JPH11100640A - High strength hot rolled steel sheet having high dynamic deformation resistance and its production - Google Patents

High strength hot rolled steel sheet having high dynamic deformation resistance and its production

Info

Publication number
JPH11100640A
JPH11100640A JP25888797A JP25888797A JPH11100640A JP H11100640 A JPH11100640 A JP H11100640A JP 25888797 A JP25888797 A JP 25888797A JP 25888797 A JP25888797 A JP 25888797A JP H11100640 A JPH11100640 A JP H11100640A
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolled steel
hot
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25888797A
Other languages
Japanese (ja)
Other versions
JP3530355B2 (en
Inventor
Manabu Takahashi
学 高橋
Akihiro Uenishi
朗弘 上西
Tsutomu Okamoto
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25888797A priority Critical patent/JP3530355B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP10181458A priority patent/EP2314730B1/en
Priority to CA002273334A priority patent/CA2273334C/en
Priority to KR1019997004657A priority patent/KR100318213B1/en
Priority to EP97913471.5A priority patent/EP0952235B2/en
Priority to CN97180921A priority patent/CN1078623C/en
Priority to PCT/JP1997/004359 priority patent/WO1998023785A1/en
Priority to AU50679/98A priority patent/AU711873B2/en
Priority to TW086117962A priority patent/TW384313B/en
Priority to US09/355,435 priority patent/US6544354B1/en
Priority to PCT/JP1998/000272 priority patent/WO1998032889A1/en
Priority to AU55767/98A priority patent/AU716203B2/en
Priority to CA002278841A priority patent/CA2278841C/en
Priority to KR1019997006826A priority patent/KR100334948B1/en
Priority to EP98900718.2A priority patent/EP0974677B2/en
Priority to EP10181439A priority patent/EP2312008B1/en
Priority to CN98802157A priority patent/CN1072272C/en
Publication of JPH11100640A publication Critical patent/JPH11100640A/en
Application granted granted Critical
Publication of JP3530355B2 publication Critical patent/JP3530355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the impact energy absorption power of a steel sheet by allowing the average value of the deformation stress in the case deformation is generated in a specified strain rate range after the application of predeformation in a specified range of equivalent strain to a steel having a specified compsn. to satisfy specified relation. SOLUTION: The microstructure of a steel sheet contg. C, Si, Al, Mn, Ni, Cr, Cu and Mo is composite one contg. ferrite and bainite, in which either of them is used as the main phase and third phase contg. >=3 vol.% retained austenite. Furthermore, the average value σdyn (MPa) of the deformation stress in the equivalent strain range of 3 to 10% in the case deformation is generated in the strain rate range of 5×10<2> to 5×10<3> (1/s) after the application of predeformation of >0 to 10% at equivalent strain to this steel sheet satisfies the inequality of σ dyn >=0.766×TS+250 expressed by the maximum stress TS (MPa) in a static tension test measured at the strain rear of 5×10<-4> to 5×10<-3> (1/s) before the application of the predeformation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部材等に使
用され、衝突時の衝撃エネルギーを効率よく吸収するこ
とによって乗員の安全性確保に寄与することの出来る高
い動的変形抵抗を示す高強度熱延鋼板とその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having a high dynamic deformation resistance which can be used for automobile parts and the like and which can contribute to ensuring the safety of occupants by efficiently absorbing impact energy at the time of collision. The present invention relates to a hot-rolled steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、自動車衝突時の乗員保護が自動車
の最重要性能として認識され、それに対応するための高
い高速変形抵抗を示す材料への期待が高まっている。例
えば乗用車の前面衝突においては、フロントサイドメン
バーと呼ばれる部材にこの様な材料を適用すれば、該部
材が圧潰することで衝撃のエネルギーが吸収され、乗員
にかかる衝撃を和らげることが出来る。
2. Description of the Related Art In recent years, occupant protection in the event of an automobile collision has been recognized as the most important performance of an automobile, and there has been an increasing expectation for a material exhibiting high high-speed deformation resistance in order to cope with it. For example, in the case of a frontal collision of a passenger car, if such a material is applied to a member called a front side member, the member is crushed, so that the energy of the impact is absorbed and the impact on the occupant can be reduced.

【0003】自動車の衝突時に各部位が受ける変形の歪
み速度は103 (1/s)程度まで達するため、材料の
衝撃吸収性能を考える場合には、この様な高歪み速度領
域での動的変形特性の解明が必要である。また同時に、
省エネルギー、CO2 排出削減を目指して自動車車体の
軽量化を同時に達成することが必須と考えられ、このた
めに有効な高強度鋼板へのニーズが高まっている。
[0003] Since the strain rate of deformation applied to each part at the time of an automobile collision reaches up to about 10 3 (1 / s), when considering the shock absorbing performance of a material, dynamic deformation in such a high strain rate region is considered. It is necessary to clarify the deformation characteristics. At the same time,
It is considered essential to simultaneously reduce the weight of automobile bodies with the aim of conserving energy and reducing CO 2 emissions, and for this purpose there is a growing need for effective high-strength steel sheets.

【0004】例えば本発明者らは、CAMP-ISIJ Vol.9 (1
996) p.1112 〜1115に、高強度薄鋼板の高速変形特性と
衝撃エネルギー吸収能について報告し、その中で、10
3 (1/s)程度の高歪み速度領域での動的強度は、1
-3(1/s)の低歪み速度での静的強度と比較して大
きく上昇すること、材料の強化機構によって変形抵抗の
歪み速度依存性が変化すること、この中で、TRIP
(変態誘起塑性)型の鋼やDP(フェライト/マルテン
サイト2相)型の鋼が他の高強度鋼板に比べて優れた成
形性と衝撃吸収能を兼ね備えていることを報告してい
る。
[0004] For example, the present inventors have proposed CAMP-ISIJ Vol.
996) pp. 1112 to 1115 report on the high-speed deformation characteristics and impact energy absorption capacity of high-strength thin steel sheets.
The dynamic strength in a high strain rate region of about 3 (1 / s) is 1
0 -3 (1 / s) of the greatly increased as compared to the static strength at a low strain rate, the strain rate dependence of deformation resistance by strengthening mechanism of the material changes, in this, TRIP
It is reported that (transformation-induced plasticity) type steel and DP (ferrite / martensite two-phase) type steel have both excellent formability and shock absorbing ability as compared with other high-strength steel sheets.

【0005】また、残留オーステナイトを含む耐衝撃特
性に優れた高強度鋼板とその製造方法を提供するものと
して、特開平7−18372号公報には、衝撃吸収能を
変形速度の上昇に伴う降伏応力の上昇のみで解決できる
ことを開示しているが衝撃吸収能を向上させるために、
残留オーステナイトの量以外に残留オーステナイトの性
質をどのように制御すべきかは依然として明確にされて
いない。
Japanese Patent Application Laid-Open No. 7-18372 discloses a high-strength steel sheet containing retained austenite and having excellent impact resistance and a method of manufacturing the same. It is disclosed that it can be solved only by the rise of, but in order to improve the shock absorption capacity,
How to control the properties of retained austenite other than the amount of retained austenite remains unclear.

【0006】[0006]

【発明が解決しようとする課題】このように、自動車衝
突時の衝撃エネルギーの吸収に及ぼす部材構成材料の動
的変形特性は少しづつ解明されつつあるものの、衝撃エ
ネルギー吸収能に優れた自動車部品用鋼材としてどのよ
うな特性に注目し、どのような基準に従って材料選定を
行うべきかは未だ明らかにされていない。また、自動車
用部品は、鋼材をプレス成形によって要求された部品形
状に成形され、その後、一般的には塗装焼き付けされた
後に自動車に組み込まれ、実際の衝突現象に直面する。
しかしながら、このような予変形+焼き付け処理を行っ
た後の鋼材の衝突時の衝突エネルギー吸収能の向上にど
のような鋼材強化機構が適しているかも未だ明らかにさ
れていない。
As described above, although the dynamic deformation characteristics of the constituent materials affecting the absorption of the impact energy at the time of the collision of the automobile are gradually being elucidated, the automotive parts having excellent impact energy absorption capability are being elucidated. It has not yet been clarified what properties to focus on and what criteria should be used for material selection as steel. In addition, automotive parts are formed by pressing steel into the required part shape and then, after being generally painted and baked, are assembled into the automobile and face an actual collision phenomenon.
However, it has not yet been clarified which steel material strengthening mechanism is suitable for improving the collision energy absorbing ability at the time of collision of the steel material after performing such pre-deformation and baking treatment.

