JPH11101956A - Polarized light converter and illuminator using it - Google Patents

Polarized light converter and illuminator using it

Info

Publication number
JPH11101956A
JPH11101956A JP27977397A JP27977397A JPH11101956A JP H11101956 A JPH11101956 A JP H11101956A JP 27977397 A JP27977397 A JP 27977397A JP 27977397 A JP27977397 A JP 27977397A JP H11101956 A JPH11101956 A JP H11101956A
Authority
JP
Japan
Prior art keywords
light
polarization
polarized light
lens
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27977397A
Other languages
Japanese (ja)
Inventor
Hirofumi Imaoka
裕文 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP27977397A priority Critical patent/JPH11101956A/en
Publication of JPH11101956A publication Critical patent/JPH11101956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Electric Information Into Light Information (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a constitution by which a uniform illuminance distribution can be obtained with a high optical efficiency in a polarized light illuminator applied to a projection type display device. SOLUTION: A polarized light converter is arranged between a 1st lens board 11 and a 2nd lens board 15 corresponding to integrator. The polarized light converter separates each focused light flux of light of a light source obtained from each lens segment 11a of the 1st lens board 11 into different linearly polarized light through a polarized light separation prism board 12, and converts one of the linearly polarized light into the same polarized light as the other one through a λ/2-wave plate 13 for letting the two systems emit, however, a glass block 14 for correction is provided in a longer optical path. Since the glass block 14 for correction corrects an image formation position of the focused light flux and the focusing condition, and makes the focused light fluxes of the two systems incident on each lens segment 16a of the 2nd lens board 15 under the same condition, it is possible to accurately superpose each secondary light source image on an illumination area for forming an image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、投写型表示装置等
の照明光学系に適用される偏光変換装置及びそれを用い
た照明装置に係り、偏光変換して得られる2系統の同一
直線偏光成分による光源像を、照明領域に対して正確に
重合結像させて光利用効率の向上を図るための改善に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization conversion device applied to an illumination optical system such as a projection display device and an illumination device using the same. To improve the light use efficiency by accurately superimposing and forming a light source image on an illumination area.

【0002】[0002]

【従来の技術】近年、投写型表示装置では、読出し光の
均一な照度分布と高い光利用効率を得るためにインテグ
レータ照明光学系が搭載されるようになり、また液晶を
用いた空間光変調部を有するものにあっては光源から得
られる白色の不定偏光の内の一方の偏光成分(P偏光成
分又はS偏光成分)を使用する方式が採用されている。
そして、そのような照明光学系として各種の構成が提案
されているが、高い光利用効率で一方の偏光成分のみが
合理的に得られるものとして、特開平8-304739号に開示
されている偏光照明装置が注目に値する。
2. Description of the Related Art In recent years, a projection display device has been equipped with an integrator illumination optical system in order to obtain a uniform illuminance distribution of read light and a high light use efficiency, and a spatial light modulator using a liquid crystal. The method using one polarized component (P-polarized component or S-polarized component) of the white non-uniform polarized light obtained from the light source is adopted.
Various configurations have been proposed as such an illumination optical system.However, as one in which only one polarization component can be rationally obtained with high light use efficiency, the polarization disclosed in JP-A-8-304739 has been proposed. Lighting devices are noteworthy.

【0003】その偏光照明装置の概略的構成は図5に示
される。同図において、51は光源から出射される白色の
不定偏光を集光して複数の2次光源像を形成させるイン
テグレータ機能を有した第1レンズ板であり、図6(A)
に示されるように、矩形状のレンズセグメント51aを縦
横に配列させた構成になっている。一方、52は第2レン
ズ板であって、集光レンズアレイ53と、偏光分離プリズ
ムアレイ54と、λ/2位相差板55と、出射側レンズ56と
を複合的に積層させた構造を有し、前記の第1レンズ板
51による2次光源像の形成位置の近傍に配置されてい
る。
FIG. 5 shows a schematic configuration of the polarized light illumination device. Referring to FIG. 6, reference numeral 51 denotes a first lens plate having an integrator function of condensing white non-polarized light emitted from the light source to form a plurality of secondary light source images.
As shown in FIG. 1, a rectangular lens segment 51a is arranged vertically and horizontally. On the other hand, reference numeral 52 denotes a second lens plate, which has a structure in which a condenser lens array 53, a polarization separation prism array 54, a λ / 2 retardation plate 55, and an emission side lens 56 are laminated in a complex manner. And the first lens plate
It is arranged near the position where the secondary light source image 51 is formed.

【0004】ここに、集光レンズアレイ53は、第1レン
ズ板51と同様にインテグレータ機能を果たすものであ
り、その第1レンズ板51と同一の構成であってもよい
が、光源からの光の特性に応じて最適設計されることが
望ましいとされている。
Here, the condensing lens array 53 performs an integrator function similarly to the first lens plate 51, and may have the same configuration as the first lens plate 51. It is said that it is desirable to optimally design according to the characteristics.

【0005】偏光分離プリズムアレイ54は、図6(B)に
示されるように、内部に偏光分離膜61を備えた四角柱状
の偏光ビームスプリッタ54aと、内部に反射膜62を備え
た四角柱状のプリズム合成体からなる反射ミラーブロッ
ク54bとからなる一対の基本構成単位を平面的に複数個
配列したものであり、その一対の基本構成単位が集光レ
ンズアレイ53の各レンズ53aに対応接合するように規則
的に配列されている。そして、1個の偏光ビームスプリ
ッタ54aの横幅Wpと反射ミラーブロック54bの横幅Wmは
等しく、それぞれが集光レンズアレイ53の各レンズ53a
の横幅の1/2となるように設定されている。λ/2位
相差板55は、偏光分離プリズムアレイ54の出射面側に配
置されているが、その全面にλ/2位相差膜が設けられ
ているのではなく、偏光分離プリズムアレイ54の偏光ビ
ームスプリッタ54aに対応接合している領域にのみ縞状
に配設されており、反射ミラーブロック54bとの対応接
合領域には配設されていない。また、出射側レンズ56
は、偏光分離プリズムアレイ54との間に前記のλ/2位
相差板55を挾装した態様で、前記のλ/2位相差板55の
出射側面に接合した片凸レンズで構成されている。
As shown in FIG. 6 (B), the polarization separating prism array 54 has a rectangular column-shaped polarizing beam splitter 54a having a polarization separating film 61 inside, and a rectangular column-shaped polarizing beam splitter 54 having a reflecting film 62 inside. A plurality of a pair of basic structural units composed of a reflecting mirror block 54b made of a prism composite are arranged in a plane, and the pair of basic structural units is bonded to each lens 53a of the condenser lens array 53. Are arranged regularly. The width Wp of one polarization beam splitter 54a is equal to the width Wm of the reflection mirror block 54b.
Is set to be 1 / of the horizontal width of. The λ / 2 retardation plate 55 is disposed on the emission surface side of the polarization separation prism array 54, but is not provided with a λ / 2 retardation film on the entire surface thereof. They are arranged in stripes only in the area corresponding to the beam splitter 54a, and are not provided in the area corresponding to the reflection mirror block 54b. The exit lens 56
Is composed of a one-convex lens which is bonded to the emission side surface of the λ / 2 retardation plate 55 in such a manner that the λ / 2 retardation plate 55 is sandwiched between the λ / 2 retardation plate 55 and the polarization separation prism array 54.

【0006】以上の構成に基づいて、図5に示される偏
光照明装置は、次のような機能を有する。先ず、第1レ
ンズ板51に光源から白色の不定偏光が入射すると、その
各レンズセグメント51aと第2レンズ板52の各集光レン
ズアレイ53によって2次光源像が各偏光ビームスプリッ
タ54aの偏光分離膜61に結像形成される。尚、この例で
は、前記の結像を正確に行なうために、光源からの入射
光がシステム光軸Lに対してわずかに傾斜して入射する
ように設定されている。
Based on the above configuration, the polarized light illuminator shown in FIG. 5 has the following functions. First, when white non-uniform polarized light is incident on the first lens plate 51 from the light source, the secondary light source image is separated by the respective polarization beam splitters 54a by the respective lens segments 51a and the respective condenser lens arrays 53 of the second lens plate 52. An image is formed on the film 61. In this example, the incident light from the light source is set so as to be slightly inclined with respect to the system optical axis L in order to accurately perform the above-described image formation.

【0007】各偏光ビームスプリッタ54aへ入射した不
定偏光は偏光分離膜61によって振動方向の異なるP偏光
成分とS偏光成分に分離される。そして、この場合の偏
光分離膜61には、P偏光成分をそのまま透過させてS偏
光成分を反射させる偏光分離特性を具備させているた
め、透過したP偏光成分は直進してλ/2位相差板55へ
入射し、反射したS偏光成分は進行方向を90°変換さ
れて隣接した反射ミラーブロック54b(対をなす反射ミラ
ーブロック)の反射膜62へ入射し、その反射膜62で反射
されてλ/2位相差板55へ入射する。
[0007] The variable polarized light incident on each polarization beam splitter 54a is separated by a polarization separation film 61 into a P-polarized component and an S-polarized component having different vibration directions. Since the polarization separation film 61 in this case has a polarization separation characteristic of transmitting the P-polarized component as it is and reflecting the S-polarized component, the transmitted P-polarized component goes straight and has a λ / 2 phase difference. The S-polarized light component incident on the plate 55 and reflected is changed in the traveling direction by 90 °, enters the reflection film 62 of the adjacent reflection mirror block 54b (a pair of reflection mirror blocks), and is reflected by the reflection film 62. The light enters the λ / 2 phase difference plate 55.

【0008】ところで、前記のように、λ/2位相差板
55は偏光ビームスプリッタ54aに対応接合している領域
にだけλ/2位相差膜55aが配設されており、反射ミラ
ーブロック54bとの対応接合領域には配設されていな
い。従って、偏光ビームスプリッタ54aから直接入射し
たP偏光成分はλ/2位相差膜55aで偏光面が90°回
転されてS偏光成分に変換され、反射ミラーブロック54
bを経て入射したS偏光成分は偏光面が回転することな
くそのまま透過し、それぞれのS偏光成分が出射側レン
ズ56へ入射することになる。そして、出射側レンズ56は
偏光分離プリズムアレイ54から入射した各S偏光成分を
照明領域57へ導き、その照明領域57上に重合結像させ
る。
By the way, as described above, the λ / 2 retardation plate
In the reference numeral 55, the λ / 2 retardation film 55a is provided only in a region that is joined to the polarization beam splitter 54a, and is not provided in a region that is joined to the reflection mirror block 54b. Therefore, the P-polarized light component directly incident from the polarizing beam splitter 54a is converted into an S-polarized light component by rotating the polarization plane by 90 ° by the λ / 2 retardation film 55a, and is converted into an S-polarized light component.
The S-polarized component incident through b is transmitted as it is without rotating the polarization plane, and each S-polarized component is incident on the emission side lens 56. Then, the exit side lens 56 guides each S-polarized light component incident from the polarization splitting prism array 54 to the illumination area 57, and forms an overlapping image on the illumination area 57.

【0009】その結果、この偏光照明装置によれば、光
源から得られる全ての不定偏光を1種類の偏光成分に揃
えて照明領域57を均一に照明することが可能になり、且
つ偏光変換の過程でも殆ど光量損失を伴わないため、光
利用効率が極めて高い照明機能を実現できることにな
る。
As a result, according to this polarized light illuminating device, it is possible to uniformly illuminate the illumination area 57 by aligning all indeterminate polarized light obtained from the light source into one kind of polarized light component, and to perform a polarization conversion process. However, since there is almost no loss of light quantity, it is possible to realize a lighting function with extremely high light use efficiency.

【0010】[0010]

【発明が解決しようとする課題】以上のように、特開平
8-304739号が開示する偏光照明装置は、その合理的な光
学系の構成に基づいて、高い光利用効率を確保しながら
偏光成分を揃えた照明光を得ることを可能にしている。
しかしながら、偏光ビームスプリッタ54aの偏光分離膜6
1で分離された2系統の光の光路長に着目してみると、
偏光分離膜61を透過してλ/2位相差膜55aで偏光変換
されたS偏光成分の光路Aの光路長よりも、偏光分離膜
61と反射ミラー62で方向変換されるS偏光成分の光路B
の光路長が長くなっており、実際には出射側レンズ56で
照明領域57上に2系統の光を正確に重合結像させること
はできない。即ち、その偏光照明装置では偏光分離膜61
を焦点位置として光源光を集光させる光学系になってい
るため、光路AのS偏光成分に係る第1レンズ板51のレ
ンズセグメント51aの像を照明領域57に適合させると、
光路Bに係る前記レンズセグメント51aの像が照明領域5
7より小さなサイズになって照明領域の中央域が明るく
周辺域が暗くなるような照度分布が発生し、逆に光路B
のS偏光成分に係る前記レンズセグメント51aの像を照
明領域57に適合させると、光路Aに係る前記レンズセグ
メント51aの像が照明領域57より大きなサイズになって
照明光量に損失が生じる。従って、照明領域57上に結像
する光源像サイズは前記の各光路を経たS偏光成分の相
互間で一致しないことになり、結果的に光利用効率の低
下や照度分布のムラを招くことになる。
As described above, as disclosed in
The polarized light illuminating device disclosed in Japanese Patent Application No. 8-304739 makes it possible to obtain illumination light having a uniform polarization component while securing high light use efficiency, based on the rational configuration of the optical system.
However, the polarization separation film 6 of the polarization beam splitter 54a
Focusing on the optical path lengths of the two systems of light separated by 1,
The polarization separation film is more than the optical path length of the optical path A of the S-polarized light component that has passed through the polarization separation film 61 and is polarization-converted by the λ / 2 phase difference film 55a.
Optical path B of S-polarized light component that is changed in direction by 61 and reflecting mirror 62
In practice, it is not possible to accurately form two systems of light onto the illumination area 57 by the exit-side lens 56. That is, in the polarized light illumination device, the polarization separation film 61 is used.
Since the optical system is configured to condense the light of the light source with the focal position of, the image of the lens segment 51a of the first lens plate 51 relating to the S-polarized light component of the optical path A is adapted to the illumination area 57.
The image of the lens segment 51a on the optical path B is
When the size becomes smaller than 7, an illuminance distribution occurs such that the central area of the illumination area is bright and the peripheral area is dark.
When the image of the lens segment 51a relating to the S-polarized light component is adapted to the illumination area 57, the image of the lens segment 51a relating to the optical path A becomes larger in size than the illumination area 57, causing a loss in the illumination light amount. Therefore, the size of the light source image formed on the illumination area 57 does not match between the S-polarized light components passing through the respective optical paths, and as a result, the light use efficiency is reduced and the illuminance distribution is uneven. Become.

【0011】そこで、本発明は、上記の偏光照明装置の
問題点に鑑み、同様の偏光変換機能を備えながら、偏光
変換による2系統の同一直線偏光成分が形成する光源像
の結像位置とその結像位置への集光条件を一致させる偏
光変換装置と、それを利用した照明装置を提供し、均一
な照度分布と高い光利用効率を実現することを目的とし
て創作された。
In view of the above-mentioned problems of the polarized light illuminating apparatus, the present invention provides an image forming position of a light source image formed by two systems of the same linearly polarized light component by polarization conversion and a similar polarization conversion function, while providing the same polarization conversion function. It was created with the objective of providing a polarization conversion device that matches the light-gathering conditions at the image-forming position and an illumination device using the same, and achieving a uniform illuminance distribution and high light use efficiency.

【0012】[0012]

【課題を解決するための手段】第1の発明は、光源側か
ら得られる集光光束化された不定偏光を2つの異なる直
線偏光成分に分離する偏光分離手段と、前記偏光分離手
段が分離した一方の直線偏光成分の進行方向を他方の直
線偏光成分の進行方向と平行で且つ同一方向へ変換する
反射手段と、前記偏光分離手段が分離した一方の直線偏
光成分の偏光面を回転させて他方の直線偏光成分と同一
の偏光に変換する偏光面回転手段を具備した偏光変換装
置において、前記偏光分離手段による偏光分離後の2系
統の光路中の何れか一方に、その光路で結像される2次
光源像と他方の光路で結像される2次光源像の結像位置
及びその結像位置への集光条件を一致させる補正光学要
素を介在せしめたことを特徴とする偏光変換装置に係
る。
According to a first aspect of the present invention, there is provided a polarized light separating means for separating a non-constant polarized light obtained from a light source into a condensed light flux into two different linearly polarized light components, and the polarized light separating means. A reflecting unit that converts the traveling direction of one linearly polarized light component into the same direction as the traveling direction of the other linearly polarized light component, and rotating the polarization plane of the one linearly polarized light component separated by the polarization separation unit to the other, In the polarization conversion device provided with a polarization plane rotation unit that converts the linearly polarized light component into the same polarization as the linearly polarized light component, an image is formed on one of the two optical paths after the polarization separation by the polarization separation unit. A polarization conversion device comprising a secondary light source image and a correction optical element for matching an image forming position of a secondary light source image formed on the other optical path and a light condensing condition at the image forming position. Related.

【0013】この発明によれば、補正光学要素を介在さ
せたことにより、偏光変換して得られる2系統の同一の
直線偏光成分に係る2次光源像の結像位置を一致させる
と共に、その結像位置へ集光する光束の条件も一致させ
ることができ、各2次光源像を一様な構成のインテグレ
ータによって照射領域に正確に重合結像させることが可
能になる。ここに、補正光学要素は何れの系統の光路中
に設けてもよく、その補正光学要素がない状態で2次光
源像が前方側に結像してしまう方の光路側に設ける場合
には、一定の厚みを有し、入射側で集光光束の集光性を
弱め、出射側で集光性を強める光学要素が適用され、特
に、最も簡単な光学要素としてガラス板等の高屈折率の
透明媒体を適用することができる。一方、補正光学要素
がない状態で2次光源像が後方側に結像してしまう光路
側に設ける場合には、凸レンズを補正光学要素として用
いれば前記の各一致条件を成立させることができる。
According to the present invention, by interposing the correction optical element, the image forming positions of the secondary light source images related to the same two linearly polarized light components obtained by the polarization conversion are made to coincide with each other, and the image forming position is adjusted. The condition of the light beam condensed at the image position can also be matched, and each secondary light source image can be accurately formed on the irradiation area by an integrator having a uniform configuration. Here, the correction optical element may be provided in any system optical path, and when the secondary light source image is provided on the optical path side where the secondary light source image is formed on the front side without the correction optical element, Optical elements that have a certain thickness, weaken the light-gathering property of the condensed light beam on the incident side, and increase the light-gathering property on the emission side are applied.In particular, the simplest optical element has a high refractive index such as a glass plate. A transparent medium can be applied. On the other hand, in the case where the secondary light source image is provided on the optical path side where the secondary light source image is formed on the rear side without the correction optical element, the above matching conditions can be satisfied by using a convex lens as the correction optical element.

【0014】第2の発明は、複数のレンズセグメントを
縦横に配列した構成を有し、各レンズセグメントが入射
する不定偏光の光源光を集光させて所定位置に2次光源
像を結像させる第1レンズ板と、前記第1レンズ板によ
る集光光束群の光路中に配置され、各集光光束を2つの
異なる直線偏光成分の集光光束に分離する偏光分離手段
と、前記偏光分離手段が分離した一方の直線偏光成分に
係る各集光光束群の進行方向を他方の直線偏光成分に係
る集光光束群の進行方向と平行で且つ同一方向へ変換す
る反射手段と、前記偏光分離手段が分離した一方の直線
偏光成分に係る各集光光束群の偏光面を回転させて他方
の直線偏光成分に係る集光光束群と同一の偏光に変換す
る偏光面回転手段と、前記偏光分離手段によって分離さ
れた各直線偏光成分に係る2系統の集光光束群の光路の
内の、そのままでは2次光源像の結像位置までの光路長
が長くなる方の集光光束群の光路側に設けられ、その光
路側で結像される各2次光源像と他方の光路側で結像さ
れる各2次光源像の結像位置及びその結像位置への集光
条件を一致させる高屈折率の透明媒体と、前記透明媒体
を介して得られる集光光束群と他の集光光束群による2
次光源像の結像位置に配置され、結像した各2次光源像
を一定距離だけ離隔した面に重合結像させる第2レンズ
板とを具備したことを特徴とする照明装置に係る。
According to a second aspect of the present invention, a plurality of lens segments are arranged vertically and horizontally, and each lens segment converges incident non-polarized light source light to form a secondary light source image at a predetermined position. A first lens plate, a polarization separating unit disposed in an optical path of a group of condensed light beams by the first lens plate, and separating each converged light beam into two different condensed light beams of linearly polarized light components; Reflecting means for converting the traveling direction of each of the condensed light flux groups related to one of the linearly polarized light components into parallel with and in the same direction as the traveling direction of the condensed light flux group for the other linearly polarized light component; Polarization plane rotating means for rotating the polarization plane of each condensed light flux group related to one linearly polarized light component and converting the same to the same polarization as the condensed light flux group for the other linearly polarized light component; and the polarization separation means. Linearly polarized light components separated by Of the light paths of the two systems of condensed light flux groups, the light path side of the condensed light flux group that has a longer optical path length to the image forming position of the secondary light source image as it is, is provided on the light path side. A high-refractive-index transparent medium that matches the imaging position of each secondary light source image to be imaged with the secondary light source image formed on the other optical path side and the light-collecting conditions at the imaging position; 2 by a condensed light beam group obtained through the medium and another condensed light beam group
And a second lens plate disposed at an image forming position of the next light source image and configured to form an image of each formed secondary light source image on a surface separated by a predetermined distance.

【0015】この発明は、第1の発明に係る偏光変換装
置(補正光学要素は高屈折率の透明媒体)を第1レンズ板
と第2レンズ板の間に配置させた照明装置であり、第1
レンズ板の各レンズセグメントで不定偏光の光源光を複
数の集光光束にして前記の偏光変換装置へ入射させ、そ
の偏光変換装置で異なる直線偏光成分である2系統の集
光光束群による各2次光源像を第2レンズ板に結像さ
せ、第2レンズ板によって一定距離だけ離隔した面に重
合結像させる。この発明によれば、インテグレータと偏
光変換装置を組み合わせた照明装置において、2系統の
集光光束群による各2次光源像の第2レンズ板に対する
結像位置とその集光条件が同一になるため、第2レンズ
板が照明領域に対して光源像を正確に重合結像させるこ
とができ、光量損失がなく光利用効率の高い照明を実現
できる。
The present invention is an illuminating device in which the polarization conversion device according to the first invention (the correction optical element is a transparent medium having a high refractive index) is disposed between the first lens plate and the second lens plate.
In each lens segment of the lens plate, the light source light of indeterminate polarization is made into a plurality of condensed light beams and is incident on the above-mentioned polarization conversion device. The next light source image is formed on the second lens plate, and the second lens plate forms a superimposed image on a surface separated by a certain distance. According to the present invention, in the illumination device in which the integrator and the polarization conversion device are combined, the image forming position of each secondary light source image by the two condensed light beam groups on the second lens plate and the light condensing condition are the same. In addition, the second lens plate can accurately form the light source image on the illumination area, thereby achieving illumination with high light utilization efficiency without loss of light amount.

【0016】第3の発明は、複数のレンズセグメントを
縦横に配列した構成を有し、各レンズセグメントが入射
する不定偏光の光源光を集光させて所定位置に2次光源
像を結像させる第1レンズ板と、前記第1レンズ板の各
レンズセグメントの集光光束の光路中に配置された偏光
分離膜とその偏光分離膜と平行に配置された反射ミラー
膜によって、前記第1レンズ板から入射する各集光光束
を2つの異なる直線偏光成分の集光光束に分離して平行
で且つ同一方向へ出射させる偏光分離プリズム板と、前
記偏光分離プリズム板の各反射ミラー膜で反射された各
集光光束の光路にのみ配置され、その集光光束の偏光面
を回転させて他方の集光光束と同一の偏光に変換する各
偏光面回転手段と、前記偏光分離プリズム板の各反射ミ
ラー膜で反射された各集光光束の光路にのみ配置され、
その光路側で結像される各2次光源像と他方の光路側で
結像される各2次光源像の結像位置及びその結像位置へ
の集光条件を一致させる高屈折率の各透明媒体と、前記
の各透明媒体を介して得られる集光光束群と他の集光光
束群による2次光源像の結像位置に配置され、結像した
各2次光源像を一定距離だけ離隔した面に重合結像させ
る第2レンズ板とを具備したことを特徴とする照明装置
に係る。
According to a third aspect of the present invention, a plurality of lens segments are arranged vertically and horizontally, and a non-constantly polarized light source light incident on each lens segment is condensed to form a secondary light source image at a predetermined position. The first lens plate includes a first lens plate, a polarization separation film disposed in an optical path of a condensed light beam of each lens segment of the first lens plate, and a reflection mirror film disposed in parallel with the polarization separation film. A polarized light separating prism plate that separates each condensed light beam incident from the device into two different condensed light beams of linearly polarized light components and emits the light beams in parallel and in the same direction, and is reflected by each reflection mirror film of the polarized light separating prism plate. Each polarization plane rotating means disposed only in the optical path of each condensed light beam, for rotating the polarization plane of the condensed light beam to convert it into the same polarization as the other condensed light beam, and each reflection mirror of the polarization separation prism plate Reflected by the film Is disposed only in the optical path of the condensed light beam,
Each of the secondary light source images formed on the optical path side and the secondary light source images formed on the other optical path side has a high refractive index that matches the image forming position and the light condensing condition at the image forming position. A transparent medium, a condensed light flux group obtained through each of the transparent media and another condensed light flux group, are arranged at an image forming position of a secondary light source image, and each formed secondary light source image is shifted by a certain distance. And a second lens plate for superimposing and forming an image on a separated surface.

【0017】この発明は、第2の発明と同様に、第1の
発明に係る偏光変換装置(補正光学要素は高屈折率の透
明媒体)を第1レンズ板と第2レンズ板の間に配置させ
た照明装置であるが、第1レンズ板の各レンズセグメン
トに対応させて個々に微小な偏光変換装置を構成してお
り、その偏光分離手段と反射手段がそれぞれ偏光分離膜
と反射ミラー膜をアレイ状に一体化させた偏光分離プリ
ズム板になっている点に特徴がある。この発明によれ
ば、各偏光変換装置によって第1及び第2の発明と同様
の効果が得られると共に、前記の偏光分離プリズム板の
構成によって薄型化した照明装置が実現できる。
In the present invention, similarly to the second invention, the polarization conversion device according to the first invention (the correction optical element is a transparent medium having a high refractive index) is disposed between the first lens plate and the second lens plate. Although it is an illuminating device, a minute polarization conversion device is individually formed corresponding to each lens segment of the first lens plate, and its polarization separating means and reflecting means respectively form a polarization separating film and a reflecting mirror film in an array. It is characterized in that it is a polarized light separating prism plate integrated with the above. According to this invention, the same effects as those of the first and second inventions can be obtained by each of the polarization conversion devices, and an illumination device that is thinned by the configuration of the polarization separation prism plate can be realized.

【0018】[0018]

【発明の実施の形態】以下、本発明の偏光変換装置とそ
れを用いた照明装置及び投写型表示装置の実施形態を、
図1から図4を用いて詳細に説明する。 《実施形態1》この実施形態は偏光変換装置に係り、そ
の基本的構成は図1(平面図)に示される。同図におい
て、1は偏光ビームスプリッタと反射ミラーの複合光学
体であって、三角柱状のガラスブロック1aと平面形状が
平行四辺形である柱状のガラスブロック1bの接合面には
偏光分離膜2が挾装されており、ガラスブロック1bにお
ける前記の偏光分離膜2と平行な面には反射ミラー膜3が
施されている。また、偏光分離膜2と反射ミラー膜3は光
源光の入射方向に対して45°傾斜しており、同方向か
ら見た複合体1の幅W1と偏光分離膜2及び反射ミラー膜3
の幅W2の関係はW1=2・W2になっている。一方、4は
四角柱状の補正用ガラスブロック、5はλ/2位相差板
であり、ガラスブロック4の片面はガラスブロック1bの
出射面に接合され、他面にλ/2位相差板が接合されて
いる。そして、ガラスブロック1aとガラスブロック1bの
ガラスの屈折率はN1であり、ガラスブロック4のガラス
の屈折率はN2であって、その厚みはXに設定されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a polarization conversion device of the present invention, an illumination device using the polarization conversion device, and a projection display device will be described.
This will be described in detail with reference to FIGS. << Embodiment 1 >> This embodiment relates to a polarization converter, and its basic configuration is shown in FIG. 1 (plan view). In the figure, reference numeral 1 denotes a composite optical body of a polarization beam splitter and a reflection mirror, and a polarization separation film 2 is provided on a joint surface between a triangular prism-shaped glass block 1a and a column-shaped glass block 1b having a planar shape of a parallelogram. A reflection mirror film 3 is formed on a surface of the glass block 1b which is parallel to the polarization separation film 2. Further, the polarization splitting film 2 and the reflection mirror film 3 are inclined by 45 ° with respect to the incident direction of the light source light, and the width W1 of the composite 1 and the polarization splitting film 2 and the reflection mirror film 3 as viewed from the same direction.
Is W1 = 2 · W2. On the other hand, 4 is a quadrangular prism-shaped correction glass block, 5 is a λ / 2 retardation plate, and one surface of the glass block 4 is joined to the emission surface of the glass block 1b, and the other surface is joined to the λ / 2 retardation plate. Have been. The refractive index of the glass of the glass blocks 1a and 1b is N1, the refractive index of the glass of the glass block 4 is N2, and the thickness thereof is set to X.

【0019】この実施形態の偏光変換装置は、前記の複
合光学体1(偏光分離膜2と反射ミラー膜3)とλ/2位相
差板5の光学的な配置関係に関しては、従来技術の偏光
照明装置に係る一対の基本構成単位と同様であるが、ガ
ラスブロック1bとλ/2位相差板5の間にガラスブロッ
ク4が介装されている点に特徴があり、次のような光学
的機能によって集光光束の不定偏光を無駄なく2系統の
P偏光成分に変換すると共に、各系統の偏光成分を同一
条件の集光光束にして出射させる。
With respect to the optical arrangement relationship between the composite optical body 1 (the polarization splitting film 2 and the reflection mirror film 3) and the λ / 2 retardation plate 5, the polarization converter of this embodiment This is the same as a pair of basic structural units according to the lighting device, but is characterized in that the glass block 4 is interposed between the glass block 1b and the λ / 2 retardation plate 5. The function converts the indeterminate polarized light of the condensed light beam into two systems of P-polarized light components without waste, and emits the polarized light components of each system as condensed light beams under the same conditions.

【0020】先ず、光源の不定偏光は予め前段の光学系
によって集光光束になっており、その光束が複合光学体
1のガラスブロック1bの入射面へ垂直に入射せしめられ
る。そして、複合光学体1へ入射した光束は入射光軸に
対して45°傾斜した偏光分離膜2へ入射する。入射し
た不定偏光の内のP偏光成分は偏光分離膜2を透過・直進
してガラスブロック1a側へ入射し、S偏光成分は90°
方向変換されてガラスブロック1bの中を進行して反射ミ
ラー膜3へ入射する。
First, the indeterminate polarized light of the light source is converted into a condensed light beam by the optical system in the previous stage, and the light beam is
The light is vertically incident on the incident surface of the first glass block 1b. Then, the light beam incident on the composite optical body 1 is incident on the polarization splitting film 2 inclined at 45 ° with respect to the incident optical axis. The P-polarized light component of the incident irregularly polarized light passes through the polarization separation film 2 and goes straight, and is incident on the glass block 1a side.
The direction is changed, the light travels through the glass block 1b, and enters the reflection mirror film 3.

【0021】ここで、分離後のP偏光成分はガラスブロ
ック1aを透過して出射するが、元の不定偏光が集光光束
であるため、ガラスブロック1bの入射面から一定距離に
ある面6上の焦点bに集光する。一方、分離後のS偏光
成分は反射ミラー膜3で再び90°方向変換され、進行
方向が前記のP偏光成分と平行で且つ同一方向になって
ガラスブロック1bからガラスブロック4へ入射し、その
ガラスブロック4とλ/2位相差板5を通過して出射され
ることになるが、λ/2位相差板5を通過する段階で偏
光面が90°回転されてP偏光成分に変換される。
Here, the separated P-polarized light component passes through the glass block 1a and exits. However, since the original irregularly-polarized light is a condensed light beam, the P-polarized light component on the surface 6 at a fixed distance from the entrance surface of the glass block 1b. At the focal point b. On the other hand, the S-polarized light component after the separation is again changed in direction by 90 ° by the reflection mirror film 3, and its traveling direction is parallel to and the same direction as the above-mentioned P-polarized light component and is incident on the glass block 1b from the glass block 1b. The light is emitted after passing through the glass block 4 and the λ / 2 retardation plate 5, but is converted into a P-polarized light component by rotating the polarization plane by 90 ° when passing through the λ / 2 retardation plate 5. .

【0022】ところで、この実施形態におけるガラスブ
ロック4の屈折率N2とその厚みXは、変換後のP偏光成
分を前記の面6上の焦点dに集光させると共に、その焦
点dへの集光光束を前記の焦点bへの集束光束と同一条
件にするように設定されており、そのガラスブロック4
の光学的機能は以下のように説明できる。
By the way, the refractive index N2 of the glass block 4 and the thickness X of the glass block 4 in this embodiment are such that the converted P-polarized light component is focused on the focal point d on the surface 6 and is focused on the focal point d. The luminous flux is set to have the same conditions as the focused luminous flux at the focal point b, and the glass block 4
Can be explained as follows.

【0023】今、ガラスブロック1bとλ/2位相差板5
の間にガラスブロック4が存在していない場合を仮定
し、偏光分離膜2で分離された後の各光の光路に着目す
ると、偏光分離膜2で反射された偏光側の光路a-c-d
の物理的距離は偏光分離膜2を透過した偏光側の光路a-
bの物理的距離よりも長いことは明らかであり、光路長
についてみても、光路a-c-d側ではガラス媒質内をよ
り長く通過することになるため、当然に光路a-c-dの
光路長が光路a-bのそれより長い。従って、ガラスブ
ロック4が存在していない場合には、図1の二点鎖線で
示すように光路a-c-d側の偏光は面6の手前に位置す
る焦点d'に集光し、2系統のP偏光成分が光軸を平行
にして出射されても、焦点位置が光軸方向に関して異な
ることになる。
Now, the glass block 1b and the λ / 2 retardation plate 5
Assuming that the glass block 4 does not exist between them, and focusing on the optical paths of the respective lights after being separated by the polarization separation film 2, the polarization-side optical paths a-c- d
Is the optical path a- on the polarization side transmitted through the polarization separation film 2.
It is clear that the optical path is longer than the physical distance of b, and when it comes to the optical path length, on the optical path acd side, the light passes through the glass medium longer. The optical path length is longer than that of optical path ab. Therefore, when the glass block 4 does not exist, the polarized light on the optical path acd side is focused on the focal point d ′ located in front of the surface 6 as shown by the two-dot chain line in FIG. Even if the P-polarized component of the system is emitted with the optical axis parallel, the focal position will be different in the optical axis direction.

【0024】一方、この実施形態ではガラスブロック4
が介装されており、焦点位置は焦点dの方向へ移動す
る。具体的には、一般にN1とN2が異なる場合を想定
すると、ガラスブロック1bからガラスブロック4へ入射
する際にその境界面4aで集光光束が屈折し、前記のよう
にガラスブロック4が存在しないと仮定したときよりも
集光性が弱められ、その光束がガラスブロック4の厚み
Xだけ進行してλ/2位相差板5との境界面4bへ達す
る。そして、λ/2位相差板5は薄いためにそれによる
焦点のズレを無視でき、境界面4bではガラスブロック4
のガラスの屈折率N2と空気の屈折率との関係で集光性
が強められ、その光束が出射されることになる。従っ
て、N2とXの値を適当に選択すれば、ガラスブロック4
の境界面4bでの光束の断面形状をその境界面4bの位置に
おける偏光分離膜2を透過した方の集光光束の断面形状
と同一にし、且つガラスブロック4から出射する光の焦
点位置を面6上の点dに設定することができる。
On the other hand, in this embodiment, the glass block 4
And the focal position moves in the direction of the focal point d. Specifically, assuming that N1 and N2 are generally different from each other, when entering the glass block 4 from the glass block 1b, the condensed light beam is refracted at the boundary surface 4a, and the glass block 4 does not exist as described above. The light condensing property is weaker than when it is assumed that the light flux travels by the thickness X of the glass block 4 and reaches the boundary surface 4b with the λ / 2 retardation plate 5. Since the λ / 2 retardation plate 5 is thin, the deviation of the focal point due to the thinness can be ignored.
The light-collecting property is enhanced by the relationship between the refractive index N2 of the glass and the refractive index of air, and the light beam is emitted. Therefore, if the values of N2 and X are appropriately selected, the glass block 4
The cross-sectional shape of the light beam at the boundary surface 4b is the same as the cross-sectional shape of the condensed light beam transmitted through the polarization separation film 2 at the position of the boundary surface 4b, and the focal position of the light emitted from the glass block 4 is 6 can be set to point d.

【0025】また、特にN2=N1の場合には、ガラスブ
ロック1bからガラスブロック4へ入射する集光光束がそ
のままガラスブロック4内を進行して境界面4bへ達する
ことになるが、ガラスブロック4が存在しないと仮定し
たときよりも集光性が弱められることは上記の場合と同
様であり、ガラスブロック4の厚みXを適当に設定すれ
ば境界面4bでの光束の断面形状をその境界面4bの位置に
おける偏光分離膜2を透過した方の集光光束の断面形状
と同一にすることができ、更に、そのように厚みXが設
定されると、境界面4から出射する集光光束が面6上の点
dに集光することになる。
In particular, when N2 = N1, the condensed light beam incident on the glass block 4 from the glass block 1b proceeds through the glass block 4 as it is and reaches the boundary surface 4b. It is the same as in the above case that the light-collecting property is weaker than when it is assumed that the light beam does not exist. If the thickness X of the glass block 4 is appropriately set, the cross-sectional shape of the light beam at the boundary surface 4b is changed to the boundary surface. The cross-sectional shape of the condensed light beam transmitted through the polarization separation film 2 at the position 4b can be made the same as the cross-sectional shape. Further, when the thickness X is set as such, the condensed light beam emitted from the boundary surface 4 is The light is focused on the point d on the surface 6.

【0026】従って、偏光分離膜2を透過した方のP偏
光成分とλ/2位相差板5で変換された後のP偏光成分
は同一の集光条件で面6上の各焦点b,dに集光すること
になり、図1では光軸上の光源点に係る光の集光態様だ
けを示してあるが、有限な大きさを有する光源の2次光
源像が面6上の各焦点b,dを中心に結像させることがで
きる。換言すれば、この偏光変換装置によれば、光路長
が異なる2系統の光路を経て出射されるP偏光成分の各
2次光源像を、光源光の入射面から一定距離にある面6
上に同一の集光条件で結像させることができる。
Therefore, the P-polarized light component transmitted through the polarization splitting film 2 and the P-polarized light component converted by the λ / 2 retardation film 5 are converted into respective focal points b and d on the surface 6 under the same focusing condition. FIG. 1 shows only the light condensing mode related to the light source point on the optical axis, but the secondary light source image of the light source having a finite size is An image can be formed around b and d. In other words, according to this polarization conversion device, each secondary light source image of the P-polarized light component emitted through two systems of optical paths having different optical path lengths is converted into a surface 6 at a certain distance from the light source light incident surface.
An image can be formed under the same light-collecting conditions.

【0027】ところで、この種の偏光変換装置は一般に
投写型表示装置における照明装置のように集光光学系の
光路中に介在させて用いられる。従って、2系統のP偏
光成分による結像位置と集光条件が相違していると、後
段の光学系による照明領域に対する光源像の結像状態が
異なることになり、結果的に光利用効率の低下や照度分
布のムラを招く。この実施形態の偏光変換装置によれ
ば、単純な光学要素であるガラスブロック4を介在させ
るだけでその問題点を解消することができ、後段の光学
系を簡素化すると共にその設計を容易にする。
By the way, this type of polarization conversion device is generally used by being interposed in the optical path of a condensing optical system like an illumination device in a projection display device. Therefore, if the image formation position by the two P-polarized light components and the light collection conditions are different, the image formation state of the light source image on the illumination area by the subsequent optical system will be different, and as a result, the light use efficiency will be reduced. This leads to reduction and uneven illuminance distribution. According to the polarization conversion device of this embodiment, the problem can be solved only by interposing the glass block 4 which is a simple optical element, and the subsequent optical system can be simplified and its design can be simplified. .

【0028】また、λ/2位相差板5の位置をガラスブ
ロック4の出射面側に設けているが、偏光分離膜2で反射
された偏光成分の光路中における何れの位置に設けても
よく、例えば、ガラスブロック1bとガラスブロック4の
間に介装させてもよい。
Although the position of the λ / 2 retardation plate 5 is provided on the exit surface side of the glass block 4, it may be provided at any position in the optical path of the polarization component reflected by the polarization separation film 2. For example, it may be interposed between the glass block 1b and the glass block 4.

【0029】更に、この実施形態では、最も簡単で安価
な光学要素であるガラスブロック4を用いているが、機
能的にみると、一定の厚みを有し、入射面で集光光束の
集光性を弱め、出射面で集光性を強める光学要素であれ
ばよく、入射側が凹面の片凹レンズや出射側が凸面の片
凸レンズや入射側が凹面で出射側が凸面のメカニカスレ
ンズを適応的に設計して用いることもできる。
Further, in this embodiment, the glass block 4, which is the simplest and cheapest optical element, is used. However, functionally, the glass block 4 has a constant thickness, and the condensed light beam is condensed on the incident surface. Any optical element that weakens the light and enhances the light-gathering property at the exit surface may be used.The lens is adaptively designed with a concave-sided concave lens on the entrance side, a convex-sided convex lens on the exit side, or a concave-side entrance-side convex lens on the exit side. Can also be used.

【0030】《実施形態2》この実施形態は、前記の実
施形態1に係る偏光変換装置を応用した照明装置に係
り、その基本的構成は図2(平面図)に示される。尚、同
図において図1と同一符号で示される各光学要素は同一
の要素に相当し、ここではそれらに係る説明を省略す
る。この実施形態は、前記の偏光変換装置の入射側と出
射側に、図6(A)に示したレンズ板と同様にレンズセグ
メントを縦横に配列させた第1レンズ板7と、第1レン
ズ板7と同様にレンズセグメントを縦横に配列させてい
るが、その縦方向に係るサイズとレンズセグメント8aの
数(行数)が2倍になっている集光レンズ板8と片凸レン
ズ9を組み合わせた第2レンズ板10を配設し、全体とし
て照明装置を構成している点に特徴がある。
Embodiment 2 This embodiment relates to an illumination apparatus to which the polarization conversion device according to Embodiment 1 is applied, and its basic configuration is shown in FIG. 2 (plan view). Note that, in the same figure, each optical element denoted by the same reference numeral as that in FIG. 1 corresponds to the same element, and a description thereof will be omitted here. In this embodiment, a first lens plate 7 in which lens segments are arrayed vertically and horizontally on the incident side and the output side of the above-mentioned polarization conversion device, similarly to the lens plate shown in FIG. The lens segments are arranged vertically and horizontally as in 7, but the size in the vertical direction and the number of lens segments 8a (the number of rows) are doubled, and the condensing lens plate 8 and the uniconvex lens 9 are combined. It is characterized in that the second lens plate 10 is provided to constitute a lighting device as a whole.

【0031】即ち、実施形態1の偏光変換装置では光源
光を単一の集光光束としてその原理を説明したが、この
実施形態では第1レンズ板7の各レンズセグメント7aに
より2次光源像を第2レンズ板10における対応した2個
のレンズセグメント8aに結像する光学系になっており、
光源光を第1レンズ板7の各レンズセグメント7aで個別
に集光光束化してガラスブロック1bの入射面に入射さ
せ、偏光変換装置から得られるP偏光成分の各集光光束
を第2レンズ板10の集光レンズ板8の位置へ集光させて
2次光源像を各レンズセグメント8aに結像させる。ま
た、第2レンズ板10は、集光レンズ板8と片凸レンズ9の
組み合わせにより、各レンズセグメント7aの像を一定距
離だけ隔てて配置された照明領域に重合結像させる機能
を有している。
That is, in the polarization conversion device of the first embodiment, the principle of the light source light is described as a single condensed light flux. In this embodiment, the secondary light source image is formed by each lens segment 7a of the first lens plate 7. The optical system forms an image on the corresponding two lens segments 8a of the second lens plate 10,
The light source light is individually condensed by each lens segment 7a of the first lens plate 7 and is incident on the incident surface of the glass block 1b, and each condensed light beam of the P-polarized light component obtained from the polarization conversion device is converted to the second lens plate. The light is condensed on the position of the condensing lens plate 8 to form a secondary light source image on each lens segment 8a. Further, the second lens plate 10 has a function of superimposing and forming an image of each lens segment 7a on an illumination area arranged at a fixed distance by a combination of the condensing lens plate 8 and the one-convex lens 9. .

【0032】この照明装置では、図示するように、光源
からの不定偏光をコリメータ・レンズ等で平行化し、そ
の平行光を第1レンズ板7の各レンズセグメント7aで集
光光束化して偏光変換装置へ入射させ、偏光変換装置が
各レンズセグメント7aによる集光光束を各光束単位で扱
うことになる。具体的には、先ず、各レンズセグメント
7aによる集光光束は偏光分離膜2で透過光となるP偏光
成分と反射光となるS偏光成分に分離されるが、各レン
ズセグメント7aの焦点距離は、ガラスブロック1b,1aの
屈折率を考慮して、偏光分離膜2を透過するP偏光成分
が第2レンズ板10の集光レンズ板8の配設位置に集光す
るように設定されている。従って、P偏光成分の各集光
光束はそのまま直進して集光レンズ板8の対応するレン
ズセグメント8a(上側半分のレンズセグメント)に集光せ
しめられ、S偏光成分の各集光光束はガラスブロック1b
の反射ミラー膜3で反射してP偏光成分の各集光光束と
光軸が平行になった状態で同一方向へ進行し、ガラスブ
ロック4を透過してλ/2位相差板5でP偏光成分に変換
された後、集光レンズ板8の対応する各レンズセグメン
ト8a(下側半分のレンズセグメント)へ入射することにな
る。
In this illumination device, as shown in the figure, the indeterminate polarized light from the light source is collimated by a collimator lens or the like, and the collimated light is condensed by each lens segment 7a of the first lens plate 7 to form a converging light flux. And the polarization conversion device treats the condensed light beam by each lens segment 7a in each light beam unit. Specifically, first, each lens segment
The condensed light beam by 7a is separated by the polarization separation film 2 into a P-polarized light component that is transmitted light and an S-polarized light component that is reflected light, and the focal length of each lens segment 7a is determined by the refractive index of the glass blocks 1b and 1a. Considering this, it is set so that the P-polarized light component transmitted through the polarization separation film 2 is condensed at the position where the condenser lens plate 8 of the second lens plate 10 is provided. Therefore, each of the condensed light beams of the P-polarized light component goes straight as it is and is condensed on the corresponding lens segment 8a (upper half lens segment) of the condensing lens plate 8, and each of the condensed light beams of the S-polarized light component is a glass block. 1b
The light is reflected by the reflection mirror film 3 and travels in the same direction with the converged light flux of the P-polarized light component and the optical axis parallel to each other. After being converted into components, the light enters the corresponding lens segments 8a (lower half lens segments) of the condenser lens plate 8.

【0033】そして、この実施形態の集光レンズ板8を
実施形態1(図1)における面6に置き換えてみると明ら
かなように、偏光分離膜2で分離された2系統の偏光成
分に係る各集光光束が集光レンズ板8の対応したレンズ
セグメント8aに到達するまでの光路の物理的距離と光路
長は異なっているが、ガラスブロック4はガラスブロッ
ク1b側から入射する各集光光束の集光点を対応したレン
ズセグメント8aに設定し、またその集光点に対する集光
条件を偏光分離膜2を透過して対応したレンズセグメン
ト8aへ集光している集光光束の集光条件と同一にしてい
る。
When the condensing lens plate 8 of this embodiment is replaced with the surface 6 in the first embodiment (FIG. 1), as apparent from FIG. Although the physical distance and the optical path length of the optical path until each condensed light beam reaches the corresponding lens segment 8a of the condensing lens plate 8 are different, the glass block 4 is different from the condensed light beam incident from the glass block 1b side. Is set to the corresponding lens segment 8a, and the light-collecting condition for the light-collecting point is the light-collecting condition of the condensed light beam transmitted through the polarization separation film 2 and condensed to the corresponding lens segment 8a. Is the same as

【0034】そのため、集光レンズ板8の上側半分の各
レンズセグメント8aには偏光分離膜2を透過したP偏光
成分による2次光源像が、下側半分の各レンズセグメン
ト8aには偏光分離膜2で反射されたS偏光成分がλ/2
位相差板5で偏光変換されたP偏光成分による2次光源
像が、それぞれ同一の集光条件で結像することになる。
従って、光源光が入射している第1レンズ板7の各レン
ズセグメント7aの像を第2レンズ板10によって一定距離
だけ隔てて配置された照明領域に重合結像させることが
できる。この実施形態の照明装置によれば、2次光源像
が第2レンズ板10の各レンズセグメント8に対して完全
に同一条件で結像するため、照明領域に相当する投写型
表示装置の空間光変調部に対して第1レンズ板7の各レ
ンズセグメント7aの像を正確に重合結像させることがで
き、高い光利用効率での読出し光によって高い輝度特性
を有した投写型表示装置を実現できる。
Therefore, a secondary light source image based on the P-polarized light component transmitted through the polarization separating film 2 is provided on each lens segment 8a in the upper half of the condenser lens plate 8, and a polarizing separation film is provided on each lens segment 8a in the lower half. S-polarized light component reflected at 2 is λ / 2
Secondary light source images based on the P-polarized light components that have been polarization-converted by the phase difference plate 5 are formed under the same light-collecting conditions.
Therefore, the image of each lens segment 7a of the first lens plate 7 on which the light source light is incident can be superimposed and formed by the second lens plate 10 on an illumination area arranged at a fixed distance. According to the illumination device of this embodiment, since the secondary light source image is formed on each lens segment 8 of the second lens plate 10 under completely the same conditions, the spatial light of the projection display device corresponding to the illumination area The image of each lens segment 7a of the first lens plate 7 can be accurately superimposed and formed on the modulation section, and a projection display device having high luminance characteristics by reading light with high light use efficiency can be realized. .

【0035】《実施形態3》この実施形態は、前記の実
施形態2の照明装置の変形例に係り、その基本的構成は
図3(平面図)に示される。同図において、11は第1レン
ズ板、12は偏光分離プリズムアレイ、13はλ/2位相差
板、14は補正用ガラスブロック、15は第2レンズ板であ
る。ここに、偏光分離プリズムアレイ12は、平面形状が
平行四辺形である柱状のガラスブロック12aをアレイ状
に接合させると共に、その接合面に偏光分離膜21と反射
ミラー膜22を交互に介装させた構造を有し、偏光分離膜
21と反射ミラー膜22は光源光の入射方向に対して45°
傾斜しており、同方向から見たガラスブロック12aの幅
と偏光分離膜21及び反射ミラー膜22の幅との関係は、前
者が後者の2倍になっている。λ/2位相差板13は、偏
光分離プリズムアレイ12のガラスブロック12aの出射面
側であって、光源光の入射方向から見て反射ミラー膜22
に対応する領域のみ接合されており、偏光分離膜21に対
応する領域には設けられていない。ガラスブロック14
は、平面形状が長方形である長柱体であり、各λ/2位
相差板13に対向した態様で配設されている。第1レンズ
板11は、図6(A)に示したレンズ板と同様にレンズセグ
メントを縦横に配列させたものであり、各レンズセグメ
ント11aの縦方向への配列ピッチは光源光の入射方向か
ら見た偏光分離プリズムアレイ12のガラスブロック12a
の幅に相当する大きさに設定されており、各レンズセグ
メント11aは入射する光源光を集束させて偏光分離プリ
ズムアレイ12の偏光分離膜21へ導くと共に、その焦点距
離はガラスブロック12aの屈折率を考慮して平行光を第
2レンズ板15の入射面に集光させる値に設定されてい
る。第2レンズ板15は、実施形態2の場合と同様に集光
レンズ板16と片凸レンズ17を組み合わせたものであり、
その集光レンズ板16は第1レンズ板11と同様にレンズセ
グメント16aを縦横に配列させたものであるが、各レン
ズセグメント16aの縦方向への配列ピッチは第1レンズ
板11のレンズセグメント11aの配列ピッチの1/2にな
っており、各レンズセグメント16aは光源光の入射方向
から見て偏光分離プリズムアレイ12の各ガラスブロック
12aの出射面と対応する位置に設定されている。即ち、
レンズセグメント16aは1行おきにλ/2位相差板13と
ガラスブロック14の中心光軸に対応する位置に配置され
ていることになる。
<< Embodiment 3 >> This embodiment relates to a modification of the illumination device of Embodiment 2 described above, and its basic configuration is shown in FIG. 3 (plan view). In FIG. 1, reference numeral 11 denotes a first lens plate, 12 denotes a polarized light separating prism array, 13 denotes a λ / 2 phase difference plate, 14 denotes a correction glass block, and 15 denotes a second lens plate. Here, the polarized light separating prism array 12 has a columnar glass block 12a having a parallelogram planar shape joined in an array, and a polarizing separating film 21 and a reflecting mirror film 22 are alternately interposed on the joining surface. Polarized light separation film
21 and the reflection mirror film 22 are at 45 ° with respect to the incident direction of the light from the light source.
The relationship between the width of the glass block 12a and the widths of the polarization separation film 21 and the reflection mirror film 22 when viewed from the same direction is twice as large as the former. The λ / 2 retardation plate 13 is located on the exit surface side of the glass block 12a of the polarization separation prism array 12, and is a reflection mirror film 22 when viewed from the incident direction of the light source light.
Are bonded only to the region corresponding to the polarization separation film 21. Glass block 14
Is a long columnar body having a rectangular planar shape, and is disposed so as to face each λ / 2 retardation plate 13. The first lens plate 11 has lens segments arranged vertically and horizontally in the same manner as the lens plate shown in FIG. 6A, and the arrangement pitch of each lens segment 11a in the vertical direction is different from the incident direction of the light source light. Glass block 12a of polarization separation prism array 12 seen
Each lens segment 11a focuses the incident light source light and guides it to the polarization separation film 21 of the polarization separation prism array 12, and its focal length is the refractive index of the glass block 12a. In consideration of the above, the value is set to a value for converging the parallel light on the incident surface of the second lens plate 15. The second lens plate 15 is a combination of the condenser lens plate 16 and the one-convex lens 17 as in the case of the second embodiment.
The condensing lens plate 16 is formed by arranging lens segments 16a vertically and horizontally like the first lens plate 11, but the arrangement pitch of each lens segment 16a in the vertical direction is the same as the lens segment 11a of the first lens plate 11. Each lens segment 16a is formed of a glass block of the polarization separation prism array 12 when viewed from the incident direction of the light source light.
It is set at a position corresponding to the emission surface of 12a. That is,
The lens segments 16a are arranged at positions corresponding to the central optical axes of the λ / 2 phase difference plate 13 and the glass block 14 every other row.

【0036】従って、この実施形態の照明装置の構成
は、実施形態1と同様の原理の偏光変換装置を第1レン
ズ板11の各レンズセグメント11aに対応する態様で第1
レンズ板11と第2レンズ板15の間に介在させた光学シス
テムに相当し、各偏光変換部分に対応した補正用ガラス
ブロック14とλ/2位相差板13の位置前後関係が逆にな
っている点だけが異なることになる。
Therefore, the configuration of the illumination device of this embodiment is similar to that of the first embodiment except that the polarization conversion device having the same principle as that of the first embodiment is applied to the first lens plate 11 in a manner corresponding to each lens segment 11a.
This corresponds to an optical system interposed between the lens plate 11 and the second lens plate 15, and the positional order of the correction glass block 14 and the λ / 2 phase plate 13 corresponding to each polarization conversion part is reversed. The only difference is that

【0037】次に、この照明装置の機能について説明す
る。先ず、光源光を平行化した不定偏光が第1レンズ板
11の各レンズセグメント11aに入射すると、各レンズセ
グメント11aはその入射光を第2レンズ板15の対応する
各レンズセグメント16aの配設位置を焦点とした集光光
束にして、その各集光光束を偏光分離プリズムアレイ12
に入射させる。そして、各集光光束は偏光分離プリズム
アレイ12の対応する偏光分離膜21へ入射する。入射した
各集光光束の内のP偏光成分はそのまま偏光分離膜21を
透過・直進して第2レンズ板15の集光レンズ板16の対応
したレンズセグメント16aへ入射するが、S偏光成分は
偏光分離膜21で反射されて90°方向変換された後、更
に反射ミラー膜22で反射されて90°方向変換され、P
偏光成分と平行で且つ同一方向へ進行してλ/2位相差
板13へ入射する。
Next, the function of the lighting device will be described. First, the non-uniform polarized light obtained by collimating the light from the light source
When the light enters each lens segment 11a of the second lens plate 11, each lens segment 11a converts the incident light into a condensed light beam having a focal point at the position where the corresponding lens segment 16a of the second lens plate 15 is disposed. The polarization separation prism array 12
Incident on Then, each condensed light beam enters the corresponding polarization separation film 21 of the polarization separation prism array 12. The P-polarized light component of each incident condensed light beam passes through the polarization separation film 21 as it is, goes straight, and enters the corresponding lens segment 16a of the condensing lens plate 16 of the second lens plate 15, while the S-polarized light component is After being reflected by the polarization splitting film 21 and changed in the direction of 90 °, the light is further reflected in the reflecting mirror film 22 and changed in the direction of 90 °.
The light enters the λ / 2 retardation plate 13 while traveling in the same direction as the polarization component.

【0038】λ/2位相差板13は入射したS偏光成分の
偏光面を90°回転させてP偏光成分に変換し、そのP
偏光成分の集光光束が隙間を介してガラスブロック14へ
入射することになるが、そのガラスブロック14は高屈折
率N2'のガラス素材からなり、その屈折作用によって、
入射面では集光性を弱め、出射面では集光性を強める機
能を有する。従って、ガラスブロック14のガラスの屈折
率N2'とその厚みX'を適当に設定すれば、入射したP
偏光成分の集光光束を集光レンズ板16の対応したレンズ
セグメント16aの位置に集光させることができ、且つそ
の集光位置において前記の偏光分離膜21を透過したP偏
光成分の集光光束と同一の集光条件になった集光光束へ
変換して出射させることができる。換言すれば、この照
明装置の光学系は、第1レンズ板11の各レンズセグメン
ト11aとガラスブロック14によって、2次光源像が光路
で対応付けられる第2レンズ板16の各レンズセグメント
16aに結像するように構成されている。
The λ / 2 retardation plate 13 converts the incident S-polarized component into a P-polarized component by rotating the plane of polarization of the incident S-polarized component by 90 °.
The condensed light flux of the polarized light component enters the glass block 14 through the gap, and the glass block 14 is made of a glass material having a high refractive index N2 '.
It has the function of weakening the light collecting property on the incident surface and increasing the light collecting property on the output surface. Therefore, if the refractive index N2 'of the glass of the glass block 14 and its thickness X' are appropriately set, the incident P
The condensed light beam of the polarized light component can be condensed at the position of the corresponding lens segment 16a of the condensing lens plate 16, and the condensed light beam of the P-polarized light component transmitted through the polarization separation film 21 at the light condensing position The light can be converted into a condensed light beam having the same light condensing condition and emitted. In other words, the optical system of the illumination device is configured such that each lens segment 11a of the first lens plate 11 and the glass block 14 correspond to each lens segment of the second lens plate 16 in which a secondary light source image is associated with an optical path.
It is configured to form an image at 16a.

【0039】その結果、物理的距離と光路長が異なる2
系統の光路で対応した各レンズセグメント16aへ入射す
るP偏光成分はそれぞれ同一の集光位置と集光条件にな
り、P偏光成分の集光光束による2次光源像が各レンズ
セグメント16aに同一の光学条件で結像せしめられるこ
とになる。従って、第1レンズ板11の各レンズセグメン
ト11aの像を第2レンズ板15によって一定距離を隔てて
配置された照明領域に同一サイズで重合結像させること
ができ、光量損失がなく、高い光利用効率の照明装置が
実現できることは実施形態2の場合と同様である。この
実施形態の照明装置では、実施形態2の偏光ビームスプ
リッタと反射ミラーの複合光学体1の厚みに対して偏光
分離プリズム21の厚みが大幅に薄く構成でき、装置全体
の薄型化が実現できるという大きな利点がある。
As a result, the physical distance and the optical path length are different.
The P-polarized light components incident on each of the lens segments 16a corresponding to each other in the optical path of the system have the same light-collecting position and light-collecting condition, and the secondary light source image by the condensed light flux of the P-polarized light component is the same for each lens segment 16a. An image is formed under optical conditions. Accordingly, the image of each lens segment 11a of the first lens plate 11 can be formed by the second lens plate 15 in the same size in the illumination area arranged at a fixed distance, without loss of light quantity and high light intensity. It is the same as the case of the second embodiment that the lighting device with the usage efficiency can be realized. In the illuminating device of this embodiment, the thickness of the polarization splitting prism 21 can be made significantly thinner than the thickness of the composite optical body 1 of the polarizing beam splitter and the reflecting mirror of the second embodiment, and the overall device can be made thinner. There are great benefits.

【0040】《実施形態4》この実施形態は、実施形態
3の照明装置の適用例である投写型表示装置に係り、そ
の基本的構成は図4(平面図)に示される。同図におい
て、31が実施形態3の照明装置に相当し、光源32から出
射される不定偏光がコリメータ・レンズ33によって平行
光束化されて照明装置31へ入射せしめられる。そして、
照明装置31は、上記に説明した光学機能に基づいて、光
源光を無駄なくP偏光成分に変換すると共に、第1レン
ズ板11の各レンズセグメント11aの像を同一サイズで一
定の光学的距離に配置された照明領域に重合結像させる
機能を有している。
Embodiment 4 This embodiment relates to a projection type display device which is an application example of the illumination device of Embodiment 3, and its basic configuration is shown in FIG. 4 (plan view). In the drawing, reference numeral 31 corresponds to the illumination device of the third embodiment. Irregular polarized light emitted from the light source 32 is converted into a parallel light beam by the collimator lens 33 and is incident on the illumination device 31. And
The illuminating device 31 converts the light of the light source into the P-polarized light component without waste based on the optical function described above, and converts the images of the lens segments 11a of the first lens plate 11 to the same size and a constant optical distance. It has a function of superimposing and forming an image on the arranged illumination area.

【0041】この投写型表示装置は、前記の照明装置31
から出射されるP偏光成分の読出し光をR(赤),G(緑),
B(青)の三原色光に分解すると共に分解した各色の読出
し光を対応した透過型の空間光変調部へ導光し、各空間
光変調部で映像信号に対応した変調を行い、R,G,Bの
各変調光を合成して投写光学系へ出射させてカラー映像
をスクリーン面に表示させる。
This projection type display device is the same as the illumination device 31 described above.
R (red), G (green),
B (blue) light is decomposed into three primary colors, and the read light of each color decomposed is guided to a corresponding transmissive spatial light modulator, and each spatial light modulator performs modulation corresponding to a video signal. , B are combined and emitted to a projection optical system to display a color image on a screen surface.

【0042】以下、図4を参照しながらその機能を説明
する。先ず、照明装置31から出射されたP偏光成分の読
出し光をコールドミラー34で反射させて90°方向変換
すると共に不要光である熱線を除去し、その反射光をダ
イクロイックミラー35へ入射させる。ここで、ダイクロ
イックミラー34はR光を透過させてシアン光(G,B光)
を反射させる波長選択性反射膜を具備したものである。
従って、透過したR光は反射ミラー36へ入射して90°
方向変換されることでR光の変調部へ導光され、反射し
たシアン光は次のダイクロイックミラー37へ入射する。
そして、ダイクロイックミラー37はB光を透過させてG
光を反射させる波長選択性反射膜を具備したものであ
り、ダイクロイックミラー37へ入射したシアン光の内の
G光はそのミラー面で90°方向変換されることでG光
の変調部へ導光され、B光はそのまま透過して迂回光路
側へ進行する。
The function will be described below with reference to FIG. First, the readout light of the P-polarized component emitted from the illuminating device 31 is reflected by the cold mirror 34 to change its direction by 90 °, removes unnecessary heat rays, and makes the reflected light incident on the dichroic mirror 35. Here, the dichroic mirror 34 transmits the R light and transmits the cyan light (G, B light).
Is provided with a wavelength-selective reflection film that reflects light.
Therefore, the transmitted R light enters the reflection mirror 36 and
By changing the direction, the light is guided to the R light modulator, and the reflected cyan light is incident on the next dichroic mirror 37.
Then, the dichroic mirror 37 transmits the B light and
It is provided with a wavelength-selective reflection film that reflects light, and G light of cyan light incident on the dichroic mirror 37 is converted by 90 ° in the mirror surface to be guided to the G light modulation section. The B light is transmitted as it is and proceeds to the bypass optical path side.

【0043】次に、B光に係る迂回光路は、補正レンズ
38→反射ミラー39→補正レンズ40→反射ミラー41の順に
構成されており、光路を180°方向変換することでB
光の変調部へ導光すると共に、その光路長が長くなるた
めに2枚の補正レンズ38,40を介在させることにより、
前記のR光とG光の導光系と光路長を実質的に同等にし
て光量損失を防止するようにしている。
Next, the detour optical path for the B light is a correction lens.
38 → reflection mirror 39 → correction lens 40 → reflection mirror 41 in this order.
By guiding the light to the light modulating unit and interposing two correction lenses 38 and 40 to increase the optical path length,
The light guide system for the R light and the G light is made substantially equal in optical path length to prevent loss of light quantity.

【0044】ところで、反射ミラー36とダイクロイック
ミラー37と反射ミラー41の各反射光軸の交差点にはダイ
クロイックプリズム42が配置されており、導光された
R,G,B光がそれぞれ集光レンズ43R,43G,43Bと透過型
の空間光変調部44R,44G,44Bを通じてダイクロイックプ
リズム42へ入射するようになっている。また、ダイクロ
イックプリズム42はG光を透過させるがR光を反射させ
る波長選択性反射膜42aとG光を透過させるがB光を反
射させる波長選択性反射膜42bを交差させた構成になっ
ている。
A dichroic prism 42 is disposed at the intersection of the respective reflection optical axes of the reflection mirror 36, the dichroic mirror 37, and the reflection mirror 41, and the guided R, G, and B lights are respectively condensed by a condenser lens 43R. , 43G, 43B and the transmissive spatial light modulators 44R, 44G, 44B to enter the dichroic prism 42. The dichroic prism 42 has a configuration in which a wavelength-selective reflective film 42a that transmits G light but reflects R light and a wavelength-selective reflective film 42b that transmits G light but reflects B light intersect. .

【0045】従って、集光レンズ43R,43G,43Bを介して
空間光変調部44R,44G,44Bへ入射したR,G,Bの各読出
し光(P偏光成分)は空間光変調部44R,44G,44Bで変調さ
れ、その各変調光がダイクロイックプリズム42で合成さ
れて投射光学系45へ出射されることになり、投射光学系
45によって映像信号で変調されたカラー映像をスクリー
ンに表示することができる。
Accordingly, the R, G, and B readout lights (P-polarized light components) incident on the spatial light modulators 44R, 44G, and 44B via the condenser lenses 43R, 43G, and 43B are reflected by the spatial light modulators 44R and 44G. , 44B, and the respective modulated lights are combined by the dichroic prism 42 and output to the projection optical system 45.
45 allows a color image modulated by a video signal to be displayed on a screen.

【0046】この投写型表示装置において、注目すべき
は、照明装置31が上記の機能に基づいて光源の不定偏光
を全てP偏光成分へ変換して高い光利用効率を実現して
いる点、及び偏光分離過程で集光レンズ板16のレンズセ
グメント16の個数だけ形成される光源像を一定距離だけ
離隔した照射領域へ正確に重合結像させる点にある。こ
の照明装置の機能により、投写型表示装置では、照明装
置31の段階で既に偏光変換がなされているために後段の
光学系に偏光変換手段を設ける必要がなく、また、照明
装置31から各空間光変調部44R,44G,44Bまでの各光路の
光路長を同一に構成し、照明装置31による光源像の結像
位置をその光路長に対応させておけば、各空間光変調部
44R,44G,44Bの照明領域に対してインテグレートされた
第1レンズ板11の各レンズセグメント11aの像を正確に
結像させることができる。換言すれば、この投写型表示
装置によれば、光学系を簡素化して小型化が図れ、高い
光利用効率で読出し光を各空間光変調部44R,44G,44Bに
照射できるために、高輝度なカラー画像を表示させるこ
とが可能になる。
It should be noted that, in this projection display device, the illuminating device 31 realizes high light use efficiency by converting all of the non-constant polarized light of the light source into a P-polarized component based on the above function. The point is that the light source images formed by the number of lens segments 16 of the condensing lens plate 16 in the polarization separation process are accurately superimposed and formed on an irradiation area separated by a certain distance. With the function of this illumination device, in the projection display device, since the polarization conversion has already been performed at the stage of the illumination device 31, it is not necessary to provide polarization conversion means in the subsequent optical system. If the optical path lengths of the respective optical paths up to the light modulators 44R, 44G, and 44B are configured to be the same, and the image forming position of the light source image by the illumination device 31 is made to correspond to the optical path length, each spatial light modulator
The image of each lens segment 11a of the first lens plate 11 integrated with respect to the illumination areas of 44R, 44G, and 44B can be accurately formed. In other words, according to the projection display device, the optical system can be simplified and downsized, and the readout light can be applied to each of the spatial light modulators 44R, 44G, and 44B with high light use efficiency. It is possible to display a color image.

【0047】[0047]

【発明の効果】本発明の「偏光変換装置とそれを用いた
照明装置及び投写型表示装置」は、以上の構成を有して
いることにより、次のような効果を奏する。請求項1の
発明は、補正光学要素を介在させたことにより、偏光変
換して得られる2系統の同一偏光成分が構成する光源像
の結像位置とその結像位置への集光条件を装置自体の光
学系内で一致させることができ、照明装置に適用するこ
とにより高い光利用効率と均一な照度分布特性を実現す
る。請求項2の発明は、補正光学要素として、ガラス板
等の最も簡単な光学要素を用いることを可能にし、製造
コストの低減化と設計の容易化を実現する。請求項3の
発明は、インテグレータと請求項2の発明に係る偏光変
換装置を組み合わせて、直線偏光成分からなる第1レン
ズ板の各レンズセグメントの像を照明領域に対して正確
に重合結像させることを可能にし、高い光利用効率と均
一な照度分布特性を有した照明装置を実現する。請求項
4の発明は、請求項3の発明と同様にインテグレータと
偏光変換装置を組み合わせたものであるが、第1レンズ
板の各レンズセグメントに対して個々に偏光変換装置を
対応させ、その偏光変換機能部分を偏光分離プリズム板
としてアッセンブリ化しているため、請求項3の発明と
同様の効果を有すると共に、装置の薄型化を実現する。
According to the present invention, the "polarization conversion device and the illuminating device and the projection display device using the same" have the following effects by having the above-mentioned configuration. According to the first aspect of the present invention, an image forming position of a light source image formed by two systems of the same polarization component obtained by polarization conversion and a light focusing condition at the image forming position are obtained by interposing a correction optical element. It can be matched in its own optical system, and when applied to a lighting device, high light use efficiency and uniform illuminance distribution characteristics are realized. The invention of claim 2 makes it possible to use the simplest optical element such as a glass plate as the correction optical element, and realizes a reduction in manufacturing cost and simplification of design. According to a third aspect of the present invention, an image of each lens segment of the first lens plate composed of a linearly polarized light component is accurately formed on an illumination area by combining the integrator and the polarization conversion device according to the second aspect of the present invention. And realizes a lighting device having high light use efficiency and uniform illuminance distribution characteristics. According to a fourth aspect of the present invention, the integrator and the polarization converter are combined in the same manner as the third aspect of the present invention. Since the conversion function portion is assembled as a polarization splitting prism plate, it has the same effect as the third aspect of the present invention and realizes a thin device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏光変換装置に係る実施形態1の基本
的構成を示す平面図である。
FIG. 1 is a plan view showing a basic configuration of a polarization conversion device according to a first embodiment of the present invention.

【図2】本発明の照明装置に係る実施形態2の基本的構
成を示す平面図である。
FIG. 2 is a plan view showing a basic configuration of a lighting device according to a second embodiment of the present invention.

【図3】本発明の照明装置に係る実施形態3の基本的構
成を示す平面図である。
FIG. 3 is a plan view showing a basic configuration of a lighting device according to a third embodiment of the present invention.

【図4】実施形態3の照明装置を適用した投写型表示装
置の基本的構成を示す平面図である。
FIG. 4 is a plan view illustrating a basic configuration of a projection display device to which the lighting device according to the third embodiment is applied.

【図5】従来技術に係る偏光照明装置(特開平8-304739
号)の基本的構成を示す平面図である。
FIG. 5 is a polarization illuminator according to the prior art (Japanese Patent Laid-Open No. 8-304739).
FIG. 2 is a plan view showing a basic configuration of (No.).

【図6】前記の従来技術に係る偏光照明装置に用いられ
ている第1レンズ板の外観斜視図(A)、及び偏光分離プ
リズムアレイの外観斜視図(B)である。
FIG. 6A is an external perspective view of a first lens plate used in the above-described conventional polarized light illumination device, and FIG. 6B is an external perspective view of a polarization separation prism array.

【符号の説明】[Explanation of symbols]

1…偏光ビームスプリッタと反射ミラーの複合光学体、1
a…三角柱状のガラスブロック、1b,12a…平面形状が平
行四辺形である柱状のガラスブロック、2,21,61…偏光
分離膜、3,22…反射ミラー膜、4,14…四角柱状の補正用
ガラスブロック、4a,4b…境界面、5,13,55…λ/2位相
差板、6…面、7,11,51…第1レンズ板、7a,8a,11a,16a,
51…レンズセグメント、8,16…集光レンズ板、9,17…片
凸レンズ、10,15,52…第2レンズ板、12…偏光分離プリ
ズムアレイ、31…照明装置、32…光源、33…コリメータ
・レンズ、34…コールドミラー、35,37…ダイクロイック
ミラー、36,39,41…反射ミラー、38,40…補正レンズ、4
2…ダイクロイックプリズム、42a,42b…波長選択性反射
膜、43R,43G,43B…集光レンズ、44R,44G,44B…透過型の
空間光変調部、45…投射光学系、53…集光レンズアレ
イ、53a…レンズ、54…偏光分離プリズムアレイ、54a…
偏光ビームスプリッタ、54b…反射ミラーブロック、55a
…λ/2位相差膜、56…出射側レンズ、57…照明領域、
62…反射膜。
1… Composite optical body of polarizing beam splitter and reflection mirror, 1
a: Triangular prism-shaped glass block, 1b, 12a: Column-shaped glass block whose plane shape is a parallelogram, 2, 21, 61: polarized light separating film, 3,22: reflective mirror film, 4, 14: square prism-shaped Glass block for correction, 4a, 4b ... boundary surface, 5, 13, 55 ... λ / 2 retardation plate, 6 ... surface, 7, 11, 51 ... first lens plate, 7a, 8a, 11a, 16a,
51 ... lens segment, 8,16 ... condenser lens plate, 9,17 ... one-convex lens, 10, 15, 52 ... second lens plate, 12 ... polarization separation prism array, 31 ... illumination device, 32 ... light source, 33 ... Collimator lens, 34 cold mirror, 35,37 dichroic mirror, 36,39,41 reflection mirror, 38,40 correction lens, 4
2: dichroic prism, 42a, 42b: wavelength-selective reflective film, 43R, 43G, 43B: condenser lens, 44R, 44G, 44B: transmissive spatial light modulator, 45: projection optical system, 53: condenser lens Array, 53a… Lens, 54… Polarization separation prism array, 54a…
Polarizing beam splitter, 54b… Reflective mirror block, 55a
.... lambda./2 retardation film, 56 ... exit lens, 57 ... illumination area,
62 ... Reflection film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源側から得られる集光光束化された不
定偏光を2つの異なる直線偏光成分に分離する偏光分離
手段と、前記偏光分離手段が分離した一方の直線偏光成
分の進行方向を他方の直線偏光成分の進行方向と平行で
且つ同一方向へ変換する反射手段と、前記偏光分離手段
が分離した一方の直線偏光成分の偏光面を回転させて他
方の直線偏光成分と同一の偏光に変換する偏光面回転手
段を具備した偏光変換装置において、前記偏光分離手段
による偏光分離後の2系統の光路中の何れか一方に、そ
の光路で結像される2次光源像と他方の光路で結像され
る2次光源像の結像位置及びその結像位置への集光条件
を一致させる補正光学要素を介在せしめたことを特徴と
する偏光変換装置。
1. A polarized light separating means for separating an indeterminate polarized light obtained as a condensed light flux obtained from a light source side into two different linearly polarized light components, and the direction of travel of one of the linearly polarized light components separated by the polarized light separating means is the other. A reflection unit that is parallel to the direction of travel of the linearly polarized light component and converts the linearly polarized light component into the same direction, and converts the polarization plane of one linearly polarized light component separated by the polarization separation unit into the same polarization as the other linearly polarized light component In the polarization conversion device provided with the polarization plane rotating means, the secondary light source image formed on one of the two optical paths after the polarization separation by the polarization separation means is formed by the other light path. A polarization conversion device comprising a correction optical element for matching an image forming position of a secondary light source image to be formed and a light collecting condition at the image forming position.
【請求項2】 補正光学要素が、前記偏光分離手段によ
る偏光分離後の2系統の光路の内の、そのままでは2次
光源像の結像位置までの光路長が長くなってしまう方の
光路中に介在させた高屈折率の透明媒体である請求項1
の偏光変換装置。
2. The optical system according to claim 1, wherein the correction optical element is one of the two optical paths after the polarization separation by the polarization separation means, in which the optical path length to the image forming position of the secondary light source image becomes longer if it is left as it is. 2. A high-refractive-index transparent medium interposed in a medium.
Polarization conversion device.
【請求項3】 複数のレンズセグメントを縦横に配列し
た構成を有し、各レンズセグメントが入射する不定偏光
の光源光を集光させて所定位置に2次光源像を結像させ
る第1レンズ板と、前記第1レンズ板による集光光束群
の光路中に配置され、各集光光束を2つの異なる直線偏
光成分の集光光束に分離する偏光分離手段と、前記偏光
分離手段が分離した一方の直線偏光成分に係る各集光光
束群の進行方向を他方の直線偏光成分に係る集光光束群
の進行方向と平行で且つ同一方向へ変換する反射手段
と、前記偏光分離手段が分離した一方の直線偏光成分に
係る各集光光束群の偏光面を回転させて他方の直線偏光
成分に係る集光光束群と同一の偏光に変換する偏光面回
転手段と、前記偏光分離手段によって分離された各直線
偏光成分に係る2系統の集光光束群の光路の内の、その
ままでは2次光源像の結像位置までの光路長が長くなる
方の集光光束群の光路側に設けられ、その光路側で結像
される各2次光源像と他方の光路側で結像される各2次
光源像の結像位置及びその結像位置への集光条件を一致
させる高屈折率の透明媒体と、前記透明媒体を介して得
られる集光光束群と他の集光光束群による2次光源像の
結像位置に配置され、結像した各2次光源像を一定距離
だけ離隔した面に重合結像させる第2レンズ板とを具備
したことを特徴とする照明装置。
3. A first lens plate having a configuration in which a plurality of lens segments are arrayed vertically and horizontally, and converging variable-polarized light source light incident on each lens segment to form a secondary light source image at a predetermined position. And a polarization separation unit disposed in the optical path of the group of condensed light beams by the first lens plate and separating each condensed light beam into condensed light beams of two different linearly polarized light components. A reflection unit that converts the traveling direction of each condensed light beam group related to the linearly polarized light component into the same direction as the traveling direction of the condensed light beam group related to the other linearly polarized light component; Polarization plane rotating means for rotating the polarization plane of each condensed light flux group related to the linearly polarized light component and converting the same to the same polarization as the condensed light flux group related to the other linearly polarized light component, and separated by the polarization separation means. 2 systems for each linear polarization component Of the optical paths of the condensed light flux group, the light path length of the condensed light flux group which, as it is, has a longer optical path length up to the image formation position of the secondary light source image, is provided on the optical path side. A high-refractive-index transparent medium that matches the image forming position of the secondary light source image and each secondary light source image formed on the other optical path side and the light-collecting conditions at the image forming position; A second lens plate which is arranged at an image forming position of a secondary light source image formed by the obtained condensed light beam group and another condensed light beam group, and superimposes and forms each formed secondary light source image on a surface separated by a predetermined distance. A lighting device comprising:
【請求項4】 複数のレンズセグメントを縦横に配列し
た構成を有し、各レンズセグメントが入射する不定偏光
の光源光を集光させて所定位置に2次光源像を結像させ
る第1レンズ板と、前記第1レンズ板の各レンズセグメ
ントの集光光束の光路中に配置された偏光分離膜とその
偏光分離膜と平行に配置された反射ミラー膜によって、
前記第1レンズ板から入射する各集光光束を2つの異な
る直線偏光成分の集光光束に分離して平行で且つ同一方
向へ出射させる偏光分離プリズム板と、前記偏光分離プ
リズム板の各反射ミラー膜で反射された各集光光束の光
路にのみ配置され、その集光光束の偏光面を回転させて
他方の集光光束と同一の偏光に変換する各偏光面回転手
段と、前記偏光分離プリズム板の各反射ミラー膜で反射
された各集光光束の光路にのみ配置され、その光路側で
結像される各2次光源像と他方の光路側で結像される各
2次光源像の結像位置及びその結像位置への集光条件を
一致させる高屈折率の各透明媒体と、前記の各透明媒体
を介して得られる集光光束群と他の集光光束群による2
次光源像の結像位置に配置され、結像した各2次光源像
を一定距離だけ離隔した面に重合結像させる第2レンズ
板とを具備したことを特徴とする照明装置。
4. A first lens plate having a structure in which a plurality of lens segments are arrayed vertically and horizontally, and converging an irregularly polarized light source light incident on each lens segment to form a secondary light source image at a predetermined position. And a polarization separation film disposed in the optical path of the condensed light flux of each lens segment of the first lens plate and a reflection mirror film disposed in parallel with the polarization separation film.
A polarization splitting prism plate that separates each condensed light beam incident from the first lens plate into two different condensed light beams of linearly polarized light components and emits the light beams in parallel and in the same direction; and each reflection mirror of the polarization split prism plate Polarization plane rotating means disposed only in the optical path of each condensed light beam reflected by the film, for rotating the plane of polarization of the condensed light beam to convert it to the same polarization as the other condensed light beam, and the polarization splitting prism It is arranged only on the optical path of each condensed light beam reflected by each reflection mirror film of the plate, and is composed of each secondary light source image formed on the optical path side and each secondary light source image formed on the other optical path side. A transparent medium having a high refractive index for matching an image forming position and a light collecting condition to the image forming position, a group of condensed light beams obtained through each of the above transparent media and another group of condensed light beams;
An illumination device, comprising: a second lens plate disposed at an image forming position of a secondary light source image and superimposing and forming each of the formed secondary light source images on a surface separated by a predetermined distance.
JP27977397A 1997-09-26 1997-09-26 Polarized light converter and illuminator using it Pending JPH11101956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27977397A JPH11101956A (en) 1997-09-26 1997-09-26 Polarized light converter and illuminator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27977397A JPH11101956A (en) 1997-09-26 1997-09-26 Polarized light converter and illuminator using it

Publications (1)

Publication Number Publication Date
JPH11101956A true JPH11101956A (en) 1999-04-13

Family

ID=17615723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27977397A Pending JPH11101956A (en) 1997-09-26 1997-09-26 Polarized light converter and illuminator using it

Country Status (1)

Country Link
JP (1) JPH11101956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003662A (en) * 2002-07-03 2004-01-13 삼성전기주식회사 Revision panel for polarize right in projection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003662A (en) * 2002-07-03 2004-01-13 삼성전기주식회사 Revision panel for polarize right in projection system

Similar Documents

Publication Publication Date Title
EP1031870B1 (en) Illumination system and projector
US6067193A (en) Polarization device and projection type display apparatus
US6286961B1 (en) Illuminating optical system and projection type display
KR100400114B1 (en) Video projection device with high efficiency lighting devices and such devices
JP3298437B2 (en) Optical element, polarized illumination device and projection display device
US8337020B2 (en) Polarization conversion and color-combination techniques for pico projector illuminators
JPH08304739A (en) Polarized light illuminator and projection type display device
JP2000194068A (en) Illumination optical device and projection type display device
US9016865B2 (en) Illumination device and projection type display device using the same
EP1538832A2 (en) Illuminating device and projection type video display
KR100909926B1 (en) Illumination optics and projector
JP3726287B2 (en) Projection display apparatus and illumination optical system therefor
JP3347121B2 (en) Projector device
KR100597820B1 (en) Display device with optical device and optical device
JP3746905B2 (en) Image projector
JPH10170869A (en) Polarization lighting device, and projection type display device
JPH10333089A (en) Projection display device
JPH06202094A (en) Projection type display device
JP2000305171A (en) Illumination device and projection type display device
JPH11101956A (en) Polarized light converter and illuminator using it
JPH09304734A (en) Polarization illuminating device and projection type display device
JP2008145483A (en) Image projector
JP3555610B2 (en) Polarized illumination device and projection display device
JP3733691B2 (en) Illumination optical system and projection display device using the same
JP4066992B2 (en) Illumination optical system and projection display device