JPH11102710A - Nonaqueous electrolyte battery using thin electrode - Google Patents

Nonaqueous electrolyte battery using thin electrode

Info

Publication number
JPH11102710A
JPH11102710A JP9259787A JP25978797A JPH11102710A JP H11102710 A JPH11102710 A JP H11102710A JP 9259787 A JP9259787 A JP 9259787A JP 25978797 A JP25978797 A JP 25978797A JP H11102710 A JPH11102710 A JP H11102710A
Authority
JP
Japan
Prior art keywords
current collector
active material
thickness
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259787A
Other languages
Japanese (ja)
Other versions
JP3412473B2 (en
Inventor
Takenori Ishizu
竹規 石津
Mitsunori Oda
光徳 織田
Kotaro Kobayashi
康太郎 小林
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP25978797A priority Critical patent/JP3412473B2/en
Publication of JPH11102710A publication Critical patent/JPH11102710A/en
Application granted granted Critical
Publication of JP3412473B2 publication Critical patent/JP3412473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of the discharge characteristic by making the thickness of a current collector at a part, where the active substance is arranged to be smaller than the thickness of a part where no active substance is arranged. SOLUTION: In a negative electrode current collector of 90 μm thickness, a copper foil 2 of 30 μm thickness is welded with ultrasonic wave to each side of a part of a copper negative electrode current collector 1 of 10 μm thickness, where no active substance is arranged. The active substance mixture 3 which is the mixture of the carbon material with the binder of polyvinylidene fluoride, is coated on each side of the negative electrode current collector 1 by 70 μm each side. A copper tub terminal 4 (80 μm in thickness) is welded to the copper foil 2 with ultrasonic wave. Because the part of the negative electrode current collector 1 where no active substance is arranged, is a connection part of the tub terminal 4 to the external part of a battery, and a part where the power concentration is generated, the current collection efficiency of the electrode is improved by increasing the thickness compared with the part of the negative electrode 1, where the active substance is arranged to reduce the electrical resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄型電極を用いた
非水電解液電池に関するものである。
The present invention relates to a non-aqueous electrolyte battery using a thin electrode.

【0002】[0002]