【0007】[0007]

【課題を解決するための手段】本発明は、フロントサイ
ドメンバー等の衝突時の衝撃エネルギー吸収を担う部品
に成形加工されて使用される鋼材で、高い衝撃エネルギ
ー吸収能を示す高強度鋼板とその製造方法を提供するこ
とを目的としている。その要旨は次のとおりである。
SUMMARY OF THE INVENTION The present invention relates to a high-strength steel sheet having high impact energy absorbing ability, which is a steel material formed into a part for absorbing impact energy at the time of collision such as a front side member and used. It is intended to provide a manufacturing method. The summary is as follows.

【0008】(1)重量%で、C:0.04%以上0.
3%以下、SiとAlの一方または双方を合計で0.5
%以上3.0%以下、Mn,Ni,Cr,Cu,Moの
1種または2種以上を合計で0.5%以上3.5%以下
含み、残部がFe及び不可避的不純物からなり、最終的
に得られる圧延鋼板のミクロ組織がフェライトおよびベ
イナイトを含み、このいずれかを主相とし、体積分率で
3%以上の残留オーステナイトを含む第3相との複合組
織であり、前記残留オーステナイト中の固溶〔C〕と鋼
材の平均Mn等量{Mneq=Mn+(Ni+Cr+C
u+Mo)/2}によって決まる値(M=678−42
8×〔C〕−33×Mneq)が70以上250以下
で、前記熱延鋼板に相当歪みで0%超10%以下の予変
形を与えた後、5×102 〜5×103 (1/s)の歪
み速度範囲で変形した時の3〜10%の相当歪み範囲に
おける変形応力の平均値:σdyn (MPa) が予変形を与え
る前の5×10-4〜5×10-3(1/s)の歪み速度範
囲で測定された静的な引張り試験における最大応力TS
(MPa) によって表現される式:σdyn ≧0.766×T
S+250を満足することを特徴とする高い動的変形抵
抗を有する高強度熱延鋼板。
(1) By weight%, C: 0.04% or more.
3% or less, one or both of Si and Al in total of 0.5
% Or more and 3.0% or less, one or more of Mn, Ni, Cr, Cu and Mo are contained in a total of 0.5% or more and 3.5% or less, with the balance being Fe and inevitable impurities. The microstructure of the rolled steel sheet obtained in a typical manner contains ferrite and bainite, and has a composite phase with a third phase containing any one of them as a main phase and having a volume fraction of 3% or more of retained austenite. [C] and average Mn equivalent of steel material 等 Mneq = Mn + (Ni + Cr + C
u + Mo) / 2} (M = 678−42)
8 × [C] −33 × Mneq) is 70 or more and 250 or less, and after giving a pre-deformation of more than 0% and 10% or less with considerable strain to the hot-rolled steel sheet, 5 × 10 2 to 5 × 10 3 (1 / S) average value of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −3 before σdyn (MPa) gives the pre-deformation. 1 / s) maximum stress TS in a static tensile test measured in the strain rate range
Expression expressed by (MPa): σdyn ≧ 0.766 × T
A high-strength hot-rolled steel sheet having high dynamic deformation resistance, satisfying S + 250.

【0009】(2)Nb,Ti,Vの1種又は2種以上
を合計で0.3重量%以下更に含むことを特徴とする
(1)に記載の高い動的変形抵抗を有する高強度熱延鋼
板。 (3)Pを0.2重量%以下更に含むことを特徴とする
(1)または(2)に記載の高い動的変形抵抗を有する
高強度熱延鋼板。 (4)Bを0.01重量%以下更に含むことを特徴とす
る(1)〜(3)のいずれか1に記載の高い動的変形抵
抗を有する高強度熱延鋼板。
(2) A high-strength heat having high dynamic deformation resistance according to (1), further comprising one or more of Nb, Ti and V in a total amount of 0.3% by weight or less. Rolled steel sheet. (3) The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to (1) or (2), further comprising P in an amount of 0.2% by weight or less. (4) The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of (1) to (3), further comprising 0.01% by weight or less of B.

【0010】(5)0%超10%以下の予変形を与えた
後の鋼材の残留オーステナイト体積分率が2.5%超で
あり、かつ、予変形前の残留オーステナイト体積分率と
予変形後の残留オーステナイト体積分率の比が0.3以
上であることを特徴とする(1)〜(4)のいずれか1
に記載の高い動的変形抵抗を有する高強度熱延鋼板。 (6)最終的に得られた熱延鋼板のミクロ組織中の残留
オーステナイトの平均粒径と、主相であるフェライトも
しくはベイナイトの平均粒径の比が0.6以下であるこ
とを特徴とする(1)〜(5)のいずれか1に記載の高
い動的変形抵抗を有する高強度熱延鋼板。
(5) The residual austenite volume fraction of the steel after the pre-deformation of more than 0% and 10% or less is more than 2.5%, and the residual austenite volume fraction and pre-deformation before the pre-deformation Any one of (1) to (4), wherein the ratio of the remaining retained austenite volume fraction is 0.3 or more
A high-strength hot-rolled steel sheet having high dynamic deformation resistance according to 1. (6) The ratio of the average grain size of retained austenite in the microstructure of the finally obtained hot-rolled steel sheet to the average grain size of ferrite or bainite as a main phase is 0.6 or less. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of (1) to (5).

【0011】(7)重量%で、C:0.04%以上0.
3%以下、SiとAlの一方または双方を合計で0.5
%以上3.0%以下、Mn,Ni,Cr,Cu,Moの
1種または2種以上を合計で0.5%以上3.5%以下
含み、残部がFe及び不可避的不純物からなる鋳造スラ
ブを、鋳造ままで熱延工程へ直送し、もしくは一旦冷却
した後に1000℃〜1300℃の範囲に再度加熱した
後、熱延をAr3 変態温度−10℃以上Ar3 変態温度
+120℃未満の温度(熱延仕上げ温度FT)で完了
し、その後5℃/秒以上100℃/秒以下の冷却速度で
冷却し、巻き取る際に、前記熱延仕上げ温度がAr3
態温度+50℃以上の場合には250℃以上380℃未
満の温度で巻き取り、前記熱延仕上げ温度がAr3 変態
温度+50℃未満の場合には250℃以上420℃未満
で巻き取ることを特徴とする、最終的に得られる熱延鋼
板のミクロ組織がフェライトおよびベイナイトを含み、
このいずれかを主相とし、体積分率で3%以上の残留オ
ーステナイトを含む第3相との複合組織であり、残留オ
ーステナイト中の固溶〔C〕とスラブの平均Mn等量
{Mneq=Mn+(Ni+Cr+Cu+Mo)/2}
によって決まる値(M=678−428×〔C〕−33
×Mneq)が70以上250以下で、その鋼材に相当
歪みで0%超10%以下の予変形を与えた後、5×10
2 〜5×103 (1/s)の歪み速度範囲で変形した時
の3〜10%の相当歪み範囲における変形応力の平均
値:σdyn (MPa) が予変形を与える前の5×10-4〜5
×10-3(1/s)の歪み速度範囲で測定された静的な
引張り試験における最大応力TS(MPa) によって表現さ
れる式:σdyn ≧0.766×TS+250を満足する
高い動的変形抵抗を有する高強度熱延鋼板の製造方法。
(7) By weight%, C: 0.04% or more.
3% or less, one or both of Si and Al in total of 0.5
% Or more and 3.0% or less, and one or more of Mn, Ni, Cr, Cu and Mo in total of 0.5% or more and 3.5% or less, with the balance being Fe and unavoidable impurities. Is directly sent to the hot rolling process as cast, or once cooled and then heated again in the range of 1000 ° C. to 1300 ° C., and then the hot rolled is heated to a temperature of Ar 3 transformation temperature−10 ° C. or more and less than Ar 3 transformation temperature + 120 ° C. (Hot-rolling finishing temperature FT), then cooling at a cooling rate of 5 ° C / sec or more and 100 ° C / sec or less, and when winding, when the hot-rolling finishing temperature is Ar 3 transformation temperature + 50 ° C or more, the wound at a temperature below 250 ° C. or higher 380 ° C., wherein the wound is less than 420 ° C. 250 ° C. or higher in the case where the hot-rolling finishing temperature is lower than Ar 3 transformation temperature + 50 ° C., the finally obtained The microstructure of hot rolled steel sheet Including the intent and bainite,
A composite structure of any one of the main phases and a third phase containing retained austenite in a volume fraction of 3% or more, wherein the solid solution [C] in the retained austenite and the average Mn equivalent of the slab {Mneq = Mn + (Ni + Cr + Cu + Mo) / 2}
(M = 678-428 × [C] -33)
× Mneq) is 70 or more and 250 or less, and after giving a predeformation of more than 0% and 10% or less with considerable strain to the steel material, 5 × 10
The average value of the deformation stress in the equivalent strain range of 3 to 10% when deformed at the strain rate range of 2 to 5 × 10 3 (1 / s): 5 × 10 before σdyn (MPa) gives the pre-deformation. 4 to 5
High dynamic deformation resistance that satisfies the equation expressed by the maximum stress TS (MPa) in a static tensile test measured in a strain rate range of × 10 −3 (1 / s): σdyn ≧ 0.766 × TS + 250 A method for producing a high-strength hot-rolled steel sheet having:

【0012】(8)Nb,Ti,Vの1種又は2種以上
を合計で0.3%以下更に含むことを特徴とする(7)
に記載の高い動的変形抵抗を有する高強度熱延鋼板の製
造方法。 (9)Pを0.2重量%以下更に含むことを特徴とする
(7)または(8)に記載の高い動的変形抵抗を有する
高強度熱延鋼板の製造方法。
(8) One or more of Nb, Ti and V are further contained in a total of 0.3% or less. (7)
3. A method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to item 1. (9) The method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to (7) or (8), further comprising 0.2% by weight or less of P.

【0013】(10)Bを0.01重量%以下更に含む
ことを特徴とする(7)〜(9)のいずれか1に記載の
高い動的変形抵抗を有する高強度熱延鋼板の製造方法。
(10) The method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of (7) to (9), further comprising 0.01% by weight or less of B. .

【0014】[0014]

【発明の実施の形態】自動車のフロントサイドメンバー
等の衝突時の衝撃吸収用部材は、鋼板に曲げ加工やプレ
ス成形加工によって製造される。自動車の衝突時の衝撃
は、この様にして加工されて後に一般的には塗装焼き付
けされた後に加えられる。従って、この様に部材への加
工、処理が行われたのちに高い衝撃エネルギーの吸収能
を示す鋼板が必要となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A member for absorbing a shock such as a front side member of an automobile at the time of a collision is manufactured by bending or pressing a steel plate. The impact of an automobile collision is applied after it has been worked in this way, and generally after it has been baked. Therefore, a steel sheet that exhibits high impact energy absorption capacity after such processing and processing into members is required.

【0015】本発明者らの研究の結果、このような成形
加工された実部材において、鋼板に適量の残留オーステ
ナイトを含むことが優れた衝撃吸収特性を示す高強度鋼
板を提供できることが判明した。すなわち、最終的に得
られる熱延鋼板中に存在する最適なミクロ組織は、種々
の置換型元素によって容易に固溶強化されるフェライト
およびベイナイトを含み、このいずれかを主相として、
塑性変形中に硬質のマルテンサイトに変態する残留オー
ステナイトを体積分率で3%以上含む場合に、高い動的
変形抵抗を示すことが判明した。また、初期ミクロ組織
の第3相にマルテンサイト粒子を含む場合にも、他の条
件が満足されれば、本発明の目的とする高い衝撃エネル
ギー吸収能を示す高強度鋼板の製造が可能となる。
As a result of the study of the present inventors, it has been found that a high strength steel sheet exhibiting excellent shock absorption characteristics can be provided by including an appropriate amount of retained austenite in the steel sheet in such a molded real member. That is, the optimal microstructure present in the finally obtained hot-rolled steel sheet includes ferrite and bainite which are easily solid-solution strengthened by various substitution elements, and any one of these as a main phase,
It was found that high dynamic deformation resistance was exhibited when residual austenite, which transforms into hard martensite during plastic deformation, is contained in a volume fraction of 3% or more. Further, even when the third phase of the initial microstructure contains martensite particles, if the other conditions are satisfied, it is possible to produce a high-strength steel sheet exhibiting a high impact energy absorbing ability, which is the object of the present invention. .

【0016】本発明で規定する熱延鋼板の各成分の限定
理由は下記のとおりである。 C:Cはオーステナイトを室温で安定化させて残留させ
るために必要なオーステナイトの安定化に貢献する最も
安価な元素であるために、本発明において最も重要な元
素といえる。鋼材の平均C量は、室温で確保できる残留
オーステナイト体積分率に影響を及ぼすのみならず、製
造の加工熱処理中に未変態オーステナイト中に濃化する
ことで、残留オーステナイトの加工に対する安定性を向
上させることが出来る。しかしながら、この添加量が
0.04重量%未満の場合には、最終的に得られる残留
オーステナイト体積分率が3%以上を確保することが出
来ないので0.04%を下限とした。一方、鋼材の平均
C量が増加するに従って確保可能な残留オーステナイト
体積分率は増加し、残留オーステナイト体積率を確保し
つつ残留オーステナイトの安定性を確保することが可能
となる。しかしながら、鋼材のC添加量が過大になる
と、必要以上に鋼材の強度を上昇させ、プレス加工等の
成形性を阻害するのみならず、静的な強度上昇に比して
動的な応力上昇が阻害されると共に、溶接性を低下させ
ることによって成形された部品としての鋼材の利用が制
限されるようになる。従って鋼材のC重量%の上限を
0.3%とした。
The reasons for limiting each component of the hot-rolled steel sheet specified in the present invention are as follows. C: C is the most important element in the present invention because it is the cheapest element that contributes to the stabilization of austenite, which is necessary for stabilizing austenite at room temperature to remain. The average C content of the steel material not only affects the retained austenite volume fraction that can be secured at room temperature, but also increases the stability of the retained austenite to processing by enriching in untransformed austenite during the thermomechanical heat treatment during production. Can be done. However, if the addition amount is less than 0.04% by weight, the residual austenite volume fraction finally obtained cannot be 3% or more, so the lower limit was made 0.04%. On the other hand, the retained austenite volume fraction that can be secured increases as the average C content of the steel material increases, and it becomes possible to secure the stability of retained austenite while securing the retained austenite volume fraction. However, when the amount of C added to the steel material is excessive, the strength of the steel material is increased more than necessary, not only impairing the formability such as press working, but also increasing the dynamic stress as compared with the static strength increase. In addition to being hindered, the use of steel as a molded part is restricted by reducing the weldability. Therefore, the upper limit of C weight% of the steel material is set to 0.3%.

【0017】Al,Si:AlとSiは共にフェライト
の安定化元素であり、フェライト体積率を増加させるこ
とによって鋼材の加工性を向上させる働きがある。ま
た、Al,Si共にセメンタイトの生成を抑制すること
から、効果的にオーステナイト中へのCを濃化させるこ
とを可能とすることから、室温で適当な体積分率のオー
ステナイトを残留させるためには不可避的な添加元素で
ある。このようなセメンタイト生成抑制機能を持つ添加
元素としては、Al,Si以外に、PやCu,Cr,M
o等が挙げられ、このような元素を適切に添加すること
も同様な効果が期待される。しかしながら、AlとSi
の一種もしくは双方の合計が0.5重量%未満の場合に
は、セメンタイト生成抑制の効果が十分でなく、オース
テナイトの安定化に最も効果的な添加されたCの多くが
炭化物の形で浪費され、本発明に必要な残留オーステナ
イト体積率を確保することが出来ないか、もしくは残留
オーステナイトの確保に必要な製造条件が大量生産工程
の条件に適しないため下限を0.5重量%とした。ま
た、AlとSiの一種もしくは双方の合計が3.0%を
越える場合には、母相であるフェライトもしくはベイナ
イトの硬質化や脆化を招き、歪み速度上昇による変形抵
抗の増加を阻害するばかりでなく、鋼材の加工性の低
下、靱性の低下、さらには鋼材コストの上昇を招き、ま
た化成処理性等の表面処理特性が著しく劣化するため
に、3.0重量%を上限値とした。
Al, Si: Al and Si are both ferrite stabilizing elements, and have a function of improving the workability of steel by increasing the volume ratio of ferrite. In addition, since both Al and Si suppress the generation of cementite, it is possible to effectively enrich C in austenite. Therefore, it is necessary to leave austenite having an appropriate volume fraction at room temperature. It is an inevitable additional element. Examples of the additive element having such a cementite generation suppressing function include P, Cu, Cr, and M in addition to Al and Si.
and the like, and the same effect can be expected by appropriately adding such an element. However, Al and Si
If the total amount of one or both of them is less than 0.5% by weight, the effect of suppressing the formation of cementite is not sufficient, and most of the added C most effective for stabilizing austenite is wasted in the form of carbide. Since the volume ratio of retained austenite required for the present invention cannot be secured, or the manufacturing conditions required for securing the retained austenite are not suitable for the conditions of the mass production process, the lower limit was set to 0.5% by weight. On the other hand, if the sum of one or both of Al and Si exceeds 3.0%, hardening or embrittlement of the ferrite or bainite as the mother phase is caused, and the increase in deformation resistance due to an increase in strain rate is hindered. On the other hand, the upper limit was set to 3.0% by weight because the workability and toughness of the steel material were lowered, the cost of the steel material was increased, and the surface treatment properties such as chemical conversion property were significantly deteriorated.

【0018】Mn,Ni,Cr,Cu,Mo:Mn,N
i,Cr,Cu,Moは全てオーステナイト安定化元素
であり、室温でオーステナイトを安定化させるためには
有効な元素である。特に、溶接性の観点からCの添加量
が制限される場合には、この様なオーステナイト安定化
元素を適量添加することによって効果的にオーステナイ
トを残留させることが可能となる。また、これらの元素
はAlやSi程ではないがセメンタイトの生成を抑制す
る効果があり、オーステナイトへのCの濃化を助ける働
きもする。更に、これらの元素はAl,Siと共にマト
リックスであるフェライトやベイナイトを固溶強化させ
ることによって、高速での動的変形抵抗を高める働きも
持つ。しかしながら、これらの元素の1種もしくは2種
以上の添加の合計が0.5重量%未満の場合には、必要
な残留オーステナイトの確保が出来なくなるとともに、
鋼材の強度が低くなり、有効な車体軽量化が達成できな
くなることから、下限を0.5重量%とした。一方、こ
れらの合計が3.5重量%を越える場合には、母相であ
るフェライトもしくはベイナイトの硬質化を招き、歪み
速度上昇による変形抵抗の増加を阻害するばかりでな
く、鋼材の加工性の低下、靱性の低下、さらには鋼材コ
ストの上昇を招くために、上限を3.5重量%とした。
Mn, Ni, Cr, Cu, Mo: Mn, N
i, Cr, Cu, and Mo are all austenite stabilizing elements, and are effective elements for stabilizing austenite at room temperature. In particular, when the addition amount of C is restricted from the viewpoint of weldability, it is possible to effectively retain austenite by adding an appropriate amount of such an austenite stabilizing element. In addition, these elements are not as effective as Al and Si, but have the effect of suppressing the generation of cementite, and also work to assist the enrichment of C in austenite. Further, these elements have a function of increasing the dynamic deformation resistance at high speed by solid-solution strengthening the matrix ferrite and bainite together with Al and Si. However, if the total of the addition of one or more of these elements is less than 0.5% by weight, the necessary retained austenite cannot be secured, and
The lower limit was set to 0.5% by weight because the strength of the steel material was reduced and an effective vehicle weight reduction could not be achieved. On the other hand, if the sum of them exceeds 3.5% by weight, hardening of the ferrite or bainite which is the parent phase is caused, and not only the increase in deformation resistance due to the increase in strain rate is inhibited, but also the workability of the steel material is reduced. The upper limit is set at 3.5% by weight in order to cause a decrease in the toughness, a decrease in the toughness, and an increase in the cost of the steel material.

【0019】Nb,Ti,V:また、必要に応じて添加
するNb,Ti,Vは、炭化物、窒化物もしくは炭窒化
物を形成することによって鋼材を高強度化することが出
来るが、その合計が0.3%を越えた場合には母相であ
るフェライトやベイナイト粒内もしくは粒界に多量の炭
化物、窒化物もしくは炭窒化物として析出し、高速変形
時の可動転位発生源となって、高い動的変形抵抗を得る
ことが出来なくなる。また、炭化物の生成は、本発明に
とって最も重要な残留オーステナイト中へのCの濃化を
阻害し、Cを浪費することから上限を0.3重量%とし
た。
Nb, Ti, V: Nb, Ti, V added as necessary can increase the strength of steel by forming carbide, nitride or carbonitride. If it exceeds 0.3%, it precipitates as a large amount of carbide, nitride or carbonitride in the ferrite or bainite grains, which are the parent phase, or at the grain boundaries, and becomes a mobile dislocation generating source during high-speed deformation. High dynamic deformation resistance cannot be obtained. The formation of carbides inhibits the concentration of C in retained austenite, which is the most important for the present invention, and wastes C. Therefore, the upper limit is set to 0.3% by weight.

【0020】P:更に、必要に応じて添加するPは、鋼
材の高強度化や前述のように残留オーステナイトの確保
に有効ではあるが、0.2重量%を越えて添加された場
合には鋼材のコストの上昇を招くばかりでなく、主相で
あるフェライトやベイナイトの変形抵抗を必要以上に高
め、かつ高速変形時の変形抵抗の上昇を阻害する。更
に、耐置き割れ性の劣化や疲労特性、靱性の劣化を招く
ことから、0.2重量%をその上限とした。
P: P added as necessary is effective in increasing the strength of the steel material and securing the retained austenite as described above. However, when added in excess of 0.2% by weight, Not only does the cost of the steel material rise, but also the deformation resistance of the main phase, ferrite and bainite, is unnecessarily increased, and the deformation resistance during high-speed deformation is hindered. In addition, 0.2% by weight was set as the upper limit because deterioration of storage crack resistance and deterioration of fatigue characteristics and toughness are caused.

【0021】B:また、必要に応じて添加するBは、粒
界の強化や鋼材の高強度化に有効ではあるが、その添加
量が0.01重量%を越えるとその効果が飽和するばか
りでなく、必要以上に鋼板強度を上昇させ、高速変形時
の変形抵抗の上昇を阻害すると共に、成形部品への加工
性も低下させることから、上限を0.01重量%とし
た。
B: B, which is added as required, is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the added amount exceeds 0.01% by weight, the effect is only saturated. Rather, the upper limit is set to 0.01% by weight because the steel sheet strength is unnecessarily increased, the increase in deformation resistance during high-speed deformation is inhibited, and the workability of a molded part is also reduced.

【0022】次に、本発明者らの実験・検討の結果、フ
ロントサイドメンバー等の衝撃吸収用部材の成形加工に
相当する予変形の量は、部材中の部位によっては最大2
0%以上に達する場合もあるが、相当歪みとして0%超
10%以下の部位が大半であり、また、この範囲の予変
形の効果を把握することで、部材全体としての予変形後
の挙動を推定することが可能であることを見いだした。
従って、本発明においては、部材への加工時に与えられ
る予変形量として相当歪みにして0%超10%以下の変
形を選択した。
Next, as a result of experiments and studies conducted by the present inventors, the amount of pre-deformation corresponding to the forming process of a shock absorbing member such as a front side member may be up to 2 depending on a part in the member.
Although it may reach 0% or more, most of the parts have an equivalent strain of more than 0% to 10%, and by grasping the effect of the pre-deformation in this range, the behavior of the member as a whole after the pre-deformation It was found that it was possible to estimate
Therefore, in the present invention, a deformation of more than 0% and 10% or less is selected as a substantial strain as a pre-deformation amount given at the time of processing the member.

【0023】また、フロントサイドメンバー等の衝撃吸
収用部材は、特徴的にハット型の断面形状をしており、
このような部材の高速での衝突圧潰時の変形を本発明者
らが解析した結果、最大では40%以上の高い歪みまで
変形が進んでいるものの、吸収エネルギー全体の約70
%以上が、高速の応力−歪み線図の10%以下の歪み範
囲で吸収されていることを見いだした。従って、高速で
の衝突エネルギーの吸収能の指標として、10%以下で
の高速変形時の動的変形抵抗を採用した。特に、歪み量
として3%〜10%の範囲が最も重要であることから、
高速引張り変形時の相当歪みで3%〜10%の範囲の平
均応力:σdyn をもって衝撃エネルギー吸収能の指標と
した。
The shock absorbing member such as the front side member has a characteristic hat-shaped cross section.
As a result of analyzing the deformation of such a member at the time of collision crush at high speed, the deformation has progressed up to a high strain of 40% or more at the maximum, but about 70% of the total absorbed energy.
% Was absorbed in the strain range of 10% or less of the high-speed stress-strain diagram. Therefore, the dynamic deformation resistance at the time of high-speed deformation of 10% or less was adopted as an index of the absorption capacity of the collision energy at high speed. In particular, since the range of 3% to 10% is most important as the amount of distortion,
The equivalent energy at the time of high-speed tensile deformation was 3% to 10% and the average stress: σdyn was used as an index of the impact energy absorbing ability.

【0024】この高速変形時の3%〜10%の平均応
力:σdyn (MPa) は、予変形や焼き付け処理が行われる
前の鋼材の静的な引張り強度(5×10-4〜5×10-3
(1/s)の歪み速度範囲で測定された静的な引張り試
験における最大応力TSの上昇に伴って大きくなること
が一般的である。従って鋼材の静的な引張り強度を増加
させることは部材の衝撃エネルギー吸収能の向上に直接
寄与する。しかしながら、鋼材の強度が上昇すると部材
への成形性が劣化し、必要な部材形状を得ることが困難
となる。従って、同一の最大応力で高いσdyn を持つ鋼
材が望ましい。この関係で、特にσdyn ≧0.766×
TS+250の関係を満足する鋼材は、実部材としての
衝撃エネルギー吸収能が他の鋼材に比べて高く、部材の
総重量を増加させることなく衝撃エネルギー吸収能を向
上させることができることを見いだした。
The average stress of 3% to 10% during high-speed deformation: σdyn (MPa) is the static tensile strength (5 × 10 −4 to 5 × 10 −4 ) of the steel material before the pre-deformation or baking treatment is performed. -3
It generally increases with an increase in the maximum stress TS in a static tensile test measured in a strain rate range of (1 / s). Therefore, increasing the static tensile strength of the steel directly contributes to the improvement of the impact energy absorbing ability of the member. However, when the strength of the steel material increases, the formability of the member deteriorates, and it becomes difficult to obtain a required member shape. Therefore, a steel material having the same maximum stress and a high σdyn is desirable. In this relation, in particular, σdyn ≧ 0.766 ×
It has been found that a steel material that satisfies the relationship of TS + 250 has a higher impact energy absorbing ability as an actual member than other steel materials, and can improve the impact energy absorbing ability without increasing the total weight of the member.

【0025】本発明者らの実験・検討の結果、同一レベ
ルの最大応力に対して、σdyn は部材への加工が行われ
る以前の鋼板中に含まれる残留オーステナイト中の固溶
炭素量〔C〕(重量%)と鋼材の平均Mn等量(Mne
q:重量%){Mneq=Mn+(Ni+Cr+Cu+
Mo)/2}によって変化することが見いだされた。残
留オーステナイト中の炭素濃度は、X線解析やメスバウ
アー分光により実験的に求めることが出来、例えばMo
のKα線を用いたX線解析によりフェライトの(20
0)面、(211)面及びオーステナイトの(200)
面、(220)面、(311)面の積分反射強度をもち
いて、Journal of The Iron and Steel Institute, 206
(1968) p.60に示された方法にて算出できる。本発明者
らが行った実験結果から、この様にして得られた残留オ
ーステナイト中の固溶〔C〕と鋼材に添加されている置
換型合金元素から求められるMneqを用いて計算され
る値(M=678−428×〔C〕−33×Mneq)
が70以上250以下の場合に、同一の静的な引張り強
度(TS)に対して大きなσdyn を示すことが見いださ
れた。このときM>250では、実質的に変形中の残留
オーステナイトの変態による強度上昇の効果が極めて低
い歪み領域にのみ限られるために、部材への予変形時に
ほぼ全ての残留オーステナイトが浪費され、高速変形時
のσdyn の上昇に寄与しなくなることから、Mの上限を
250とした。また、Mが70未満の場合には、変形途
中での残留オーステナイトの変態は進行するものの、変
態の進行が低歪み領域では十分に起こらないことから、
相当歪みで3%〜10%の範囲での平均応力σdyn が低
いままに保たれ、静的な引張り強度(TS)に対してσ
dyn ≧0.766×TS+250の関係を満足しなくな
るので、Mの下限を70とした。
As a result of experiments and studies conducted by the present inventors, for the same level of maximum stress, σdyn is the amount of dissolved carbon [C] in the retained austenite contained in the steel sheet before the member is processed. (% By weight) and average Mn equivalent of steel (Mne
q: wt%) {Mneq = Mn + (Ni + Cr + Cu +
Mo) / 2}. The carbon concentration in the retained austenite can be determined experimentally by X-ray analysis or Mossbauer spectroscopy.
X-ray analysis using Kα ray of
0) plane, (211) plane and austenite (200)
Using the integrated reflection intensity of the (220) and (311) planes, Journal of The Iron and Steel Institute, 206
(1968) It can be calculated by the method shown on p.60. From the experimental results performed by the present inventors, a value calculated using the solid solution [C] in the residual austenite thus obtained and Mneq obtained from the substitutional alloy element added to the steel material ( M = 678-428 × [C] −33 × Mneq)
Is greater than or equal to 70 and less than or equal to 250, it has been found to exhibit a large σdyn for the same static tensile strength (TS). At this time, when M> 250, substantially all of the retained austenite is wasted at the time of pre-deformation of the member because the effect of increasing the strength due to the transformation of the retained austenite during deformation is substantially limited only to a very low strain region. The upper limit of M is set to 250 because it does not contribute to the increase in σdyn during deformation. When M is less than 70, the transformation of the retained austenite during the deformation progresses, but the progress of the transformation does not sufficiently occur in the low strain region.
The average stress σdyn in the range of 3% to 10% at equivalent strain is kept low and the σdyn for static tensile strength (TS)
Since the relationship of dyn ≧ 0.766 × TS + 250 is no longer satisfied, the lower limit of M was set to 70.

【0026】熱延条件:熱延ままで本発明の鋼板を製造
する場合には、所定の成分に調整されたスラブを、鋳造
ままで熱延工程へ直送し、もしくは一旦冷却した後に1
000℃〜1300℃の範囲に再度加熱した後、熱間圧
延を行う。再加熱温度を1000℃未満とする場合に
は、スラブの均一加熱が困難となり、表面キズ発生等の
問題を生じるので、再加熱温度の下限を1000℃とし
た。また、再加熱温度が1300℃超では、スラブの変
形が激しくなると同時にコスト高となることから、13
00℃を上限とした。また、熱延仕上げ温度(FT)が
Ar3 変態温度−10℃未満である場合には、鋼板の表
層部及びその近傍に加工フェライト層が生成し、加工性
を著しく劣化させると同時に、動的な変形抵抗を下げ
る。従って、熱延仕上げ温度の下限値をAr3 変態温度
−10℃とする。また熱延仕上げ温度がAr3 +120
℃以上の場合には、必要以上に鋼板の強度が上昇するの
みならず、組織の粗大化が起こり、鋼板動的変形抵抗の
上昇を阻害する。またこのような高温で熱延が完了され
た場合には鋼板の表面粗度が大きくなり、表面品位を落
とす。従って、熱延仕上げ温度の上限値をAr3 +12
0℃未満とする。
Hot-rolling conditions: In the case of producing the steel sheet of the present invention as hot-rolled, a slab adjusted to a predetermined component is directly sent to a hot-rolling process as cast, or is cooled once and then cooled.
After reheating to the range of 000 ° C to 1300 ° C, hot rolling is performed. If the reheating temperature is lower than 1000 ° C., it becomes difficult to uniformly heat the slab, causing problems such as surface flaws. Therefore, the lower limit of the reheating temperature was set to 1000 ° C. On the other hand, if the reheating temperature is higher than 1300 ° C., the cost of the slab becomes high at the same time as the deformation of the slab becomes severe.
The upper limit was 00 ° C. When the hot-rolling finishing temperature (FT) is lower than the Ar 3 transformation temperature −10 ° C., a processed ferrite layer is formed on the surface layer of the steel sheet and in the vicinity thereof, thereby significantly deteriorating the workability and simultaneously reducing the dynamic workability. Low deformation resistance. Therefore, the lower limit of the hot rolling finish temperature is set to the Ar 3 transformation temperature −10 ° C. The hot rolling finish temperature is Ar 3 +120.
When the temperature is higher than ° C., not only the strength of the steel sheet is unnecessarily increased, but also the structure is coarsened, which hinders an increase in the dynamic deformation resistance of the steel sheet. Further, when the hot rolling is completed at such a high temperature, the surface roughness of the steel sheet increases, and the surface quality deteriorates. Therefore, the upper limit of the hot rolling finish temperature is set to Ar 3 +12.
It should be less than 0 ° C.

【0027】熱延完了後に鋼板は冷却されるが、このと
きの冷却速度を5℃/秒未満もしくは100℃/秒超と
することは、大量生産の工程条件上困難であることか
ら、これを下限、上限とした。また冷却の方法は一定の
冷却速度で行っても、途中で低冷却速度の領域を含むよ
うな複数種類の冷却速度の組み合わせであってもよい。
冷却後鋼板は巻き取り処理が行われるが、この時の巻き
取り温度が250℃未満ではマルテンサイトの生成が過
多となって加工性を損なうので下限を250℃とした。
また、熱延仕上げ温度(FT)がAr3 +50℃以上の
場合には、380℃以上で巻き取ると静的強度(TS)
に対する動的な変形抵抗(σdyn )の値が小さくなるこ
とから、熱延仕上げ温度(FT)がAr3 +50℃以上
の場合には巻き取り温度を380℃未満とした。また、
熱延仕上げ温度(FT)がAr3+50℃未満の場合に
は、動的変形抵抗σdyn が低くなる巻き取り温度が42
0℃以上であったため、熱延仕上げ温度(FT)がAr
3 +50℃未満の場合には巻き取り温度を420℃未満
とした。最終的な鋼板の動的変形抵抗をより高めるため
には巻き取り温度の下限を300℃とすることが望まし
い。
After the completion of hot rolling, the steel sheet is cooled. However, it is difficult to set the cooling rate at this time to less than 5 ° C./sec or more than 100 ° C./sec because of mass production process conditions. The lower and upper limits were set. The cooling method may be performed at a constant cooling rate, or may be a combination of a plurality of types of cooling rates including a low cooling rate area on the way.
After cooling, the steel sheet is subjected to a winding process. If the winding temperature at this time is lower than 250 ° C., the formation of martensite becomes excessive and the workability is impaired, so the lower limit was set to 250 ° C.
When the hot rolling finish temperature (FT) is Ar 3 + 50 ° C. or higher, the static strength (TS) can be obtained by winding at 380 ° C. or higher.
When the hot-rolling finishing temperature (FT) is higher than Ar 3 + 50 ° C., the winding temperature is set to less than 380 ° C. because the value of the dynamic deformation resistance (σdyn) becomes smaller. Also,
When the hot rolling finishing temperature (FT) is lower than Ar 3 + 50 ° C., the winding temperature at which the dynamic deformation resistance σdyn becomes low is 42
0 ° C. or higher, the hot rolling finish temperature (FT) is Ar
3 When the temperature was lower than + 50 ° C., the winding temperature was lower than 420 ° C. In order to further increase the dynamic deformation resistance of the final steel sheet, it is desirable to set the lower limit of the winding temperature to 300 ° C.

【0028】[0028]

【実施例】【Example】

<実施例1>表1に示す25種類の鋼板を1200℃に
加熱し、各鋼の成分からAr3 =901−325×%C
+33×%Si−92×%Mneqの式(%Mneq=
%Mn+%Ni/2+%Cr/2+%Cu/2+%Mo
/2)で計算されるAr3 変態温度+50℃〜Ar3
態温度+100℃の範囲内で熱延を完了し、45℃/秒
の冷却速度で冷却し、350℃〜370℃の範囲で巻き
取った。なお圧延完了後の板厚は3.0mmであった。こ
のようにして得られた熱延鋼板の熱延方向(L方向)と
これに直行する方向(C方向)に単軸引張りにより5%
の予変形を付加し、焼き付け処理を模擬するために17
0℃×20分の熱処理を行った後に鋼材の動的な特性を
調査し、予変形する前の静的な特性と比較した結果を表
2に示した。鋼の成分が本発明の範囲内のものについて
は表中の*1の欄に示した値が正すなわち、目的通りσ
dyn が(0.766×TS+250)以上であることが
わかる。 <実施例2>表1に示した本発明の成分範囲内である鋼
P2を用いて、熱延条件、予変形条件及び熱処理条件、
を変化させた場合の特性を調査した結果を表3および表
4に示す。P2鋼のAr3 変態温度は上記の式から76
4℃と計算された。加熱温度は1200℃一定とした。
熱延仕上げ温度(FT)がAr3 +50℃以上の830
℃の場合には、No.1,4,5では巻き取り温度が本
発明の範囲外であるために所定の動的変形抵抗σdyn が
得られていない。また、No.6では、熱延仕上げ温度
(FT)が本発明の範囲外であるために結果的に残留オ
ーステナイト粒径とフェライト粒径の比が0.6よりも
大きくなり、所定の動的変形抵抗σdynが得られていな
い。他の例はすべて本発明の例であり、熱延仕上げ温
度、巻き取り温度、予変形量が本発明の範囲内であれ
ば、予変形付与の形態や予変形後の加工硬化処理(BH
処理:170℃×20分の熱処理)の有無に関わらず表
3の*1の欄の値が正、すなわち、所定の動的変形抵抗
σdyn が得られることがわかる。ここで、L方向とは熱
延と同一の方向を指し、C方向はこれと直行する方向を
指す。
<Example 1> 25 kinds of steel sheets shown in Table 1 were heated to 1200 ° C, and Ar 3 = 901-325 ×% C was determined from the components of each steel.
+ 33 ×% Si−92 ×% Mneq (% Mneq =
% Mn +% Ni / 2 +% Cr / 2 +% Cu / 2 +% Mo
/ 2) The hot rolling is completed within the range of the Ar 3 transformation temperature + 50 ° C. to the Ar 3 transformation temperature + 100 ° C., cooled at a cooling rate of 45 ° C./sec, and wound in the range of 350 ° C. to 370 ° C. I took it. The thickness after rolling was 3.0 mm. In the hot-rolled steel sheet thus obtained, 5% by uniaxial tension in the hot-rolling direction (L direction) and the direction perpendicular thereto (C direction).
17 to add the pre-deformation of
After heat treatment at 0 ° C. for 20 minutes, the dynamic characteristics of the steel material were investigated, and the results of comparison with the static characteristics before pre-deformation are shown in Table 2. When the steel composition is within the range of the present invention, the value shown in the column of * 1 in the table is positive, that is, σ
It can be seen that dyn is (0.766 × TS + 250) or more. <Example 2> Using steel P2 within the component range of the present invention shown in Table 1, hot rolling conditions, pre-deformation conditions and heat treatment conditions,
Tables 3 and 4 show the results of investigating the characteristics in the case where is changed. The Ar 3 transformation temperature of the P2 steel is 76 from the above equation.
Calculated as 4 ° C. The heating temperature was constant at 1200 ° C.
830 with hot rolling finishing temperature (FT) of Ar 3 + 50 ° C. or more
° C. In Examples 1, 4, and 5, the predetermined dynamic deformation resistance σdyn was not obtained because the winding temperature was outside the range of the present invention. In addition, No. In No. 6, since the hot-rolling finishing temperature (FT) is out of the range of the present invention, the ratio between the retained austenite grain size and the ferrite grain size becomes larger than 0.6, and the predetermined dynamic deformation resistance σdyn becomes smaller. Not obtained. All other examples are examples of the present invention. If the hot-rolling finishing temperature, the winding temperature, and the amount of pre-deformation are within the range of the present invention, the form of pre-deformation imparting and the work hardening treatment after pre-deformation (BH
Regardless of the presence or absence of (treatment: heat treatment at 170 ° C. × 20 minutes), the value in the column of * 1 in Table 3 is positive, that is, a predetermined dynamic deformation resistance σdyn can be obtained. Here, the L direction indicates the same direction as that of hot rolling, and the C direction indicates a direction perpendicular to the direction.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明により、自動車の軽量化と衝突安
全性の確保の要求に応えることのできる高い動的変形抵
抗を有する高強度熱延鋼板を確実に提供することができ
る。
According to the present invention, it is possible to reliably provide a high-strength hot-rolled steel sheet having high dynamic deformation resistance and capable of meeting the demands for reducing the weight of an automobile and ensuring collision safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における、衝突時の衝撃エネルギー吸収
能の指標である、5×102 〜5×103 (1/s)の
歪み速度範囲で変形した時の3〜10%の相当歪み範囲
における変形応力の平均値σdyn と静的な素材強度との
関係を示す図である。
FIG. 1 is an equivalent strain of 3 to 10% when deformed in a strain rate range of 5 × 10 2 to 5 × 10 3 (1 / s), which is an index of impact energy absorption capacity at the time of collision in the present invention. FIG. 9 is a diagram showing a relationship between an average value σdyn of deformation stress in a range and static material strength.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04%以上0.3%
以下、SiとAlの一方または双方を合計で0.5%以
上3.0%以下、Mn,Ni,Cr,Cu,Moの1種
または2種以上を合計で0.5%以上3.5%以下含
み、残部がFe及び不可避的不純物からなり、最終的に
得られる熱延鋼板のミクロ組織がフェライトおよびベイ
ナイトを含み、このいずれかを主相とし、体積分率で3
%以上の残留オーステナイトを含む第3相との複合組織
であり、前記残留オーステナイト中の固溶〔C〕と鋼材
の平均Mn等量{Mneq=Mn+(Ni+Cr+Cu
+Mo)/2}によって決まる値(M=678−428
×〔C〕−33×Mneq)が70以上250以下で、
前記熱延鋼板に相当歪みで0%超10%以下の予変形を
与えた後、5×102 〜5×103 (1/s)の歪み速
度範囲で変形した時の3〜10%の相当歪み範囲におけ
る変形応力の平均値:σdyn (MPa) が予変形を与える前
の5×10-4〜5×10-3(1/s)の歪み速度範囲で
測定された静的な引張り試験における最大応力TS(MP
a) によって表現される式:σdyn ≧0.766×TS
+250を満足することを特徴とする高い動的変形抵抗
を有する高強度熱延鋼板。
C: 0.04% to 0.3% by weight
Hereinafter, one or both of Si and Al are 0.5% or more and 3.0% or less in total, and one or two or more of Mn, Ni, Cr, Cu, and Mo are 0.5% or more and 3.5 in total. %, The balance being Fe and unavoidable impurities, and the microstructure of the finally obtained hot-rolled steel sheet contains ferrite and bainite.
% Or more of the third phase containing retained austenite, and the solid solution [C] in the retained austenite and the average Mn equivalent of steel material 材 Mneq = Mn + (Ni + Cr + Cu)
+ Mo) / 2} (M = 678-428)
× [C] −33 × Mneq) is 70 or more and 250 or less,
After giving a pre-deformation of more than 0% and not more than 10% with a considerable strain to the hot-rolled steel sheet, 3-10% when deformed in a strain rate range of 5 × 10 2 to 5 × 10 3 (1 / s). Mean value of deformation stress in equivalent strain range: Static tensile test measured in a strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s) before σdyn (MPa) gives pre-deformation. Stress TS (MP
Expression represented by a): σdyn ≧ 0.766 × TS
A high-strength hot-rolled steel sheet having high dynamic deformation resistance, which satisfies +250.
【請求項2】 Nb,Ti,Vの1種又は2種以上を合
計で0.3重量%以下更に含むことを特徴とする請求項
1に記載の高い動的変形抵抗を有する高強度熱延鋼板。
2. The high-strength hot-rolled steel having high dynamic deformation resistance according to claim 1, further comprising one or more of Nb, Ti, and V in a total amount of 0.3% by weight or less. steel sheet.
【請求項3】 Pを0.2重量%以下更に含むことを特
徴とする請求項1または2記載の高い動的変形抵抗を有
する高強度熱延鋼板。
3. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to claim 1, further comprising 0.2% by weight or less of P.
【請求項4】 Bを0.01重量%以下更に含むことを
特徴とする請求項1〜3のいずれか1項に記載の高い動
的変形抵抗を有する高強度熱延鋼板。
4. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to claim 1, further comprising B in an amount of 0.01% by weight or less.
【請求項5】 0%超10%以下の予変形を与えた後の
鋼材の残留オーステナイト体積分率が2.5%超であ
り、かつ、予変形前の残留オーステナイト体積分率と予
変形後の残留オーステナイト体積分率の比が0.3以上
であることを特徴とする請求項1〜4のいずれか1項に
記載の高い動的変形抵抗を有する高強度熱延鋼板。
5. A steel material after a predeformation of more than 0% and 10% or less has a retained austenite volume fraction of more than 2.5%, and a residual austenite volume fraction before predeformation and after predeformation. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of claims 1 to 4, wherein a ratio of a retained austenite volume fraction of the steel sheet is 0.3 or more.
【請求項6】 最終的に得られた熱延鋼板のミクロ組織
中の残留オーステナイトの平均粒径と、主相であるフェ
ライトもしくはベイナイトの平均粒径の比が0.6以下
であることを特徴とする請求項1〜5のいずれか1項に
記載の高い動的変形抵抗を有する高強度熱延鋼板。
6. The ratio of the average grain size of retained austenite in the microstructure of the finally obtained hot rolled steel sheet to the average grain size of ferrite or bainite as a main phase is 0.6 or less. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of claims 1 to 5.
【請求項7】 重量%で、C:0.04%以上0.3%
以下、SiとAlの一方または双方を合計で0.5%以
上3.0%以下、Mn,Ni,Cr,Cu,Moの1種
または2種以上を合計で0.5%以上3.5%以下含
み、残部がFe及び不可避的不純物からなる鋳造スラブ
を、鋳造ままで熱延工程へ直送し、もしくは一旦冷却し
た後に1000℃〜1300℃の範囲に再度加熱した
後、熱延をAr3 変態温度−10℃以上Ar3 変態温度
+120℃未満の温度(熱延仕上げ温度FT)で完了
し、その後5℃/秒以上100℃/秒以下の冷却速度で
冷却し、巻き取る際に、前記熱延仕上げ温度がAr3
態温度+50℃以上の場合には250℃以上380℃未
満の温度で巻き取り、前記熱延仕上げ温度がAr3 変態
温度+50℃未満の場合には250℃以上420℃未満
で巻き取ることを特徴とする、最終的に得られる熱延鋼
板のミクロ組織がフェライトおよびベイナイトを含み、
このいずれかを主相とし、体積分率で3%以上の残留オ
ーステナイトを含む第3相との複合組織であり、残留オ
ーステナイト中の固溶〔C〕とスラブの平均Mn等量
{Mneq=Mn+(Ni+Cr+Cu+Mo)/2}
によって決まる値(M=678−428×〔C〕−33
×Mneq)が70以上250以下で、その鋼材に相当
歪みで0%超10%以下の予変形を与えた後、5×10
2 〜5×103 (1/s)の歪み速度範囲で変形した時
の3〜10%の相当歪み範囲における変形応力の平均
値:σdyn (MPa) が予変形を与える前の5×10-4〜5
×10-3(1/s)の歪み速度範囲で測定された静的な
引張り試験における最大応力TSによって表現される
式:σdyn ≧0.766×TS+250を満足する高い
動的変形抵抗を有する高強度熱延鋼板の製造方法。
7. C: 0.04% to 0.3% by weight
Hereinafter, one or both of Si and Al are 0.5% or more and 3.0% or less in total, and one or two or more of Mn, Ni, Cr, Cu, and Mo are 0.5% or more and 3.5 in total. % or less includes, after the balance was heated cast slab consisting of Fe and unavoidable impurities, and direct the hot rolling step while casting, or once again to the range of 1000 ° C. to 1300 ° C. after cooling, the hot rolled Ar 3 Transformation temperature: Completed at a temperature of −10 ° C. or more and an Ar 3 transformation temperature of less than + 120 ° C. (hot rolling finishing temperature FT), and then cooled at a cooling rate of 5 ° C./sec to 100 ° C./sec. hot rolling finishing temperature is wound at a temperature of 380 lower than ° C. 250 ° C. or higher in the case of more than Ar 3 transformation temperature + 50 ℃, 420 ° C. 250 ° C. or higher in the case where the hot-rolling finishing temperature is lower than Ar 3 transformation temperature + 50 ℃ Characterized by winding up with , The microstructure of the finally obtained hot-rolled steel sheet comprises a ferrite and bainite,
A composite structure of any one of the main phases and a third phase containing retained austenite in a volume fraction of 3% or more, wherein the solid solution [C] in the retained austenite and the average Mn equivalent of the slab {Mneq = Mn + (Ni + Cr + Cu + Mo) / 2}
(M = 678-428 × [C] -33)
× Mneq) is 70 or more and 250 or less, and after giving a predeformation of more than 0% and 10% or less with considerable strain to the steel material, 5 × 10
The average value of the deformation stress in the equivalent strain range of 3 to 10% when deformed at the strain rate range of 2 to 5 × 10 3 (1 / s): 5 × 10 before σdyn (MPa) gives the pre-deformation. 4 to 5
A formula having a high dynamic deformation resistance that satisfies σdyn ≧ 0.766 × TS + 250, which is expressed by a maximum stress TS in a static tensile test measured in a strain rate range of × 10 −3 (1 / s). Manufacturing method of high strength hot rolled steel sheet.
【請求項8】 Nb,Ti,Vの1種又は2種以上を合
計で0.3%以下更に含むことを特徴とする請求項7に
記載の高い動的変形抵抗を有する高強度熱延鋼板の製造
方法。
8. The high-strength hot-rolled steel sheet having high dynamic deformation resistance according to claim 7, further comprising 0.3% or less in total of one or more of Nb, Ti, and V. Manufacturing method.
【請求項9】 Pを0.2重量%以下更に含むことを特
徴とする請求項7または8に記載の高い動的変形抵抗を
有する高強度熱延鋼板の製造方法。
9. The method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to claim 7, further comprising 0.2% by weight or less of P.
【請求項10】 Bを0.01重量%以下更に含むこと
を特徴とする請求項7〜9のいずれか1項に記載の高い
動的変形抵抗を有する高強度熱延鋼板の製造方法。
10. The method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to any one of claims 7 to 9, further comprising B in an amount of 0.01% by weight or less.
JP25888797A 1996-11-28 1997-09-24 High-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof Expired - Fee Related JP3530355B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP25888797A JP3530355B2 (en) 1997-09-24 1997-09-24 High-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
CA002273334A CA2273334C (en) 1996-11-28 1997-11-28 High strength steels having high impact energy absorption properties and a method for producing the same
KR1019997004657A KR100318213B1 (en) 1996-11-28 1997-11-28 High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
EP97913471.5A EP0952235B2 (en) 1996-11-28 1997-11-28 Method for producing high-strength steels having high impact energy absorption properties
CN97180921A CN1078623C (en) 1996-11-28 1997-11-28 High-strength steel having high impact energy absorption power and method for mfg. same
PCT/JP1997/004359 WO1998023785A1 (en) 1996-11-28 1997-11-28 High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
AU50679/98A AU711873B2 (en) 1996-11-28 1997-11-28 High-strength steels having high impact energy absorption properties and a method for producing the same
TW086117962A TW384313B (en) 1996-11-28 1997-11-28 High strength steels having high impact energy absorption properties and a method for producing the same
EP10181458A EP2314730B1 (en) 1996-11-28 1997-11-28 High-strength steels having high impact energy absorption properties.
PCT/JP1998/000272 WO1998032889A1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
AU55767/98A AU716203B2 (en) 1997-01-29 1998-01-23 High strength steels having excellent formability and high impact energy absorption properties, and a method for production the same
US09/355,435 US6544354B1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
CA002278841A CA2278841C (en) 1997-01-29 1998-01-23 High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
KR1019997006826A KR100334948B1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
EP98900718.2A EP0974677B2 (en) 1997-01-29 1998-01-23 A method for producing high strength steels having excellent formability and high impact energy absorption properties
EP10181439A EP2312008B1 (en) 1997-01-29 1998-01-23 High-strength steels having high impact energy absorption properties.
CN98802157A CN1072272C (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25888797A JP3530355B2 (en) 1997-09-24 1997-09-24 High-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11100640A true JPH11100640A (en) 1999-04-13
JP3530355B2 JP3530355B2 (en) 2004-05-24

Family

ID=17326418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25888797A Expired - Fee Related JP3530355B2 (en) 1996-11-28 1997-09-24 High-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3530355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060646A1 (en) * 2006-12-27 2009-05-20 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for structural members excellent in impact -absorbing characteristics
WO2014073084A1 (en) * 2012-11-08 2014-05-15 Jfeスチール株式会社 Impact absorbing member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619357B2 (en) * 1997-12-26 2005-02-09 新日本製鐵株式会社 High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479345A (en) * 1987-06-03 1989-03-24 Nippon Steel Corp High-strength hot rolled steel plate excellent in workability and its production
JPH01184226A (en) * 1988-01-14 1989-07-21 Kobe Steel Ltd Production of steel sheet having high-ductility high-strength multiple structure
JPH0762485A (en) * 1993-08-25 1995-03-07 Nippon Steel Corp High strength steel plate excellent in workability and fatigue property and its production method
JPH07207413A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Cold rolled steel sheet of high-strength composite structure having excellent workability and tensile strength of 45 to 65kgf/mm2 and its production
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
WO1995029268A1 (en) * 1994-04-26 1995-11-02 Nippon Steel Corporation High-strength steel sheet adapted for deep drawing and process for producing the same
JPH09241788A (en) * 1996-03-04 1997-09-16 Kawasaki Steel Corp High tensile strength steel plate excellent in impact resistance and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479345A (en) * 1987-06-03 1989-03-24 Nippon Steel Corp High-strength hot rolled steel plate excellent in workability and its production
JPH01184226A (en) * 1988-01-14 1989-07-21 Kobe Steel Ltd Production of steel sheet having high-ductility high-strength multiple structure
JPH0762485A (en) * 1993-08-25 1995-03-07 Nippon Steel Corp High strength steel plate excellent in workability and fatigue property and its production method
JPH07207413A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Cold rolled steel sheet of high-strength composite structure having excellent workability and tensile strength of 45 to 65kgf/mm2 and its production
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
WO1995029268A1 (en) * 1994-04-26 1995-11-02 Nippon Steel Corporation High-strength steel sheet adapted for deep drawing and process for producing the same
JPH09241788A (en) * 1996-03-04 1997-09-16 Kawasaki Steel Corp High tensile strength steel plate excellent in impact resistance and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060646A1 (en) * 2006-12-27 2009-05-20 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for structural members excellent in impact -absorbing characteristics
EP2060646A4 (en) * 2006-12-27 2014-01-01 Nippon Steel & Sumikin Sst Stainless steel sheet for structural members excellent in impact -absorbing characteristics
WO2014073084A1 (en) * 2012-11-08 2014-05-15 Jfeスチール株式会社 Impact absorbing member

Also Published As

Publication number Publication date
JP3530355B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
EP2880189B1 (en) A process for producing hot-rolled steel strip and a steel strip produced therewith
WO2013154071A1 (en) Steel sheet suitable as impact absorbing member, and method for manufacturing same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
WO1998032889A1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
US6190469B1 (en) Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
JP2010180446A (en) High-strength hot-rolled steel plate and method for manufacturing the same
JP3231204B2 (en) Composite structure steel sheet excellent in fatigue characteristics and method for producing the same
JP3333414B2 (en) High-strength hot-rolled steel sheet for heat curing with excellent stretch flangeability and method for producing the same
JP3958842B2 (en) Work-induced transformation-type high-strength steel sheet for absorbing automobile collision energy with excellent dynamic deformation characteristics
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP4539447B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4492111B2 (en) Manufacturing method of super high strength steel plate with good shape
JP2012197516A (en) Method for manufacturing hot-rolled steel sheet
JP4313507B2 (en) High-strength steel sheet for automobile cabin structural parts and its manufacturing method
JP3530353B2 (en) High-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
JPH11100640A (en) High strength hot rolled steel sheet having high dynamic deformation resistance and its production
JP2004084074A (en) Hot rolled sheet steel having excellent impact resistance
JPH11100639A (en) Good workability and high strength hot rolled steel sheet having high dynamic deformation resistance and its production
JP3530356B2 (en) Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
JP5035297B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees