the particle size is between 20 and 50 μm.

【0013】このように粒子径を上記したような2〜100
μmの範囲とした紡糸原液の粘度としては、湿式紡糸す
る場合には10〜400ポイズ、乾湿式紡糸する場合に
は50〜2000ポイズの範囲が好ましく、これら粘度
は溶融紡糸の時の粘度よりかなり低い。
As described above, the particle diameter is 2 to 100 as described above.
The viscosity of the spinning stock solution in the range of μm is preferably 10 to 400 poise for wet spinning, and 50 to 2000 poise for dry-wet spinning, and these viscosities are considerably higher than those of melt spinning. Low.

【0014】ポリマーの溶解方法は特に限定するもので
はなく、2種類のポリマーをそれぞれ単独で原液溶媒に
溶解したものを適当な割合で混合しても良いし、一方の
ポリマーを溶解した溶液に他方のポリマーを添加して溶
解する方法や、2種のポリマーを同時に溶解する方法い
ずれも採用することができ、紡糸原液にはポリマーの安
定化剤として酸類や酸化防止剤などを併用することは何
ら差し支えなく行うことができる。
The method of dissolving the polymer is not particularly limited, and two types of polymers may be dissolved individually in an undiluted solvent and mixed at an appropriate ratio. The method of adding and dissolving the polymer of the above or the method of simultaneously dissolving the two kinds of polymers can be adopted, and it is not possible to use acids or antioxidants as stabilizers for the polymer in the spinning dope. It can be done without any problem.

【0015】このようにして得られた紡糸原液を紡糸ノ
ズルを通して固化浴中に湿式紡糸、あるいは乾湿式紡糸
する。固化浴を紡糸ノズルに直接接触させる湿式紡糸方
法は、ノズル孔ピッチを狭くしても繊維同士が膠着せず
に紡糸できるため、多孔ノズルを用いた紡糸に適してお
り、一方固化浴と紡糸ノズルの間にエアギャップを設け
る乾湿式紡糸の場合は、エアギャップ部での伸びが大き
いことより、高速紡糸に適している。本発明において
は、湿式か乾湿式かは目的や用途に応じて適宜選択する
ことができる。
The spinning dope thus obtained is wet-spun or dry-wet spinning through a spinning nozzle into a solidification bath. The wet spinning method, in which the solidification bath is brought into direct contact with the spinning nozzle, is suitable for spinning using a multi-hole nozzle because the fibers can be spun without causing the fibers to stick together even if the nozzle hole pitch is narrowed. Dry-wet spinning with an air gap between them is suitable for high-speed spinning because the elongation at the air gap is large. In the present invention, the wet or dry-wet method can be appropriately selected depending on the purpose and application.

【0016】本発明において用いる固化浴は固化溶媒と
原液溶媒からなる混合液であり、そして固化溶媒として
メタノール、エタノールなどのアルコール類、アセト
ン、メチルエチルケトンなどのケトン類などのPVAに対
して固化能を有する有機溶媒が好ましく、かつ得られる
繊維の強度の点から固化浴中での固化溶媒/原液溶媒の
組成比は重量比で25/75〜85/15が好ましい。
また固化浴は-5〜20℃の低温とすることが均一固化の点
で好ましい。
The solidifying bath used in the present invention is a mixed solution comprising a solidifying solvent and a stock solution, and has a solidifying ability with respect to PVA such as alcohols such as methanol and ethanol and ketones such as acetone and methyl ethyl ketone as solidifying solvents. Organic solvent is preferable, and the composition ratio of the solidifying solvent / stock solution solvent in the solidifying bath is preferably 25/75 to 85/15 by weight in view of the strength of the obtained fiber.
The solidification bath is preferably set to a low temperature of -5 to 20C from the viewpoint of uniform solidification.

【0017】本発明において、固化レベルを適正に維持
するために、前記したように固化浴中の固化溶媒と原液
溶媒の組成比を特定の範囲とすることが好ましく、本発
明では好適範囲として重量比で25/75〜85/15
の範囲が採用される。固化浴中での原液溶媒濃度が15
重量%より少ないと固化能が高すぎ、ノズル切れとなり
紡糸調子が不良となり、更に得られる繊維の強度・ヤン
グ率等の性能が低下する傾向にある。一方、固化浴中で
の原液溶媒濃度が75重量%より多いと十分な凝固がで
きず、これまた紡糸工程通過性が悪く、強度などの点で
満足できる性能の繊維を得ることができない。より好ま
しい固化浴中の原液溶媒の濃度は20〜70重量%であ
り、25〜65重量%が最も好ましい。なお本発明にお
いては、好適な固化浴として上記したように、有機溶媒
系固化溶媒と原液溶媒との混合液が用いられるが、もち
ろん少量ならばこれら以外の液体や固体が溶解されて存
在してもよい。本発明において、固化溶媒と原液溶媒の
最も好ましい組み合わせはメタノールとDMSOの組み
合わせである。
In the present invention, in order to properly maintain the solidification level, the composition ratio of the solidifying solvent and the stock solution in the solidifying bath is preferably in a specific range as described above. 25/75 to 85/15 in ratio
Range is adopted. The concentration of the undiluted solvent in the solidification bath is 15
If the amount is less than 10% by weight, the solidification ability is too high, the nozzle breaks, the spinning condition becomes poor, and the properties such as the strength and Young's modulus of the obtained fiber tend to decrease. On the other hand, if the concentration of the undiluted solvent in the solidification bath is more than 75% by weight, sufficient coagulation cannot be carried out, and the fiber has poor performance in the spinning step and cannot provide fibers having satisfactory performance in terms of strength and the like. A more preferred concentration of the undiluted solvent in the solidification bath is 20 to 70% by weight, and most preferably 25 to 65% by weight. In the present invention, as described above as a suitable solidification bath, a mixed solution of an organic solvent-based solidification solvent and a stock solution solvent is used, but if a small amount, other liquids and solids are dissolved and present. Is also good. In the present invention, the most preferable combination of the solidifying solvent and the stock solution is a combination of methanol and DMSO.

【0018】固化浴で形成された糸条は、湿延伸、原液
溶媒の抽出、そして乾燥、乾熱延伸と経ていくが、この
時湿延伸倍率を1.5〜3.0倍としなければならない。従来
高強度繊維を得るためには極力延伸倍率を高くするのが
好ましいとされており、延伸倍率を高めるためには湿延
伸の段階でも十分に延伸倍率を高めるのが好ましいとさ
れている。固化浴で形成された糸条を、従来の考えどう
り湿延伸倍率3倍を超える延伸を行うと、湿延伸以降の
抽出浴、置換浴の濁りが大きく、濁りが凝集して糸塊状
物となり、糸に付着し、後工程で種々のトラブルを引き
起こすことがわかった。この浴の濁りは、PVA単独紡糸
時固化浴にみられるポリマー溶出と同じ現象と考えた
が、糸塊状物分析でPVXと判明、また断面観察より、表
面にPVXからなる島が抜けたと思われる部分があること
などより、ポリマーの溶出ではなく、表面PVXからなる
島の脱落が主因とわかった。そこでこの対策を種々検討
したところ、湿延伸倍率を従来のPVA繊維の製造法では
一般的でない1.5〜3.0倍と著しく低下させたとこ
ろ、浴の濁りが顕著に抑制されることがわかった。湿延
伸倍率が低いと、浴の濁りが抑制される理由は明らかで
はないが、繊維断面の中央部にあったPVX島が湿延伸に
より表面側に押し出され、糸表面からPVX島が脱落した
と考えられるが、湿延伸倍率の低下により押し出される
PVX量が少なくなったためと推定される。湿延伸倍率を
低くすると、必然的に乾熱延伸倍率をあげる必要がある
ため乾熱延伸の工程通過性が悪化する、また乾燥時繊維
間の膠着がおこるということが危惧されるが、本発明の
PVAとPVXの海島繊維では1.5倍の湿延伸倍率でもそのよ
うな問題はなく、このことが本発明のような独特の製法
を可能とするのである。1.5倍未満の湿延伸では、乾熱
延伸の工程通過性悪化、乾燥時の繊維間膠着の発生のた
め好ましくない。好ましい湿延伸倍率は2.0〜3.0倍であ
る。
The yarn formed in the solidifying bath is subjected to wet drawing, extraction of a stock solution solvent, drying, and dry drawing. The drawing ratio at this time must be 1.5 to 3.0 times. Conventionally, it is said that it is preferable to increase the draw ratio as much as possible in order to obtain a high-strength fiber, and to increase the draw ratio, it is preferable to sufficiently increase the draw ratio even in the wet drawing stage. If the yarn formed in the solidification bath is stretched by more than 3 times the wet draw ratio as conventionally considered, the turbidity of the extraction bath and the displacement bath after the wet draw is large, and the turbidity is agglomerated into a thread mass. It adhered to the yarn and caused various troubles in the subsequent process. The turbidity of this bath was considered to be the same phenomenon as the polymer elution observed in the solidification bath during spinning of PVA alone, but it was found to be PVX by thread lump analysis, and from the cross-section observation, it was thought that islands composed of PVX had escaped from the surface. It was found that the main cause was not the elution of the polymer but the falling off of islands composed of surface PVX. Therefore, various investigations of this measure revealed that when the wet draw ratio was significantly reduced to 1.5 to 3.0 times, which is not common in the conventional PVA fiber manufacturing method, the turbidity of the bath was significantly suppressed. all right. When the wet draw ratio is low, the reason why the turbidity of the bath is suppressed is not clear, but the PVX island at the center of the fiber cross section was extruded to the surface side by wet drawing, and the PVX island dropped off from the yarn surface It can be considered, but it is extruded due to a decrease in wet stretch ratio
It is estimated that the amount of PVX has decreased. If the wet draw ratio is lowered, the dry heat draw ratio must be increased, so that the dry heat drawing process passability is deteriorated, and it is feared that agglomeration between fibers occurs during drying.
In the case of PVA and PVX sea-island fibers, there is no such a problem even at a wet draw ratio of 1.5 times, which enables a unique production method as in the present invention. Wet stretching of less than 1.5 times is not preferred because of poor processability of the dry heat stretching and occurrence of inter-fiber cohesion during drying. The preferred wet stretching ratio is 2.0 to 3.0 times.

【0019】糸条は抽出後、乾燥を経て、乾熱延伸工程
に送られる。本発明方法においては、全延伸倍率が6倍
以上となるように乾熱延伸を行う。本発明でいう全延伸
倍率とは、湿延伸倍率と乾熱延伸倍率との積で表される
倍率であり、全延伸倍率が6倍未満の場合には強度・ヤ
ング率の優れた繊維を得ることができない。
After the yarn is extracted and dried, it is sent to a dry heat drawing step. In the method of the present invention, the dry stretching is performed so that the total stretching ratio is 6 times or more. The total draw ratio referred to in the present invention is a ratio expressed by a product of a wet draw ratio and a dry heat draw ratio, and when the total draw ratio is less than 6, a fiber having excellent strength and Young's modulus is obtained. Can not do.

【0020】さらに、本発明繊維に、錫化合物およびア
ンチモン化合物からなる群から選ばれる少なくとも1種
の化合物を、ポリマー総重量に対して0.1〜10重量%分
散させると、難燃性が改善され、好ましい。本発明にい
う錫化合物とは、錫元素を含む化合物なら特別な限定は
ないが、難燃助剤としての難燃性増強効果とコストパフ
ォーマンスの点で酸化錫やメタ錫酸などの無機酸化物が
好ましい。また本発明にいうアンチモン化合物とは、ア
ンチモン元素を含む化合物なら特別な限定はないが、難
燃助剤としての難燃性増強効果とコストパフォーマンス
の点で五酸化アンチモンや三酸化アンチモンなどの無機
酸化物が好ましい。錫化合物およびアンチモン化合物か
らなる群から選ばれる少なくとも1種の化合物の含有量
がポリマーの総重量に対し0.1%未満であると難燃性が
不十分である。10%を超える量含有させても難燃化効果
は頭打ち状態となり、コストパフォーマンスの点で不利
となる。錫化合物およびアンチモン化合物からなる群か
ら選ばれる少なくとも1種の化合物の含有量が0.5〜8重
量%であるとより好ましく、1〜6重量%であると更に好
ましい。
Furthermore, when at least one compound selected from the group consisting of a tin compound and an antimony compound is dispersed in the fiber of the present invention in an amount of 0.1 to 10% by weight based on the total weight of the polymer, flame retardancy is improved. preferable. The tin compound referred to in the present invention is not particularly limited as long as it is a compound containing a tin element, but in view of the effect of enhancing flame retardancy as a flame retardant auxiliary and cost performance, inorganic oxides such as tin oxide and metastannic acid. Is preferred. The antimony compound referred to in the present invention is not particularly limited as long as it is a compound containing an antimony element. However, inorganic compounds such as antimony pentoxide and antimony trioxide in terms of a flame retardant enhancing effect as a flame retardant aid and cost performance. Oxides are preferred. When the content of at least one compound selected from the group consisting of tin compounds and antimony compounds is less than 0.1% based on the total weight of the polymer, the flame retardancy is insufficient. Even if the content exceeds 10%, the flame retardant effect reaches a plateau, which is disadvantageous in cost performance. The content of at least one compound selected from the group consisting of tin compounds and antimony compounds is more preferably 0.5 to 8% by weight, and even more preferably 1 to 6% by weight.

【0021】[0021]

【実施例】以下本発明を実施例により更に具体的に説明
するが、本発明はこれら実施例に何ら制約を受けるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0022】実施例1 重合度1750、ケン化度99.8モル%のPVA、重
合度400のPVC粉末、メタ錫酸をDMSOに投入し、80℃で5
時間窒素気流下で攪拌溶解し、PVA/PVCの重量比が67/3
3、ポリマー濃度が18重量%、メタ錫酸が1重量%の混合
紡糸原液を得た。この原液を微分干渉顕微鏡で観察した
ところ、PVA溶液中にPVC溶液が約40μmの島径からなる
相構造を有していることがわかった。得られた80℃の紡
糸原液を、孔数1000ホール、孔径0.08mmの紡
糸口金を通して、DMSO/メタノールの重量比が30
/70、温度が0℃の固化浴中に湿式紡糸した。つい
で、メタノールでDMSOを抽出しながら、2.0倍の湿延伸
を施し、さらにメタノールで抽出し、100℃の熱風で乾
燥し、228℃で7.0倍乾熱延伸を施し、全延伸倍率14.0倍
の繊維を得た。この繊維の製造において、湿延伸後の抽
出浴では濁りがほとんどみられず、乾燥時、乾熱延伸時
の工程通過性もきわめて良好であった。得られた繊維は
太さが1.8デニールで、繊維断面を透過型電子顕微鏡
(TEM)で20000倍に拡大した断面TEM写真より、PVAが
海、PVCが島の海島構造であり、PVCの島径は0.8μmであ
った。またこの繊維の強度は8.5g/d、LOI値は37であっ
た。
Example 1 PVA having a degree of polymerization of 1750 and a saponification degree of 99.8 mol%, PVC powder having a degree of polymerization of 400, and metastannic acid were added to DMSO.
Stir and dissolve in a nitrogen stream for an hour, and the PVA / PVC weight ratio is 67/3
3. A mixed spinning solution having a polymer concentration of 18% by weight and a metastannic acid of 1% by weight was obtained. Observation of this undiluted solution with a differential interference microscope revealed that the PVC solution had a phase structure having an island diameter of about 40 μm in the PVA solution. The obtained 80 ° C. spinning solution was passed through a spinneret having 1,000 holes and a hole diameter of 0.08 mm, and the weight ratio of DMSO / methanol was 30.
/ 70, wet spinning in a solidification bath at a temperature of 0 ° C. Then, while extracting DMSO with methanol, perform 2.0-fold wet stretching, further extract with methanol, dry with hot air at 100 ° C, apply dry-dry stretching at 228 ° C 7.0-fold, and obtain a fiber with a total stretching ratio of 14.0 times. I got In the production of this fiber, almost no turbidity was observed in the extraction bath after wet drawing, and the processability during drying and dry heat drawing was extremely good. The obtained fiber has a thickness of 1.8 denier. From the cross-sectional TEM photograph of the cross section of the fiber magnified 20,000 times with a transmission electron microscope (TEM), the PVA is a sea, and the PVC is a sea-island structure of an island. The island diameter was 0.8 μm. The fiber had a strength of 8.5 g / d and an LOI of 37.

【0023】比較例1 実施例1において、4.0倍の湿延伸、3.5倍の乾熱延伸を
施したものを製造した。全延伸倍率は、実施例1と同じ1
4倍とした。得られた紡糸原液を微分干渉顕微鏡で観察
したところ、PVA溶液中にPVC溶液が約40μmの島径から
なる相構造を有していることがわかった。この繊維の製
造において、湿延伸後の抽出浴は激しく濁り、またその
糸条に付着した糸塊状物が乾燥機のガイドに付着し、乾
燥機内で毛羽発生を激しく誘発した。またそのため乾熱
延伸時の工程通過性も不良であった。得られた繊維は、
断面をTEMで20000倍に拡大した断面TEM写真より、PVAが
海、PVCが島の海島構造であり、PVCの島径は0.8μmであ
った。またこの繊維の強度は8.5g/d、LOI値は37であっ
た。
COMPARATIVE EXAMPLE 1 The same procedure as in Example 1 was performed, except that the sheet was subjected to 4.0 times wet stretching and 3.5 times dry heat stretching. The total draw ratio is the same as in Example 1
4 times. Observation of the obtained spinning dope with a differential interference microscope revealed that the PVC solution had a phase structure having an island diameter of about 40 μm in the PVA solution. In the production of this fiber, the extraction bath after wet drawing became severely turbid, and the lump attached to the yarn adhered to the guide of the dryer, causing severe fuzz generation in the dryer. In addition, the processability during dry heat stretching was poor. The resulting fiber is
From the cross-sectional TEM photograph of the cross section magnified 20000 times by TEM, PVA was a sea-island structure with PVC on the sea and PVC on the island, and the island diameter of PVC was 0.8 μm. The fiber had a strength of 8.5 g / d and an LOI of 37.

【0024】比較例2 実施例1において、1.2倍の湿延伸、11.7倍の乾熱延伸を
施したものを製造した。全延伸倍率は、実施例1と同じ1
4倍とした。得られた紡糸原液を微分干渉顕微鏡で観察
したところ、PVA溶液中にPVC溶液が約40μmの島径から
なる相構造を有していることがわかった。この繊維の製
造において、湿延伸後の抽出浴では濁りはみられなかっ
たが、乾燥時繊維間の膠着が生じ、正常な繊維を得るこ
とはできなかった。また乾熱延伸倍率が大きいため、乾
熱延伸時の工程通過性も不良であった。何とかして得ら
れた繊維は、断面をTEMで20000倍に拡大した断面TEM写
真より、PVAが海、PVCが島の海島構造であり、PVCの島
径は0.8μmであった。またこの繊維の強度は7.6g/d、Ws
rは2.9%、LOI値は37であった。
COMPARATIVE EXAMPLE 2 The same procedure as in Example 1 was performed except that the film was subjected to a wet stretching of 1.2 times and a dry heat stretching of 11.7 times. The total draw ratio is the same as in Example 1
4 times. Observation of the obtained spinning dope with a differential interference microscope revealed that the PVC solution had a phase structure having an island diameter of about 40 μm in the PVA solution. In the production of the fibers, no turbidity was observed in the extraction bath after the wet drawing, but the fibers adhered during drying, and normal fibers could not be obtained. Further, since the dry heat stretching ratio was large, the processability during the dry heat stretching was poor. The fiber obtained somehow had a sea-island structure with PVA of sea and PVC of island, and the island diameter of PVC was 0.8 μm from a cross-sectional TEM photograph of the cross section magnified 20,000 times by TEM. The strength of this fiber is 7.6g / d, Ws
r was 2.9% and LOI value was 37.

【0025】実施例2 実施例1において、 PVA/PVCの重量比を60/40に変更した
ものを製造した。得られた紡糸原液を微分干渉顕微鏡で
観察したところ、PVA溶液中にPVC溶液が約45μmの島径
からなる相構造を有していることがわかった。この繊維
の製造において、湿延伸後の抽出浴での濁りは実施例1
より若干多かったものの問題ないレベルであり、乾燥
時、乾熱延伸時の工程通過性も良好であった。得られた
繊維は、断面をTEMで20000倍に拡大した断面TEM写真よ
り、PVAが海、PVCが島の海島構造であり、PVCの島径は
0.9μmであった。またこの繊維の強度は7.5g/d、LOI値
は40であった。
Example 2 The same procedure as in Example 1 except that the weight ratio of PVA / PVC was changed to 60/40 was manufactured. Observation of the obtained spinning dope with a differential interference microscope revealed that the PVC solution had a phase structure having an island diameter of about 45 μm in the PVA solution. In the production of this fiber, the turbidity in the extraction bath after wet stretching was determined in Example 1.
Although it was a little more, it was at a level that did not cause any problem, and the process passability during drying and dry heat stretching was also good. From the cross-sectional TEM photograph of the obtained fiber, the cross-section of which was magnified 20,000 times by TEM, PVA was a sea, PVC was a sea-island structure, and the island diameter of PVC was
0.9 μm. The strength of this fiber was 7.5 g / d, and the LOI value was 40.

【0026】[0026]

【発明の効果】本発明方法は、固化浴で形成された糸条
を、湿延伸、原液溶媒の抽出、そして乾燥、乾熱延伸と
経ていく難燃性PVA繊維の製造方法において、抽出浴
で生じる濁りが原因で、濁りが凝集して糸塊状物とな
り、糸に付着し、後工程で種々のトラブルを引き起こす
ことを防止するために、湿延伸倍率を通常行われる倍率
よりも低くする方法であり、それにより後工程がトラブ
ルなく製造できることがわかった。本発明方法により得
られる繊維は、戦闘服や消防服などの防護衣料分野、カ
ーシートや車両バネ受け材やエアフィルターなどの産業
資材分野、カーテン、カーペット、毛布、布団側地、シ
ーツカバー、中入綿などの生活資材分野に有効に用いる
ことができる。
According to the method of the present invention, the yarn formed in the solidification bath is subjected to wet drawing, extraction of the solvent of the stock solution, drying, and dry drawing. Due to the turbidity that occurs, the turbidity aggregates into a thread mass, adheres to the yarn, and in order to prevent various troubles in the subsequent process, in a method in which the wet draw ratio is set lower than the usual draw ratio. It was found that the post-process could be manufactured without trouble. The fibers obtained by the method of the present invention are used in the field of protective clothing such as combat uniforms and firefighting suits, the field of industrial materials such as car seats and vehicle spring receiving materials and air filters, curtains, carpets, blankets, blankets, sheets covers, and the like. It can be used effectively in the field of living materials such as cotton.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 昭夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akio Omori 1621 Sazu, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ビニルアルコール系ポリマー(1)と含ハロ
ゲンポリマー(2)を共通の溶媒に溶解し、得られた紡糸
原液を(1)に対して固化能を有する固化溶媒と原液溶
媒とを混合した固化浴に湿式または乾湿式紡糸し、湿延
伸した後、抽出し、そして乾燥し、さらに乾熱延伸し、
更に必要に応じて熱処理やアセタール化してポリビニル
アルコール系難燃繊維を製造するにあたり、以下の条件
(a)と(b)、(a)紡糸原液が、(1)の溶液中に、(2)
の溶液からなる2〜100μmの粒子系の島が存在している
相構造であること、(b)湿延伸倍率が1.5〜3.0倍であ
ること、を満足することを特徴とするポリビニルアルコ
ール系難燃繊維の製造方法。
(1) A vinyl alcohol-based polymer (1) and a halogen-containing polymer (2) are dissolved in a common solvent, and the resulting spinning dope is mixed with a solidifying solvent having a solidifying ability with respect to (1) and a stock solvent. Wet or dry-wet spinning into a mixed solidification bath, wet-drawing, extraction and drying, and further dry-drawing,
In order to produce polyvinyl alcohol-based flame-retardant fiber by heat treatment or acetalization as necessary, the following conditions
(a) and (b), (a) The spinning solution is added to the solution of (1) in (2).
(B) a wet stretching ratio of 1.5 to 3.0 times, which satisfies a phase structure in which 2 to 100 μm particle-based islands are present. A method for producing fuel fibers.
【請求項2】紡糸原液に、錫化合物およびアンチモン化
合物からなる群から選ばれる少なくとも1種の化合物
が、ポリマー総重量に対して0.1〜10重量%分散、混合
されている請求項1記載の製造方法。
2. The process according to claim 1, wherein at least one compound selected from the group consisting of tin compounds and antimony compounds is dispersed and mixed in the spinning dope at a concentration of 0.1 to 10% by weight based on the total weight of the polymer. Method.
JP27403997A 1997-10-07 1997-10-07 Polyvinyl alcohol-based flame-retardant yarn and its production Pending JPH11107047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403997A JPH11107047A (en) 1997-10-07 1997-10-07 Polyvinyl alcohol-based flame-retardant yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403997A JPH11107047A (en) 1997-10-07 1997-10-07 Polyvinyl alcohol-based flame-retardant yarn and its production

Publications (1)

Publication Number Publication Date
JPH11107047A true JPH11107047A (en) 1999-04-20

Family

ID=17536122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403997A Pending JPH11107047A (en) 1997-10-07 1997-10-07 Polyvinyl alcohol-based flame-retardant yarn and its production

Country Status (1)

Country Link
JP (1) JPH11107047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055668A1 (en) * 2008-11-14 2010-05-20 興研株式会社 Sheet-like assembly of fibers having small diameters, method for producing same, and apparatus for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055668A1 (en) * 2008-11-14 2010-05-20 興研株式会社 Sheet-like assembly of fibers having small diameters, method for producing same, and apparatus for producing same
JP4902788B2 (en) * 2008-11-14 2012-03-21 興研株式会社 Sheet-like assembly of small-diameter fibers, manufacturing method thereof, and manufacturing apparatus thereof
US10815587B2 (en) 2008-11-14 2020-10-27 Koken, Ltd. Sheet of microfiber assembly

Similar Documents

Publication Publication Date Title
US6066396A (en) Flame-retardant polyvinyl alcohol base fiber
US3928261A (en) Water removable film-forming compositions for topical application to skin
JP2010242063A (en) Cellulose nanofiber compound polyvinyl alcohol-based polymer composition
JPH03220309A (en) Yarn and production thereof
JPH11107047A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JP2000212828A (en) Polyvinyl alcohol-based fiber and its production
JP2000154422A (en) Polyvinyl alcohol flame-retarded fiber
JPH11200152A (en) Polyvinyl alcohol-based flame retardant fiber and its production
JPH11107045A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JPH11107044A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JP2008190063A (en) Method for producing soft spun raw yarn having excellent feeling and textile product obtained from the same
JPH11107046A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JP2601775B2 (en) Flame retardant acrylic composite fiber
JPH05148709A (en) Acrylic modified cross section fiber and its production
JPH11286827A (en) Flame-retardant polyvinyl alcohol fiber and its production
JPH10280228A (en) Production of spinning dope and production of fiber
JP3544057B2 (en) Method for producing polyvinyl alcohol-based flame retardant fiber
JP2001226819A (en) Method of producing flame-retardant polyvinyl alcohol fiber
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JP3370395B2 (en) Highly flame-retardant acrylic composite fiber
JP3887131B2 (en) Wiping cloth
JPH03294515A (en) Production of highly flame-retardant acrylic fiber having excellent transparency
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JP2001355122A (en) Flame-retardant fiber and method for producing the same
JPH0770818A (en) Flame-retardant acrylic fiber and flame-retardant fiber composite produced therefrom