【従来の技術】現在、非水電解液電池としてリチウム一
次電池、リチウム二次電池等が実用化されている。これ
らの電池のうちリチウム二次電池は、一般的に集電体と
して金属薄膜を使用している。非水電解液は、水溶液系
に比べイオン導電率が低い。そのため電極自体を薄型化
することで電解液との接触面積を大きくする必要があ
り、電極の集電体も一般に薄い金属薄膜が使用されてき
た。
2. Description of the Related Art At present, lithium primary batteries, lithium secondary batteries and the like are in practical use as nonaqueous electrolyte batteries. Among these batteries, lithium secondary batteries generally use a metal thin film as a current collector. Non-aqueous electrolytes have lower ionic conductivity than aqueous solutions. Therefore, it is necessary to increase the contact area with the electrolytic solution by reducing the thickness of the electrode itself, and a thin metal thin film has generally been used as the current collector of the electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記集
電体としての金属薄膜は、薄くするに従いその断面積が
小さくなるため、電極の集電効率が低下し、高率充放電
時の電池容量が小さくなる傾向があった。一方集電体を
厚くするに従い、電極の集電効率は向上するものの、電
極中に占める集電体の体積が増大し、単位体積中の電池
容量が減少する。また活物質以外の電池材料の重量が増
加するため一定重量中の電池容量も減少するという問題
点があった。本発明が解決しようとする課題は、金属薄
膜からなる二次元集電体表面に配された活物質からなる
薄型電極を用いた非水電解液電池の高率放電特性を向上
させることである。
However, since the cross-sectional area of the metal thin film as the current collector decreases as the thickness of the current collector decreases, the current collection efficiency of the electrode decreases, and the battery capacity during high-rate charge / discharge increases. There was a tendency to be smaller. On the other hand, as the thickness of the current collector increases, the current collection efficiency of the electrode improves, but the volume of the current collector in the electrode increases, and the battery capacity per unit volume decreases. In addition, there is a problem in that the weight of the battery material other than the active material increases, so that the battery capacity under a constant weight also decreases. The problem to be solved by the present invention is to improve the high rate discharge characteristics of a nonaqueous electrolyte battery using a thin electrode made of an active material disposed on a two-dimensional current collector made of a metal thin film.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の二次元集電体表面に配された活物質からな
る薄型電極と、アルカリ金属イオンを含む非水電解液を
有する非水電解液電池は、前記電極が正極および/また
は負極であり、前記集電体表面に、活物質が配される部
分と、活物質が配されない部分が存在し、その活物質が
配されない部分から導出又は接続されたタブ端子が、直
接あるいは間接的に電池外部端子に接続され、前記活物
質が配される部分の集電体厚みt1が、前記活物質が配
されない部分の集電体厚みt2よりも薄いことを特徴と
する。集電体の活物質が配されていない箇所は、一般的
に電池外部へのタブ端子接続部であり電力集中が起こる
箇所であるため、集電体の活物質が配されている箇所よ
りも電気抵抗を低くする(つまりt2>t1とする)こ
とにより電極の集電効率を向上できる。また電池の製造
における、タブ端子取り扱い時にはタブ端子への力学的
負荷がかかるため、集電体又はタブ端子が裂けるおそれ
がある。またそれが原因で電極の集電性が低下するおそ
れがある。このような不具合は特に集電体の活物質が配
されていない箇所にタブ端子部材を溶接等の手段で接続
されている形態の電極の場合に顕著である。その理由
は、集電体の活物質が配されていない箇所はタブ端子接
続部となり、そこでの接続操作が必須であるためであ
る。前記接続操作は他のタブ端子取り扱い操作に比して
タブ端子への力学的負荷が大きい。またタブ端子と集電
体との溶接部の接触が不十分となるおそれもある。よっ
て活物質が配されていない箇所の集電体を、活物質が配
されている箇所の集電体よりも厚くする(つまりt2>
t1とする)ことによりt2部分の剛性が増し、このよ
うな問題を克服することができる。
Means for Solving the Problems In order to solve the above problems, a thin electrode made of an active material disposed on the surface of a two-dimensional current collector of the present invention and a non-aqueous electrolyte containing a non-aqueous electrolyte containing alkali metal ions are provided. In the water electrolyte battery, the electrode is a positive electrode and / or a negative electrode, and a portion where the active material is disposed and a portion where the active material is not disposed exist on the current collector surface, and a portion where the active material is not disposed. The tab terminal derived or connected to the battery terminal is directly or indirectly connected to the battery external terminal, and the current collector thickness t1 of the portion where the active material is disposed is the current collector thickness of the portion where the active material is not disposed. It is characterized by being thinner than t2. The location where the active material of the current collector is not disposed is generally a tab terminal connection portion to the outside of the battery and is a location where power concentration occurs, so that the location where the active material of the current collector is disposed is higher than the location where the active material of the current collector is disposed. The current collection efficiency of the electrode can be improved by reducing the electric resistance (that is, t2> t1). Also, in the manufacture of the battery, a mechanical load is applied to the tab terminal when the tab terminal is handled, so that the current collector or the tab terminal may be torn. In addition, there is a possibility that the current collecting property of the electrode is reduced. Such a problem is particularly remarkable in the case of an electrode in which a tab terminal member is connected to a portion of the current collector where the active material is not provided by welding or the like. The reason for this is that a portion of the current collector where the active material is not disposed is a tab terminal connection portion, and a connection operation there is essential. The connection operation imposes a large mechanical load on the tab terminals as compared with other tab terminal handling operations. In addition, there is a possibility that contact of the welded portion between the tab terminal and the current collector becomes insufficient. Therefore, the current collector at the portion where the active material is not disposed is thicker than the current collector at the portion where the active material is disposed (that is, t2>
By setting it to t1, the rigidity of the t2 portion is increased, and such a problem can be overcome.

【0005】上記二次元集電体とは、金属等からなる導
電性の箔や膜や板等である。また上記二次元集電体は、
穿孔板等でも良い。また上記薄型電極とは前記二次元集
電体を用いた薄い電極である。
[0005] The two-dimensional current collector is a conductive foil, film or plate made of metal or the like. Further, the two-dimensional current collector,
A perforated plate or the like may be used. The thin electrode is a thin electrode using the two-dimensional current collector.

【0006】上記本発明に係る薄型電極は、必ずしも両
極性の電極に適用する必要はない。片方の極性の電極に
適用するだけでも十分に高率放電特性向上効果は得られ
る。つまり、正極集電体あるいは負極集電体のどちらか
が本発明に係る二次元集電体を用いていれば、他方の極
性の集電体は三次元集電体等の二次元集電体以外でもよ
い。一般に非水電解液電池は負極活物質よりも正極活物
質の方が導電性に乏しい。従って仮に一方の極性の電極
のみに本発明の構成を適用するならば、正極に適用する
ことが好ましい。もちろん本例のように両極性の電極に
本発明の構成を適用することが最も好ましいことは言う
までもない。また集電体の活物質が配されない部分は、
電極幅方向又は長さ方向の端部全域に亘り存在すること
が電極作製工程が簡易化される点で好ましいが、特に限
定されない。
The thin electrode according to the present invention need not always be applied to a bipolar electrode. Even when applied to an electrode of one polarity, a sufficiently high rate-of-discharge characteristic improvement effect can be obtained. In other words, if either the positive electrode current collector or the negative electrode current collector uses the two-dimensional current collector according to the present invention, the other polarity current collector is a two-dimensional current collector such as a three-dimensional current collector. Other than that. In general, in nonaqueous electrolyte batteries, the conductivity of the positive electrode active material is lower than that of the negative electrode active material. Therefore, if the configuration of the present invention is applied to only one polarity electrode, it is preferable to apply the configuration to the positive electrode. Needless to say, it is most preferable to apply the configuration of the present invention to bipolar electrodes as in this example. Also, the part of the current collector where the active material is not
It is preferable that the electrode is present over the entire end portion in the electrode width direction or the length direction from the viewpoint of simplifying the electrode manufacturing process, but is not particularly limited.

【0007】またタブ端子は集電体から導出、つまり集
電体部材の一部をタブ端子形状に切り出したものでも良
いし、集電体の活物質が配されていない箇所にタブ端子
部材を溶接等の手段で接続されているものでも良い。ま
たタブ端子と外部集電端子とは、直接に溶接等の手段で
接続されていても良いし、タブ端子と外部集電端子との
間が、PTC素子等の機能部材を介しながら間接的に接
続されていても良い。上記t2をt1よりも厚くする方
法としては、全面がt1である集電体の一部に金属箔を
超音波接合したり同種金属を電析し、その部分をt2と
する方法等がある。
Further, the tab terminal may be derived from the current collector, that is, a part of the current collector member may be cut into a tab terminal shape, or the tab terminal member may be provided at a place where the active material of the current collector is not disposed. It may be connected by means such as welding. Further, the tab terminal and the external current collecting terminal may be directly connected by means such as welding, or the tab terminal and the external current collecting terminal may be indirectly connected via a functional member such as a PTC element. It may be connected. As a method for making t2 thicker than t1, there is a method in which a metal foil is ultrasonically bonded to a part of the current collector whose entire surface is t1 or a similar metal is electrodeposited, and the part is made t2.

【0008】なお本発明では、集電体の活物質が配され
ていない箇所にタブ端子部材を溶接等の手段で接続され
ている形態の集電体の場合、前記タブ端子部材そのもの
を集電体の活物質が配されていない箇所とは定義しな
い。
According to the present invention, in the case of a current collector in which a tab terminal member is connected to a place where the active material of the current collector is not disposed by means such as welding, the tab terminal member itself is subjected to current collection. It is not defined as a place where no body active material is located.

【0009】またt2が、t1と活物質厚みとの和を越
えないことにより、電池の体積エネルギー密度が低下せ
ず、好ましい。このように「t2が、t1と活物質厚み
との和を越えないこと」を論じるときのt2は、集電体
部材の一部をタブ端子形状に切り出した形態の集電体を
用いた電極の場合、そのままt2と表現する。また集電
体の活物質が配されていない箇所(面)にタブ端子部材
を溶接等の手段で接続されている形態の集電体を用いた
電極の場合、集電体の活物質が配されていない箇所の厚
みは、t2とタブ端子部材厚みとの和としてt2’と以
下表現する。
Further, it is preferable that t2 does not exceed the sum of t1 and the thickness of the active material, so that the volume energy density of the battery does not decrease. As described above, when discussing that “t2 does not exceed the sum of t1 and the thickness of the active material”, t2 is an electrode using a current collector in which a part of the current collector member is cut into a tab terminal shape. In the case of, it is expressed as t2 as it is. In the case of an electrode using a current collector in which a tab terminal member is connected to a portion (surface) where the active material of the current collector is not disposed by welding or the like, the active material of the current collector is distributed. The thickness of the portion that is not performed is expressed as t2 ′ as the sum of t2 and the thickness of the tab terminal member.

【0010】[0010]

【発明の実施の形態】以下に本発明の非水電解液電池と
して、いわゆるリチウムイオン二次電池を例に本発明の
実施の形態を説明する。図1に本発明に係る非水電解液
電池用負極の一例の断面および平面図を示す。1はt1
=10μmの銅製の負極集電体であり、その活物質が配
されていない箇所の両面にそれぞれ30μmの銅箔2が
超音波接合され、t2の厚さ90μmの負極集電体とな
っている。3は炭素材料と結着剤のポリフッ化ビニリデ
ンとの混合物である活物質合剤であり、負極集電体1の
片面につき70μmずつ、両面に塗着されている。4は
銅製のタブ端子(厚み80μm)で銅箔2に超音波接合
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described by taking a so-called lithium ion secondary battery as an example of the nonaqueous electrolyte battery of the present invention. FIG. 1 shows a cross section and a plan view of an example of the negative electrode for a non-aqueous electrolyte battery according to the present invention. 1 is t1
= 10 μm copper negative electrode current collector, 30 μm copper foils 2 were ultrasonically bonded to both sides of a portion where the active material was not disposed, and a 90 μm thick negative electrode current collector of t2 was obtained. . Reference numeral 3 denotes an active material mixture, which is a mixture of a carbon material and polyvinylidene fluoride as a binder, and is applied to both surfaces of the negative electrode current collector 1 by 70 μm. Reference numeral 4 denotes a copper tab terminal (80 μm thick) which is ultrasonically bonded to the copper foil 2.

【0011】同様に図2に本発明に係る非水電解液電池
用正極の一例の断面および平面図を示す。5は厚さt1
=20μmの正極集電体であり、その活物質が配されて
いない箇所の両面にそれぞれ20μmのアルミニウム箔
6が超音波接合され、t2の厚さ60μmの正極集電体
となっている。7はLiMn24と導電剤の炭素材料と
結着剤のポリフッ化ビニリデンとの混合物である活物質
合剤であり、正極集電体5の片面につき85μmずつ、
両面に塗着されている。8はアルミニウム製のタブ端子
(厚み100μm)でアルミニウム箔6に超音波接合さ
れている。
Similarly, FIG. 2 shows a cross section and a plan view of an example of the positive electrode for a non-aqueous electrolyte battery according to the present invention. 5 is the thickness t1
= 20 μm, and a 20 μm aluminum foil 6 is ultrasonically bonded to both surfaces of the portion where the active material is not disposed, thereby forming a 60 μm thick positive electrode current collector at t2. Reference numeral 7 denotes an active material mixture that is a mixture of LiMn 2 O 4 , a carbon material of a conductive agent, and polyvinylidene fluoride as a binder, and 85 μm per one side of the positive electrode current collector 5.
Painted on both sides. Reference numeral 8 denotes an aluminum tab terminal (100 μm thick) which is ultrasonically bonded to the aluminum foil 6.

【0012】これら正極と負極を厚さ25μmのセパレ
ータを介して捲回し、渦巻状の電極群を作製した。この
電極群を金属製の18650型電池容器に挿入したの
ち、負極タブ端子4を電池容器に溶接し、正極タブ端子
8を電池蓋を兼ねる正極外部端子に溶接した。電解液は
エチレンカーボネートとジメチルカーボネートの混合溶
媒にLiPF6(溶質)を溶解し、電池容器内に注入し
た。電解液注入後、電池蓋で電池容器を密閉した。
The positive electrode and the negative electrode were wound through a separator having a thickness of 25 μm to form a spiral electrode group. After inserting this electrode group into a metal 18650 type battery container, the negative electrode tab terminal 4 was welded to the battery container, and the positive electrode tab terminal 8 was welded to the positive electrode external terminal also serving as a battery cover. As the electrolytic solution, LiPF 6 (solute) was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate, and the solution was injected into the battery container. After the injection of the electrolyte, the battery container was sealed with a battery lid.

【0013】本例ではリチウムイオン二次電池を対象と
しているが、電池系は特に限定されない。また本例のよ
うにリチウムイオン二次電池を対象にした場合、正極活
物質、負極活物質については適宜変更可能である。正極
活物質としてはコバルト酸リチウムやニッケル酸リチウ
ム等の層間化合物、あるいはこれら活物質元素の他元素
による部分置換材料等も使用可能である。負極活物質と
しては炭素材料(黒鉛を含む)以外にも、リチウムを電
気化学的に挿入・脱離可能な金属カルコゲン化物等が使
用可能である。但し非水電解液電池の正極活物質が、本
例のようにコバルト酸リチウムよりも低コストのマンガ
ン酸リチウム(他元素による部分置換材料も含む)であ
る場合、あるいは含む場合、特に本発明はその効力を発
揮すると考えられる。その理由は、一般にマンガン酸リ
チウムはコバルト酸リチウムやニッケル酸リチウム等に
比して電子伝導性が低く、それを含む電極の導電性を向
上させることが期待されているためである。また集電体
の材質、集電タブの材質、集電体の活物質が配されてい
ない箇所へ配置する材料の材質についても、本例で用い
たもの以外のものが適宜使用可能である。またt2>t
1とする手段としては、本例以外ではt1部分のエッチ
ングや、機械的研削、t2部分への同種金属の電析等が
考えられる。t1部分のエッチングや、機械的研削(サ
ンドブラスト等)を採用するとt1部分が粗面化され、
集電体/活物質の密着性が向上し、さらに電池の高率放
電性能が向上することが考えられる。また、集電体のt
1部分を直接的あるいは間接的に圧延する手段も考えら
れる。また本例では両極性の電極に対してt2>t1の
構成を適用したが、一方の極性の電極のみにt2>t1
の構成を適用しても高率放電特性は向上する。また本例
ではタブ端子を集電体とは別の部材としたが、タブ端子
は集電体から導出、つまり集電体部材の一部をタブ端子
形状に切り出したものでも良い。また本例ではタブ端子
と外部集電端子とは直接に接続されているが、タブ端子
と外部集電端子との間が、PTC素子等の機能部材等を
介しながら間接的に接続されていても良い。
Although the present embodiment is directed to a lithium ion secondary battery, the battery system is not particularly limited. When a lithium ion secondary battery is used as in this example, the positive electrode active material and the negative electrode active material can be appropriately changed. As the positive electrode active material, an interlayer compound such as lithium cobalt oxide or lithium nickel oxide, or a material partially substituted by another element of these active material elements can be used. As the negative electrode active material, a metal chalcogenide or the like capable of electrochemically inserting and removing lithium can be used in addition to a carbon material (including graphite). However, in the case where the positive electrode active material of the nonaqueous electrolyte battery is or includes lithium manganate (including a partially substituted material with another element) which is lower in cost than lithium cobaltate as in this example, It is thought that it exerts its effect. The reason is that lithium manganate generally has lower electron conductivity than lithium cobaltate, lithium nickelate, or the like, and is expected to improve the conductivity of an electrode containing the same. In addition, as for the material of the current collector, the material of the current collecting tab, and the material of the material to be disposed at a portion where the active material of the current collector is not disposed, materials other than those used in this example can be appropriately used. Also, t2> t
Means for setting 1 may be etching, mechanical grinding, electrodeposition of the same kind of metal on the t2 portion, etc. other than this example. If the etching of t1 part or the mechanical grinding (sandblasting etc.) is adopted, the t1 part is roughened,
It is considered that the adhesion between the current collector and the active material is improved, and the high-rate discharge performance of the battery is further improved. In addition, t of the current collector
Means of rolling one part directly or indirectly are also conceivable. In this example, the configuration of t2> t1 is applied to bipolar electrodes, but only t2> t1 is applied to only one polarity electrode.
The high-rate discharge characteristics are improved even if the configuration described above is applied. Further, in this example, the tab terminal is made of a member different from the current collector, but the tab terminal may be derived from the current collector, that is, a portion of the current collector member cut out into a tab terminal shape. In this example, the tab terminal and the external current collecting terminal are directly connected, but the tab terminal and the external current collecting terminal are indirectly connected via a functional member such as a PTC element. Is also good.

【0014】また本例のように、t2とタブ端子厚みの
和(t2’)は、活物質が配されている電極の厚み以下
であることが好ましい。その理由は、電極を積層あるい
は捲回した電極群により電池を構成する場合、t2’に
相当する箇所が電極群の形状を変化させるおそれがある
ためである。電極群の形状が変化すると電池の作製(特
に電池容器への電極群の挿入工程)を困難にしたり、電
池内での電極間距離を局部的に大きくして電池の内部抵
抗を増大させ、電池の体積当たりのエネルギー密度を低
下させ、不利な要因を生み出すおそれがある。当然タブ
端子が集電体から導出、つまり集電体部材の一部をタブ
端子形状に切り出した形態の電極を用いた場合は、t2
が活物質が配されている電極の厚み以下であることが好
ましいことになる。
Further, as in this embodiment, the sum of t2 and the thickness of the tab terminal (t2 ') is preferably not more than the thickness of the electrode on which the active material is disposed. The reason is that, when a battery is configured by an electrode group in which electrodes are stacked or wound, a portion corresponding to t2 ′ may change the shape of the electrode group. If the shape of the electrode group changes, the fabrication of the battery (particularly, the step of inserting the electrode group into the battery container) becomes difficult, or the internal resistance of the battery is increased by locally increasing the distance between the electrodes in the battery. Can reduce the energy density per unit volume and create disadvantageous factors. Naturally, when the tab terminal is derived from the current collector, that is, when an electrode in which a part of the current collector member is cut into a tab terminal shape is used, t2
Is preferably equal to or less than the thickness of the electrode on which the active material is disposed.

【0015】[0015]

【実施例】実施例1〜3、従来例のリチウムイオン二次
電池を以下の条件により作製し、比較検討した。 (実施例1の電池の作製)発明の実施の形態に記載した
条件により作製した。
EXAMPLES Examples 1 to 3 and a conventional lithium ion secondary battery were manufactured under the following conditions and compared and studied. (Production of Battery of Example 1) A battery was produced under the conditions described in the embodiment of the invention.

【0016】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=70μm、t2’=150μm 活物質厚みとt1の和=150μm (実施例2の電池の作製)銅箔6を厚さ20μmとした
以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 70 μm, t2 ′ = 150 μm Sum of active material thickness and t1 = 150 μm ( Production of Battery of Example 2) The battery was produced under the same conditions as the battery of Example 1 except that the thickness of the copper foil 6 was changed to 20 μm.

【0017】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=50μm、t2’=130μm 活物質厚みとt1の和=150μm (実施例3の電池の作製)銅箔2を厚さ40μmとした
以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 50 μm, t2 ′ = 130 μm Sum of active material thickness and t1 = 150 μm ( Production of Battery of Example 3) The battery was produced under the same conditions as the battery of Example 1 except that the thickness of the copper foil 2 was 40 μm.

【0018】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=90μm、t2’=170μm 活物質厚みとt1の和=150μm (従来例の電池の作製)銅箔2、アルミニウム箔6を設
けない以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 90 μm, t2 ′ = 170 μm Sum of active material thickness and t1 = 150 μm ( Production of Battery of Conventional Example) A battery was produced under the same conditions as in the battery of Example 1 except that the copper foil 2 and the aluminum foil 6 were not provided.

【0019】 正極:t1=20μm、t2=20μm 負極:t1=10μm、t2=10μm 上記実施例1〜3、従来例の電池を、放電率を変化させ
て放電容量を測定した。その結果を図3に示す。
Positive electrode: t1 = 20 μm, t2 = 20 μm Negative electrode: t1 = 10 μm, t2 = 10 μm The discharge capacity of each of the batteries of Examples 1 to 3 and the conventional example was measured while changing the discharge rate. The result is shown in FIG.

【0020】図3より実施例1〜3の電池、従来例の電
池は、放電率の小さい条件では放電容量に差はみられな
かったが、1CmA以上の放電率では実施例1〜3の電
池が従来例の電池よりも明らかに高容量だった。実施例
1〜3の電池は放電率が大きくなるほど従来例の電池と
の放電容量差が大きくなっている。このことから正極集
電体あるいは負極集電体の活物質合剤を塗着した箇所の
集電体厚みt1より活物質合剤が塗着されていない箇所
の集電体厚みt2を厚くすることにより、電気抵抗を小
さくして高率放電特性を向上することができたことがわ
かる。また図3の実施例3の電池と従来例の電池を比較
すると、0.5CmAより小さい放電率においては従来
例の電池の方が実施例3の電池よりも放電容量が大きい
ことがわかる。これは実施例3の電池の負極のt2が、
t1と活物質厚みとの和を越えたため、捲回電極群形状
が微妙に変形し、電池内の電極間距離が局部的に広が
り、僅かに電池内部抵抗が大きかったためと考えられ
る。しかし1CmA以上の放電率では実施例3の電池が
従来例の電池よりも高容量だった。これはこのような高
率での放電条件では、僅かな電池内部抵抗の差に起因す
る放電容量差よりも集電体の集電効率に起因する放電容
量差の方が大きいためと考えられる。
FIG. 3 shows that the batteries of Examples 1 to 3 and the battery of the prior art showed no difference in discharge capacity under the condition of a small discharge rate, but the batteries of Examples 1 to 3 at a discharge rate of 1 CmA or more. Was clearly higher in capacity than the conventional battery. In the batteries of Examples 1 to 3, the larger the discharge rate, the larger the difference in discharge capacity from the battery of the conventional example. For this reason, the thickness t2 of the collector where the active material mixture is not applied is larger than the thickness t1 of the collector where the active material mixture of the positive electrode collector or the negative electrode current collector is applied. As a result, it was found that the high-rate discharge characteristics could be improved by reducing the electric resistance. Further, comparing the battery of Example 3 in FIG. 3 with the battery of the conventional example, it can be seen that the discharge capacity of the battery of the conventional example is larger than that of the battery of Example 3 at a discharge rate of less than 0.5 CmA. This is because t2 of the negative electrode of the battery of Example 3 is
It is considered that because the sum of t1 and the thickness of the active material was exceeded, the shape of the wound electrode group was slightly deformed, the distance between the electrodes in the battery was locally widened, and the internal resistance of the battery was slightly large. However, at a discharge rate of 1 CmA or more, the battery of Example 3 had a higher capacity than the battery of the conventional example. This is considered to be because, under such a high discharge rate condition, the discharge capacity difference caused by the current collection efficiency of the current collector is larger than the discharge capacity difference caused by a slight difference in the battery internal resistance.

【0021】実施例1〜3の電池は、負極集電体のt2
のみを変化させたが、正極集電体のt2のみを同様に変
化させた場合でも、図3に示す実施例1〜3の電池の放
電容量差と同様の傾向がみられた。
The batteries of Examples 1 to 3 have a negative electrode current collector t2
Although only the positive electrode current collector was changed, the same tendency as the discharge capacity difference of the batteries of Examples 1 to 3 shown in FIG.

【0022】[0022]

【発明の効果】本発明により、二次元集電体表面に配さ
れた活物質からなる薄型電極と、アルカリ金属イオンを
含む非水電解液を有する非水電解液電池において、金属
薄膜からなる集電体を用いた非水電解液電池の高率放電
特性を向上させることができた。
According to the present invention, in a non-aqueous electrolyte battery having a thin electrode made of an active material disposed on the surface of a two-dimensional current collector and a non-aqueous electrolyte containing an alkali metal ion, the collector made of a metal thin film is used. The high-rate discharge characteristics of the nonaqueous electrolyte battery using the electric conductor were able to be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る薄型電極(負極)の断面概略図お
よび平面概略図である。
FIG. 1 is a schematic sectional view and a schematic plan view of a thin electrode (negative electrode) according to the present invention.

【図2】本発明に係る薄型電極(正極)の断面概略図及
び平面概略図である。
FIG. 2 is a schematic sectional view and a schematic plan view of a thin electrode (positive electrode) according to the present invention.

【図3】非水電解液電池の放電率を変化させたときの放
電容量変化を示した図である。
FIG. 3 is a diagram showing a change in discharge capacity when a discharge rate of a nonaqueous electrolyte battery is changed.

【符号の説明】[Explanation of symbols]

1.負極集電体 2.銅箔 3.負極活物質合剤 4.銅製タブ端子 5.正極集電体 6.アルミニウム箔 7.正極活物質合剤 8.アルミニウム製タブ端子 1. 1. Negative electrode current collector Copper foil 3. 3. Negative electrode active material mixture Copper tab terminals 5. Positive electrode current collector 6. Aluminum foil 7. 7. positive electrode active material mixture Aluminum tab terminals

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀場 達雄 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Horiba 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】二次元集電体表面に配された活物質からな
る薄型電極と、アルカリ金属イオンを含む非水電解液を
有する非水電解液電池において、 前記電極が正極および/または負極であり、前記集電体
表面に、活物質が配される部分と、活物質が配されない
部分が存在し、その活物質が配されない部分から導出又
は接続されたタブ端子が、直接あるいは間接的に電池外
部端子に接続され、 前記活物質が配される部分の集電体厚みt1が、前記活
物質が配されない部分の集電体厚みt2よりも薄いこと
を特徴とする薄型電極を用いた非水電解液電池。
1. A non-aqueous electrolyte battery having a thin electrode made of an active material disposed on the surface of a two-dimensional current collector and a non-aqueous electrolyte solution containing an alkali metal ion, wherein the electrode is a positive electrode and / or a negative electrode. There is a portion on which the active material is disposed on the surface of the current collector, and a portion on which the active material is not disposed, and a tab terminal derived or connected from the portion on which the active material is not disposed, directly or indirectly. A current collector thickness t1 at a portion connected to a battery external terminal and provided with the active material is smaller than a current collector thickness t2 at a portion not provided with the active material. Water electrolyte battery.
【請求項2】t2が、t1と活物質厚みとの和を越えな
い請求項1記載の薄型電極を用いた非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein t2 does not exceed the sum of t1 and the thickness of the active material.
【請求項3】電極が正極であり、正極活物質がマンガン
酸リチウムを含む請求項1又は2記載の薄型電極を用い
た非水電解液電池。
3. The non-aqueous electrolyte battery using a thin electrode according to claim 1, wherein the electrode is a positive electrode, and the positive electrode active material contains lithium manganate.
JP25978797A 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes Expired - Fee Related JP3412473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25978797A JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25978797A JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Publications (2)

Publication Number Publication Date
JPH11102710A true JPH11102710A (en) 1999-04-13
JP3412473B2 JP3412473B2 (en) 2003-06-03

Family

ID=17338987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25978797A Expired - Fee Related JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Country Status (1)

Country Link
JP (1) JP3412473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077025A (en) * 2009-10-01 2011-04-14 Samsung Sdi Co Ltd Electrode assembly, and secondary battery having this
JP2011077026A (en) * 2009-09-30 2011-04-14 Samsung Sdi Co Ltd Secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077026A (en) * 2009-09-30 2011-04-14 Samsung Sdi Co Ltd Secondary battery
JP2011077025A (en) * 2009-10-01 2011-04-14 Samsung Sdi Co Ltd Electrode assembly, and secondary battery having this
JP2013235841A (en) * 2009-10-01 2013-11-21 Samsung Sdi Co Ltd Electrode assembly and secondary battery including the same
US8765298B2 (en) 2009-10-01 2014-07-01 Samsung Sdi Co., Ltd. Electrode assembly having electrode plate with cutoff portion and rechargeable battery having the same

Also Published As

Publication number Publication date
JP3412473B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP3743781B2 (en) Nonaqueous electrolyte secondary battery
JP5762537B2 (en) A battery pack having a prismatic cell having a bipolar electrode
JP3819785B2 (en) Battery
EP3985763B1 (en) Electrode assembly and battery unit
JP3492262B2 (en) Sealed battery
JP3702308B2 (en) Nonaqueous electrolyte secondary battery
JP3822445B2 (en) Electrochemical devices
JPH11238528A (en) Lithium secondary battery
JP4538694B2 (en) Electrode wound type battery
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
JP2000106167A (en) Battery
JPH11219694A (en) Winding type cylindrical battery
JPH11111259A (en) Winding type battery
CN114335407A (en) Pole piece and battery
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
JP4023213B2 (en) Lithium ion secondary battery
JP2000090932A (en) Lithium secondary battery
WO2023280103A1 (en) Lithium ion battery
JPH11167929A (en) Square battery
CN217062239U (en) Battery cell structure and battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP3749024B2 (en) battery
JPH06196170A (en) Nonaqueous electrolyte secondary battery
KR101138482B1 (en) lithium ion capacitor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees