JPH1098231A - Semiconductor optical integrated element and its manufacture - Google Patents

Semiconductor optical integrated element and its manufacture

Info

Publication number
JPH1098231A
JPH1098231A JP24952696A JP24952696A JPH1098231A JP H1098231 A JPH1098231 A JP H1098231A JP 24952696 A JP24952696 A JP 24952696A JP 24952696 A JP24952696 A JP 24952696A JP H1098231 A JPH1098231 A JP H1098231A
Authority
JP
Japan
Prior art keywords
layer
optical
semiconductor
region
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24952696A
Other languages
Japanese (ja)
Other versions
JP2924811B2 (en
Inventor
Koji Kudo
耕治 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24952696A priority Critical patent/JP2924811B2/en
Publication of JPH1098231A publication Critical patent/JPH1098231A/en
Application granted granted Critical
Publication of JP2924811B2 publication Critical patent/JP2924811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laser with a spot size converter of of a low threshold value and high efficiency and a manufacturing method of an optically integrated element for realizing a structure thereof. SOLUTION: In a spot size conversion region B of light beam in a semiconductor laser with an active region A and the spot size conversion region B, while a thickness of an optical waveguide layer is thinned to be tapered in an optical waveguide direction, layer thickness change rate in the taper part is larger in upper and lower light confinement layers 2, 4 than in a quantum-well layer (MQW layer) 3. Since the active layer 3 having the same layer thickness as the active region A is in the spot size conversion region B, a semiconductor laser without a region causing optical loss can be realized by making a current flow to all the regions, thus reducing the threshold value current and improving efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板上に異
なる機能の複数の光機能素子を集積化した半導体光集積
素子、及びその製造方法に関するものである。
The present invention relates to a semiconductor optical integrated device in which a plurality of optical functional devices having different functions are integrated on a semiconductor substrate, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】有機金属気相成長法(MOVPE)にお
ける選択成長は、同一基板上に組成や層厚の異なる半導
体結晶を同時に形成できるため、光集積素子等を作製す
る基本技術として研究が盛んに行われている。図2は、
この種選択成長で用いる誘電体マスク20のパターンの
模式図である。この選択成長法では、InP等の半導体
基板上に、幅1.5μmの成長領域21を挟んで対向す
る一対のストライプ状誘電体膜のマスク20を形成し、
MOVPEを用いて、InGaAsP等の四元結晶を成
長領域21に選択的に成長させる。この時、成長される
結晶の組成波長、及び結晶層厚は、前記誘電体マスク2
0の幅を変えることで制御でき、半導体レーザ、光変調
器、光増幅器等の光素子を集積した光集積素子を一括形
成できるため、光集積素子の作製法として非常に有望で
ある。参考文献としては、例えば、(報告例1)ジャー
ナルオブクリスタルグロース(JCG),第132巻,
第435頁〜第443頁,1993年が挙げられる。
2. Description of the Related Art In selective growth in metal organic chemical vapor deposition (MOVPE), semiconductor crystals having different compositions and layer thicknesses can be simultaneously formed on the same substrate. It has been done. FIG.
FIG. 4 is a schematic diagram of a pattern of a dielectric mask 20 used in this seed selective growth. In this selective growth method, a pair of stripe-shaped dielectric film masks 20 facing each other across a growth region 21 having a width of 1.5 μm are formed on a semiconductor substrate such as InP.
A quaternary crystal such as InGaAsP is selectively grown in the growth region 21 using MOVPE. At this time, the composition wavelength of the grown crystal and the thickness of the crystal layer are determined by the dielectric mask 2.
Since it can be controlled by changing the width of 0, and an optical integrated device in which optical devices such as a semiconductor laser, an optical modulator, and an optical amplifier are integrated can be formed collectively, it is very promising as a method for manufacturing an optical integrated device. References include, for example, (Report Example 1) Journal of Crystal Growth (JCG), Vol. 132,
435 to 443, 1993.

【0003】このような選択成長において、図2のマス
クパターンで多重量子井戸(MQW)層を成長すると、
誘電体マスク20の幅が広い場合に、成長領域21では
ウエル層の層厚が厚くなるため、そこに成長されるMQ
W層のバンドギャップ波長が、より長波長側にシフトす
る。例えば、InP基板上にInGaAsP/InGa
AsPのMQW層を選択成長すると、マスク幅の広い領
域aのMQW層のバンドギャップ波長を1.55μmと
し、マスク幅の狭い領域bのMQW層のバンドギャップ
波長を1.48μmとすることができ、領域aを半導体
レーザに、領域bを光変調器とすることで、簡単に半導
体レーザ/光変調器集積化光源が作製できる。
In such selective growth, when a multiple quantum well (MQW) layer is grown with the mask pattern of FIG.
When the width of the dielectric mask 20 is large, the thickness of the well layer becomes large in the growth region 21, so that the MQs grown there are grown.
The band gap wavelength of the W layer shifts to a longer wavelength side. For example, InGaAsP / InGa on an InP substrate
When the MQW layer of AsP is selectively grown, the band gap wavelength of the MQW layer in the region a having a wide mask width can be 1.55 μm, and the band gap wavelength of the MQW layer in the region b having a narrow mask width can be 1.48 μm. By using the region a as a semiconductor laser and the region b as an optical modulator, a semiconductor laser / optical modulator integrated light source can be easily manufactured.

【0004】選択成長を用いて作製される代表的な光デ
バイスとしてスポットサイズ変換器を集積した半導体レ
ーザ(Spot-size Converted Laser Diodes:SC−LD
s)がある。SC−LDsの模式図を図7に示す。SC
−LDsは、活性領域とスポットサイズ変換領域からな
り、InP基板1上に下部光閉じ込め層2、MQW活性
層3、上部光閉じ込め層4、上部InPクラッド層5が
積層形成されている。従来の選択成長でSC−LDsを
作製する場合、スポットサイズ変換領域は、光導波路で
の光閉じ込めを弱くするため、縦方向に活性層3と光閉
じ込め層2,4の層厚が変化するテーパ構造を有する。
As a typical optical device manufactured by using selective growth, a semiconductor laser (Spot-size Converted Laser Diodes: SC-LD) integrated with a spot size converter is used.
s). FIG. 7 shows a schematic diagram of SC-LDs. SC
The LDs include an active region and a spot size conversion region, and a lower optical confinement layer 2, an MQW active layer 3, an upper optical confinement layer 4, and an upper InP clad layer 5 are formed on an InP substrate 1. In the case where SC-LDs are manufactured by conventional selective growth, the spot size conversion region has a taper in which the layer thickness of the active layer 3 and the optical confinement layers 2 and 4 changes in the vertical direction in order to weaken the optical confinement in the optical waveguide. Having a structure.

【0005】[0005]

【発明が解決しようとする課題】このように、活性層3
と光閉じ込め層2,4の層厚が縦方向にテーパ状に変化
されると、活性層AであるMQW層3の発光波長は、活
性領域端からスポットサイズ変換領域Bの出力端へ向け
てだんだん短波長化する構造となる。この場合、スポッ
トサイズ変換領域Bの途中の層厚が緩やかに変化してい
るテーパ構造部では、MQW層3の発光波長が十分短波
長化できておらず、電流を活性領域Aにのみ流す場合、
この部分が光損失層となり、レーザのしきい値電流の上
昇、効率の低下といったレーザ特性の劣化を招いてい
る。これを防ぐために、遷移領域部分にも電流を流す方
法が試みられているが、この場合には、遷移領域のMQ
W層は活性層として機能させるためには、発光波長が短
波長化しており、利得特性が悪いため、効率の低下を招
くという問題が生じる。
As described above, the active layer 3
When the layer thickness of the optical confinement layers 2 and 4 is changed in a tapered shape in the vertical direction, the emission wavelength of the MQW layer 3 as the active layer A is changed from the end of the active region to the output end of the spot size conversion region B. The structure becomes shorter in wavelength. In this case, the light emission wavelength of the MQW layer 3 cannot be sufficiently shortened in the tapered structure portion in which the layer thickness in the middle of the spot size conversion region B changes gradually, and the current flows only in the active region A. ,
This portion serves as a light loss layer, which causes deterioration of laser characteristics such as an increase in laser threshold current and a decrease in efficiency. In order to prevent this, a method of passing a current also to the transition region portion has been attempted.
In order for the W layer to function as an active layer, the emission wavelength is shortened and the gain characteristics are poor, so that there is a problem that the efficiency is reduced.

【0006】本発明は、このような状況に鑑みてなされ
たものであって、その目的は、低しきい値で高効率のス
ポットサイズ変換器付き半導体レーザ、及びその構造を
実現するための光集積素子の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to provide a semiconductor laser with a spot size converter having a low threshold value and high efficiency, and an optical device for realizing the structure thereof. An object of the present invention is to provide a method for manufacturing an integrated device.

【0007】[0007]

【課題を解決するための手段】本発明は、光導波路方向
に連続する少なくとも2つの光機能領域からなり、各光
機能領域は単層または多層の量子井戸層とそれを挟む光
閉じ込め層からなる多層構造の光導波層を有する半導体
光集積素子において、少なくとも1つの光機能領域にお
ける前記光導波層は層厚が光導波方向にテーパ状に薄く
なる光ビームのスポットサイズ変換構造をなしており、
かつそのテーパ部の層厚変化率は、前記量子井戸層より
も前記光閉じ込め層の方が大きいことを特徴とする。あ
るいは、少なくとも1つの光機能領域における前記光導
波層は、前記光閉じ込め層の組成波長が光導波方向に向
かって短波長化する光ビームのスポットサイズ変換構造
をなしていることを特徴とする。
The present invention comprises at least two optical functional regions continuous in the direction of the optical waveguide, each optical functional region comprising a single or multilayer quantum well layer and an optical confinement layer sandwiching the quantum well layer. In a semiconductor optical integrated device having an optical waveguide layer having a multilayer structure, the optical waveguide layer in at least one optical function region has a spot size conversion structure of a light beam in which a layer thickness is tapered and thinned in an optical waveguide direction.
In addition, the rate of change in the layer thickness of the tapered portion is larger in the light confinement layer than in the quantum well layer. Alternatively, the optical waveguide layer in at least one optical functional region has a spot size conversion structure of a light beam in which the composition wavelength of the light confinement layer is shortened in the optical waveguide direction.

【0008】また、本発明の製造方法では、半導体基板
上に形成されたストライプ状誘電体薄膜に挟まれた光導
波路領域へ、光閉じ込め層、半導体多重量子井戸層等の
多層の半導体結晶を選択的に有機金属気相成長法により
結晶成長する工程を含む半導体光集積素子の製造方法に
おいて、該多層の半導体結晶を選択的に結晶成長する
際、各層でV族とIII 族の原料比であるV/III 比を変
えることを特徴とする。あるいは、多層の半導体結晶を
選択的に結晶成長する際、各層で成長圧力を変えること
を特徴とする。
In the manufacturing method of the present invention, a multi-layer semiconductor crystal such as an optical confinement layer and a semiconductor multiple quantum well layer is selected in an optical waveguide region sandwiched between stripe-shaped dielectric thin films formed on a semiconductor substrate. In a method of manufacturing a semiconductor optical integrated device including a step of crystal growth by metalorganic vapor phase epitaxy, when selectively growing a multi-layer semiconductor crystal, the material ratio of group V and group III is determined in each layer. It is characterized in that the V / III ratio is changed. Alternatively, when selectively growing a multi-layer semiconductor crystal, the growth pressure is changed for each layer.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1は本発明の光集積素子として、
スポットサイズ変換器付き半導体レーザ(SC−LD
s)に適用した場合の基本構成を示す断面図であり、活
性領域Aとスポットサイズ変換領域Bとで構成される。
すなわち、InP基板1上に、下部光閉じ込め層2,M
QR活性層3、上部光閉じ込め層4、上部InPクラッ
ド層5を積層形成した構成とされており、スポットサイ
ズ変換領域では、上下の各光閉じ込め層2,4が光導波
路方向にその層厚が徐々に薄くされ、その一方でMQW
活性層3はその層厚が殆ど変化されない状態とされてい
る。また、スポットサイズ変換領域では、上下の各光閉
じ込め層2,4は光導波路方向に短波長化する組成構造
として構成されている。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an optical integrated device of the present invention.
Semiconductor laser with spot size converter (SC-LD
FIG. 3 is a cross-sectional view showing a basic configuration when applied to s), and includes an active area A and a spot size conversion area B.
That is, on the InP substrate 1, the lower optical confinement layer 2, M
The structure is such that a QR active layer 3, an upper light confinement layer 4, and an upper InP clad layer 5 are laminated, and in the spot size conversion region, the upper and lower light confinement layers 2, 4 have thicknesses in the direction of the optical waveguide. Gradually thinned, while MQW
The active layer 3 is in a state where its layer thickness is hardly changed. Further, in the spot size conversion region, the upper and lower light confinement layers 2 and 4 are configured as a composition structure that shortens the wavelength in the optical waveguide direction.

【0010】すなわち、光ビームのスポットサイズ変換
機能は、(1)スポットサイズ変換領域の光閉じ込め層
の層厚を薄くし、光閉じ込めを弱くする構成を用いる
か、(2)スポットサイズ変換領域の光閉じ込め層の組
成波長を活性領域の光閉じ込め層の組成波長より短波長
化し、光閉じ込めを弱くする構成を用いることで実現す
る。また、活性領域及びスポットサイズ変換領域のMQ
W活性層は、層厚及び組成が同じで、同じ発光波長を有
する構成となっている。
That is, the spot size conversion function of the light beam can be performed by (1) using a configuration in which the thickness of the light confinement layer in the spot size conversion area is reduced to weaken the light confinement, or (2) using the spot size conversion area. This is realized by using a configuration in which the composition wavelength of the light confinement layer is shorter than the composition wavelength of the light confinement layer in the active region, and the light confinement is weakened. Also, the MQ of the active area and the spot size conversion area
The W active layers have the same layer thickness and composition, and have the same emission wavelength.

【0011】したがって、この構成を採用することで、
この実施形態のSC−LDsでは、スポットサイズ変換
領域にも活性領域と同じ活性層があるため、全領域に電
流を流すことにより、光学的損失をもたらす領域のない
SC−LDsを実現でき、しきい値電流の低減、効率の
向上が可能となる。
Therefore, by adopting this configuration,
In the SC-LDs of this embodiment, since the spot size conversion region also has the same active layer as the active region, by supplying current to all regions, SC-LDs having no region causing optical loss can be realized. Threshold current can be reduced and efficiency can be improved.

【0012】次に、図1に示したSC−LDsの製造方
法を説明する。この実施形態においては、図2に示すよ
うに、半導体基板上に対向するストライプ状の誘電体マ
スク20を形成する。マスク20の幅は、領域Aで
m1、領域BでWm2と、領域A側で幅広となっており、
開口幅は両領域に共通にWg となっている。ここで、S
C−LDsを作製する場合は、例えば活性領域AでWm1
=50μm、スポットサイズ変換領域BでWm2=4μ
m、Wg =1.5μmに設定される。このマスク20を
介して、InP基板1上にMOVPEを用いて光導波層
(下部光閉じ込め層2、MQW層3、上部光閉じ込め層
4)を構成するInGaAsP等の混晶半導体層を順次
選択成長させると、領域A,Bの開口部にマスク幅に応
じた成長層厚及び組成の異なった四元半導体層が形成さ
れる。この際に、反応管圧力、又は、成長時の原料V/
III 比を変えることにより、マスク幅に対する結晶層厚
変化率、結晶組成変化率を制御することができる。
Next, a method of manufacturing the SC-LDs shown in FIG. 1 will be described. In this embodiment, as shown in FIG. 2, a stripe-shaped dielectric mask 20 facing the semiconductor substrate is formed. The width of the mask 20 is W m1 in the area A, W m2 in the area B, and wide on the area A side.
Opening width is common in W g in both regions. Where S
When producing C-LDs, for example, W m1
= 50 μm, W m2 = 4 μ in spot size conversion area B
m, W g = 1.5 μm. Through this mask 20, a mixed crystal semiconductor layer such as InGaAsP constituting an optical waveguide layer (lower light confinement layer 2, MQW layer 3, upper light confinement layer 4) is selectively grown on the InP substrate 1 using MOVPE. Then, quaternary semiconductor layers having different growth layer thicknesses and compositions corresponding to the mask width are formed in the openings of the regions A and B. At this time, the reaction tube pressure or the raw material V /
By changing the III ratio, the rate of change in crystal layer thickness and the rate of change in crystal composition with respect to the mask width can be controlled.

【0013】まず、成長圧力変化を用いた結晶組成変化
率、及び結晶層厚変化率の制御について説明する。図3
(a),(b)に、成長圧力を2通り(20torr及
び150torr)に変えて、InP基板上に組成波長
1.27μmのInGaAsP四元混晶を成長した時の
マスク幅に対する結晶組成波長の変化、及び結晶層厚の
変化を測定した結果をそれぞれ示す。この実験では、V
/III 比は100、成長温度は635度を用いた。成長
圧力20torrの場合よりも、成長圧力150tor
rの場合のほうが、マスク幅に対する結晶組成変化率、
及び結晶層厚変化率が大きくなることが見出された。す
なわち、成長圧力が大きい条件で選択成長すると、マス
ク幅に対する結晶組成変化率、結晶層厚変化率を大きく
することができ、成長圧力が小さい成長条件で選択成長
すると、マスク幅に対する結晶組成変化率、結晶層厚変
化率を小さくすることができる。この原理を利用する
と、例えば、光閉じ込め層を高い圧力で、MQW層を低
い圧力で選択成長することで、前述したような光閉じ込
め層の層厚だけがスポットサイズ変換領域で変化する理
想的なSC−LDsが作製できる。
First, control of the crystal composition change rate and the crystal layer thickness change rate using the growth pressure change will be described. FIG.
(A) and (b) show the relationship between the crystal composition wavelength and the mask width when an InGaAsP quaternary mixed crystal having a composition wavelength of 1.27 μm is grown on an InP substrate by changing the growth pressure in two ways (20 torr and 150 torr). The results of measuring the change and the change in the crystal layer thickness are shown respectively. In this experiment, V
The / III ratio was 100, and the growth temperature was 635 degrees. The growth pressure is 150 torr compared to the case of the growth pressure of 20 torr.
In the case of r, the crystal composition change rate with respect to the mask width,
It was also found that the rate of change in crystal layer thickness increased. That is, when the selective growth is performed under the condition where the growth pressure is large, the crystal composition change rate and the crystal layer thickness change rate with respect to the mask width can be increased. In addition, the crystal layer thickness change rate can be reduced. Using this principle, for example, by selectively growing the optical confinement layer at a high pressure and the MQW layer at a low pressure, an ideal thickness in which only the layer thickness of the optical confinement layer changes in the spot size conversion region as described above. SC-LDs can be produced.

【0014】次に、原料V/III 比の変化を用いた結晶
組成変化率の制御について説明する。図4は、InP基
板上に成長させた組成波長1.27μmのInGaAs
P四元混晶のマスク幅に対する組成波長変化量のV/II
I 比依存性を調べた結果である。この実験では、成長温
度635度、成長圧力150torrを用いている。こ
の過程において、V/III 比が1500の条件で成長し
た場合よりも、V/III 比が100の条件で成長した方
がマスク幅に対するる結晶組成変化率が大きいことが見
出された。この時、結晶層厚変化率には大きな違いは見
られなかった。このV/III 比の違いに伴う組成波長変
化率の違いの原因は、次のように考えられる。
Next, the control of the rate of change in the crystal composition using the change in the V / III ratio of the raw material will be described. FIG. 4 shows InGaAs having a composition wavelength of 1.27 μm grown on an InP substrate.
V / II of change in composition wavelength with respect to mask width of P quaternary mixed crystal
This is the result of examining the I ratio dependency. In this experiment, a growth temperature of 635 degrees and a growth pressure of 150 torr are used. In this process, it was found that the rate of change in the crystal composition with respect to the mask width was larger when the crystal was grown under the condition that the V / III ratio was 100 than when the crystal was grown under the condition that the V / III ratio was 1500. At this time, no significant difference was found in the crystal layer thickness change rate. The cause of the difference in the composition wavelength change rate due to the difference in the V / III ratio is considered as follows.

【0015】InGaAsPの四元系の選択成長におい
て、誘電体マスク20の幅に対する結晶層厚変化は、主
として反応管内の気相中のGa、In等の III族原料種
の横方向拡散によって生じる。つまり、誘電体マスク2
0上では原料種が消費(成長)されないため高濃度とな
り、誘電体マスク20に挟まれた成長領域21では原料
種が消費(成長)されるため低濃度となる。これによ
り、横方向に原料種の濃度勾配ができ、横方向拡散が生
じる。この時、誘電体マスク20の幅が広いほど、横方
向拡散によって成長領域に供給される III族原料種の量
が大きくなるため、結晶層厚が厚くなる。一方、結晶組
成は、マスク幅が広くなるにつれてIn組成が増加する
ため、結晶組成成長は長波長側へシフトする。これは、
In原料の拡散長の方が、Ga原料の拡散長よりも短い
ために、横方向Inの濃度勾配が大きくなり、より多く
のInが成長領域に取り込まれるために生じる。ところ
が、V/III 比が大きい条件で成長を行うと、V族が触
媒の役割をはたして、III 族の分解が促進される。その
結果、InとGaの取り込まれの相対的な差が小さくな
り、選択成長におけるマスク幅に対する組成変化量の増
大を抑制する働きをするのである。
In the quaternary selective growth of InGaAsP, a change in the crystal layer thickness with respect to the width of the dielectric mask 20 is mainly caused by the lateral diffusion of a group III source material such as Ga and In in a gas phase in a reaction tube. That is, the dielectric mask 2
On 0, the source species is not consumed (grown), so that the concentration becomes high. In the growth region 21 sandwiched between the dielectric masks 20, the source species is consumed (grown), so that the concentration becomes low. As a result, a concentration gradient of the raw material species is generated in the lateral direction, and lateral diffusion occurs. At this time, as the width of the dielectric mask 20 is larger, the amount of the group III source species supplied to the growth region by the lateral diffusion increases, so that the crystal layer thickness increases. On the other hand, as for the crystal composition, the In composition increases as the mask width increases, so that the crystal composition growth shifts to the longer wavelength side. this is,
Since the diffusion length of the In source is shorter than the diffusion length of the Ga source, the concentration gradient in the lateral direction In becomes large and more In is taken into the growth region. However, when the growth is performed under the condition of a large V / III ratio, the group V acts as a catalyst, and the decomposition of the group III is promoted. As a result, the relative difference between the incorporation of In and Ga is reduced, and acts to suppress an increase in the amount of composition change with respect to the mask width in selective growth.

【0016】このように、V/III 比が大きい成長条件
で選択成長すると、マスク幅に対する結晶組成波長の変
化率を小さくすることができ、V/III 比が小さい成長
条件で選択成長すると、マスク幅に対する結晶組成波長
の変化率を大きくすることができる。この原理を利用す
ると、例えば、光閉じ込め層を高いV/III 比で、MQ
W層を低いV/III 比で選択成長することで、前述した
ような光閉じ込め層の組成だけがスポットサイズ変換領
域で短波長側へ変化する理想的なSC−LDsが作製で
きる。
As described above, when the selective growth is performed under the growth condition with a large V / III ratio, the rate of change of the crystal composition wavelength with respect to the mask width can be reduced. The rate of change of the crystal composition wavelength with respect to the width can be increased. Utilizing this principle, for example, a light confinement layer having a high V / III ratio and an MQ
By selectively growing the W layer at a low V / III ratio, ideal SC-LDs in which only the composition of the light confinement layer changes to the shorter wavelength side in the spot size conversion region as described above can be manufactured.

【0017】図5は本発明の第1の実施形態を示す図で
あり、本発明をスポットサイズ変換器付き半導体レーザ
に適用した例である。同図(b)はその共振器方向の断
面図、同図(a)はその製造に用いる選択成長用のマス
クパターンである。まず、〈011〉方向に、SiO2
成長阻止マスク20を、マスク幅が活性領域Aで50μ
m、スポットサイズ変換領域Bで4μmとなるようにパ
ターン化し、1.5μm幅の成長領域21を挟んで対向
するように形成する。次に、このマスクが形成された基
板1上に、本発明の圧力変化による結晶組成、層厚制御
法を用いて、次の工程で各層を選択成長する。まず、n
−InGaAsP下部光閉じ込め層2を成長圧力150
torrの条件で、次いでInGaAsPウエル/In
GaAsPバリアの5層MQW層3を成長圧力15to
rrの条件で、さらにi−InGaAsP上部光閉じ込
め層4、p−InPクラッド層6を成長圧力150to
rrの条件で選択成長する。この時、MQW層3のバン
ドギャップ波長は、活性領域Aで1.3μmとなるよう
に設定されている。
FIG. 5 is a diagram showing a first embodiment of the present invention, in which the present invention is applied to a semiconductor laser with a spot size converter. FIG. 2B is a cross-sectional view in the direction of the resonator, and FIG. 2A is a mask pattern for selective growth used for the manufacture. First, in the <011> direction, SiO 2
The growth inhibition mask 20 is formed so that the mask width is 50 μm in the active region A.
m, the pattern is formed to be 4 μm in the spot size conversion area B, and is formed so as to face the growth area 21 having a width of 1.5 μm. Next, on the substrate 1 on which the mask is formed, each layer is selectively grown in the next step by using the crystal composition and the layer thickness control method according to the pressure change of the present invention. First, n
-InGaAsP lower optical confinement layer 2 with a growth pressure of 150
torr, then InGaAsP well / In
The five-layer MQW layer 3 of the GaAsP barrier is grown to a growth pressure of 15 to.
Under the condition of rr, the i-InGaAsP upper optical confinement layer 4 and the p-InP clad layer 6 were further grown at a growth pressure of 150 to.
Selective growth under the condition of rr. At this time, the band gap wavelength of the MQW layer 3 is set to be 1.3 μm in the active region A.

【0018】この製造工程では、MQW層3を選択成長
する時の成長圧力は、15torrと十分に低いため、
マスク幅に対する結晶組成変化、結晶層厚変化がほとん
ど無く、スポットサイズ変換領域BのMQW層も活性領
域AのMQW層とほぼ同じ組成、層厚となり、バンドギ
ャップ波長を1.3μmとすることができた。一方、上
下光閉じ込め層2,4は、高い成長圧力で成長されたた
め、層厚は、活性領域Aで各50nmであるのに対し、
スポットサイズ変換領域Bの光出射端では各10nm
と、スポットサイズ変換機能を果たすに十分な層厚にま
で低減することができた。次に、フォトリソグラフィ等
を用いて、成長領域21の開口幅を6μmに広げ、成長
阻止マスク20のマスク幅を全領域で2μmになるよう
に再度形成し、このマスクを用いてp−InP埋め込み
クラッド層5(層厚3μm)を選択成長する。その後、
上部電極7、下部電極8を通常のスパッタ法等により形
成する。
In this manufacturing process, the growth pressure when the MQW layer 3 is selectively grown is sufficiently low at 15 torr.
The MQW layer in the spot size conversion region B has almost the same composition and thickness as the MQW layer in the active region A, with almost no change in crystal composition and crystal layer thickness with respect to the mask width. did it. On the other hand, since the upper and lower light confinement layers 2 and 4 were grown at a high growth pressure, the layer thickness was 50 nm in each of the active regions A.
10 nm each at the light emitting end of the spot size conversion area B
Thus, the thickness can be reduced to a layer thickness sufficient to perform the spot size conversion function. Next, the opening width of the growth region 21 is increased to 6 μm by using photolithography or the like, and the mask width of the growth prevention mask 20 is formed again so as to be 2 μm in the entire region, and p-InP is buried using this mask. The clad layer 5 (thickness: 3 μm) is selectively grown. afterwards,
The upper electrode 7 and the lower electrode 8 are formed by a usual sputtering method or the like.

【0019】こうして作製した素子長400μmのスポ
ットサイズ変換器付き半導体レーザ(活性領域300μ
m、スポットサイズ変換領域100μm)は、全領域の
MQW層を活性層として用いることができ、全領域(活
性領域とスポットサイズ変換領域の両方)に電流を注入
することにより、従来の遷移領域でMQW構造の層厚が
テーパ状に薄くなっていたレーザに比べ、発振しきい値
電流で1/2、効率は1.3倍に改善された。また、前
方端面に低反射率、後方端面に高反射率のコーティング
を施した素子では室温25℃での最高出力は従来の60
mWからの100mWまで向上した。
The semiconductor laser with a spot size converter having an element length of 400 μm (active region 300 μm)
m, the spot size conversion region 100 μm) can use the MQW layer of the entire region as an active layer, and by injecting current into all regions (both the active region and the spot size conversion region), the conventional transition region can be used. Compared to a laser in which the layer thickness of the MQW structure is tapered, the lasing threshold current is improved to 、 and the efficiency is improved to 1.3 times. Further, the maximum output at room temperature 25 ° C. of a device having a coating with a low reflectance on the front end face and a high reflectance on the rear end face is the conventional output.
from 100 mW to 100 mW.

【0020】なお、この実施形態では、スポットサイズ
変換領域Bの上下光閉じ込め層2,4の層厚が、スポッ
トサイズ変換領域Bの光出射端へ向けてテーパ状に薄く
なり、光閉じ込めが弱くなる構成をとったが、本発明
は、スポットサイズ変換領域Bの上下光閉じ込め層の組
成波長が、スポットサイズ変換領域の光出射端へ向けて
短波長化し、光閉じ込めが弱くなる構造に対しても有効
である。
In this embodiment, the thicknesses of the upper and lower light confinement layers 2 and 4 in the spot size conversion area B are tapered toward the light emitting end of the spot size conversion area B, and the light confinement is weak. However, the present invention is directed to a structure in which the composition wavelengths of the upper and lower light confinement layers in the spot size conversion region B are shortened toward the light emitting end of the spot size conversion region, and the light confinement is weakened. Is also effective.

【0021】図6はV/III 比の変化を利用した選択成
長による光集積素子として、本発明を波長可変階段型導
波路構造DBRレーザと呼ばれる波長可変レーザに適用
したものであり、同図(b)はその共振器方向の断面
図、同図(a)はこれを製造する際に用いられる選択成
長用マスクパターンを示す。まずn−InP基板1上へ
〈011〉方向に活性領域A、位相調整(PC)領域
C、DBR領域Dを設け、DBR領域Dにのみピッチ約
240nmの回折格子30を形成する。次に、同図
(a)のSiO2 成長阻止マスク20を、1.5μm開
口部(成長領域11)を挟んで対向するように形成す
る。この時、マスク20の幅は、活性領域Aで30μ
m、PC領域Cで20μm、DBR領域Dで4μmとし
ている。
FIG. 6 shows a case where the present invention is applied to a wavelength tunable laser called a wavelength tunable stepped waveguide structure DBR laser as an optical integrated device by selective growth utilizing a change in the V / III ratio. FIG. 2B is a cross-sectional view in the direction of the resonator, and FIG. 2A shows a mask pattern for selective growth used in manufacturing the same. First, an active region A, a phase adjustment (PC) region C, and a DBR region D are provided on the n-InP substrate 1 in the <011> direction, and a diffraction grating 30 having a pitch of about 240 nm is formed only in the DBR region D. Next, the SiO 2 growth inhibiting mask 20 shown in FIG. 1A is formed so as to face the 1.5 μm opening (growth region 11). At this time, the width of the mask 20 is 30 μm in the active region A.
m, 20 μm in the PC region C, and 4 μm in the DBR region D.

【0022】このマスク20が形成された基板1上に、
本発明のV/III 比変化による結晶組成制御法を用い
て、次の工程で各層を選択成長する。まず、n−InG
aAsP下部光閉じ込め層2をV/III =1500の条
件で、次いでn−InPスペーサ層9、InGaAsP
/InGaAsPMQW層3(活性領域のInGaAs
P量子井戸の組成波長1.6μm、層厚7nm/InG
aAsPバリアの組成波長1.3μm、層厚10nm)
をV/III =100の条件で、さらにi−InGaAs
P上部光閉じ込め層4をV/III =1500の条件で、
最後にp−InPクラッド層8をV/III =100の条
件で選択成長する。この時、開口部(成長領域11)に
成長される下部、及び上部のInGaAsP光閉じ込め
層2,4の組成は、V/III 比を1500と大きくとっ
ているため、図3の実験結果に示したようにマスク幅に
対する組成変化量を小さくすることができ、DBR領域
Dで1.27μm、活性領域Aで1.3μmとなった。
On the substrate 1 on which the mask 20 is formed,
Each layer is selectively grown in the next step by using the crystal composition control method according to the V / III ratio change of the present invention. First, n-InG
The aAsP lower optical confinement layer 2 is formed under the condition of V / III = 1500, and then the n-InP spacer layer 9 and the InGaAsP
/ InGaAs PMQW layer 3 (InGaAs of active region)
P quantum well composition wavelength 1.6 μm, layer thickness 7 nm / InG
(AsP barrier composition wavelength 1.3 μm, layer thickness 10 nm)
Under the condition of V / III = 100, and furthermore, i-InGaAs
The P upper optical confinement layer 4 is formed under the condition of V / III = 1500,
Finally, the p-InP cladding layer 8 is selectively grown under the condition of V / III = 100. At this time, the composition of the lower and upper InGaAsP light confinement layers 2 and 4 grown in the opening (growth region 11) has a large V / III ratio of 1500, and is shown in the experimental results of FIG. As described above, the composition change amount with respect to the mask width can be reduced, and is 1.27 μm in the DBR region D and 1.3 μm in the active region A.

【0023】従来の選択成長では、光閉じ込め層もMQ
W層と同じV/III =100の条件で成長していたた
め、DBR領域の上下光閉じ込め層2,4の組成波長を
1.27μmとすると、活性領域の光閉じ込め層の組成
波長は1.37μm程度に長波長化し、電流注入効率の
低下、光出力の飽和といったレーザ特性の劣化を生じて
いたが、本発明によって、活性領域の光閉じ込め層の組
成成長の過剰な長波長化を抑制する事ができた。また、
層厚は2,4の両層ともDBR領域Dで0.1μm、活
性領域Aで0.25μmである。一方、MQW層3は、
V/III 比が小さい条件で成長しているため、その発光
波長は、活性領域Aで1.55μm、DBR領域Dで、
1.55μmの光に対して光損失を生じない程度に十分
短波長である1.38μmに設定することができた。
In the conventional selective growth, the light confinement layer is also MQ
Since the composition wavelength of the upper and lower light confinement layers 2 and 4 in the DBR region is 1.27 μm, the composition wavelength of the light confinement layer in the active region is 1.37 μm. Although the wavelength has been increased to the extent that the laser characteristics have deteriorated, such as a decrease in current injection efficiency and saturation of optical output, the present invention suppresses an excessively long wavelength of the composition growth of the optical confinement layer in the active region. Was completed. Also,
The layer thicknesses of both layers 2 and 4 are 0.1 μm in DBR region D and 0.25 μm in active region A. On the other hand, the MQW layer 3
Since the crystal is grown under the condition of a small V / III ratio, its emission wavelength is 1.55 μm in the active region A, and
The wavelength could be set to 1.38 μm, which is a sufficiently short wavelength so that no light loss occurs for 1.55 μm light.

【0024】このようにして、各半導体層を形成した
後、成長阻止マスク20のマスク開口幅を全領域(活性
領域、PC領域、DBR領域)で6μmに広げ、成長阻
止マスク20の幅を全領域で2μmになるように再度形
成し、このマスクを用いて、p−InP埋め込みクラッ
ド層5(層厚1.5μm)をMOVPEで結晶成長す
る。その後、SiO2 膜10を形成し、上部電極7、下
部電極8を通常のスパッタ法等により形成して波長可変
階段型導波路構造DBRレーザを得ることができた。素
子長700μm(活性領域長300μm、位相調整領域
長200μm、DBR領域長200μm)の素子を作製
したところ、従来、発振しきい値電流10mAであった
ものが、しきい値電流6mAでレーザ発振を示し、最大
光出力は従来の1.5倍の25mW、位相調整領域及び
DBR領域への単一電流注入連続波長可変幅は従来の
1.7倍の6.8nmが得られた。
After each semiconductor layer is formed in this manner, the mask opening width of the growth inhibiting mask 20 is increased to 6 μm in all regions (active region, PC region, DBR region), and the width of the growth inhibiting mask 20 is reduced. The region is formed again so as to have a thickness of 2 μm, and the p-InP buried cladding layer 5 (layer thickness: 1.5 μm) is grown by MOVPE using this mask. Thereafter, an SiO 2 film 10 was formed, and the upper electrode 7 and the lower electrode 8 were formed by a normal sputtering method or the like, whereby a wavelength-tunable step-type waveguide structure DBR laser could be obtained. When an element with an element length of 700 μm (active area length 300 μm, phase adjustment area length 200 μm, DBR area length 200 μm) was manufactured, laser oscillation was conventionally performed at an oscillation threshold current of 10 mA, but at a threshold current of 6 mA. As shown, the maximum light output was 25 mW, 1.5 times the conventional value, and the continuous wavelength variable width of single current injection into the phase adjustment region and the DBR region was 6.8 nm, 1.7 times the conventional value.

【0025】ここで、本発明は、InGaAsP/In
P系以外の材料、例えばInGaAsN/GaAs系、
InGaAlAs/InGaAsP系等の材料を用いた
光集積素子及び、それを実現する選択成長においても有
効である。また、実施形態例では、成長領域の幅が1.
5μmの場合について述べたが、成長領域の幅が1.5
μmに限定されることはない。成長領域の幅が10μm
を超えると、マスク幅に対する結晶組成変化率、層厚変
化率の変化量が小さくなるため、本発明は選択成長領域
幅が10μm以下の時に特に有効である。
Here, the present invention relates to InGaAsP / In
Materials other than P-based materials, for example, InGaAsN / GaAs-based materials,
The present invention is also effective in an optical integrated device using a material such as an InGaAlAs / InGaAsP-based material and in selective growth for realizing the same. In the embodiment, the width of the growth region is 1.
Although the case of 5 μm has been described, the width of the growth region is 1.5 μm.
It is not limited to μm. 10 μm growth area width
If the width of the selective growth region exceeds 10 μm, the rate of change of the crystal composition change ratio and the layer thickness change ratio with respect to the mask width becomes small, so that the present invention is particularly effective when the selective growth region width is 10 μm or less.

【0026】[0026]

【発明の効果】以上説明したように、本発明による半導
体光集積素子によれば、光ビームのスポットサイズ変換
領域では、光導波層の層厚が光導波方向にテーパ状に薄
くなる一方で、そのテーパ部の層厚変化率は、量子井戸
層よりも光閉じ込め層の方が大きくされ、あるいは光閉
じ込め層の組成波長が光導波方向に向かって短波長化す
る構成とされているので、スポットサイズ変換器付き半
導体レーザの低しきい値電流化、高効率化が可能とな
る。更に、スポットサイズ変換領域も活性領域として機
能しているため、従来のSC−LDsに比べて全共振器
長を短くでき、2インチでの収量の増加、歩留まりの向
上も可能なる。したがって、この光集積素子を用いた光
アクセス系システムの光ネットワークユニットの高性能
化や低価格化が可能となる。
As described above, according to the semiconductor optical integrated device of the present invention, in the spot size conversion region of the light beam, while the thickness of the optical waveguide layer is tapered in the optical waveguide direction, Since the rate of change in the thickness of the tapered portion is larger in the optical confinement layer than in the quantum well layer, or the composition wavelength of the optical confinement layer is shorter in the optical waveguide direction, the spot It is possible to reduce the threshold current and increase the efficiency of the semiconductor laser with a size converter. Further, since the spot size conversion region also functions as an active region, the total resonator length can be shortened as compared with the conventional SC-LDs, and the yield in 2 inches can be increased and the yield can be improved. Therefore, the performance and cost of the optical network unit of the optical access system using the optical integrated device can be improved.

【0027】また、本発明の光集積素子の製造方法によ
れば、選択成長においてマスク幅に対する結晶組成変化
率、結晶層厚変化率を自由に制御できるという利点があ
る。つまり、個々の機能素子を集積した光集積素子を作
製する場合に、各機能素子に最も適した設計の構造を複
雑なプロセスを採用することなく、選択成長によって一
括形成することができる。
Further, according to the method of manufacturing an optical integrated device of the present invention, there is an advantage that the rate of change in crystal composition and the rate of change in crystal layer thickness with respect to the mask width can be freely controlled in selective growth. That is, when manufacturing an optical integrated element in which individual functional elements are integrated, a structure most suitable for each functional element can be collectively formed by selective growth without employing a complicated process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明をSC−LDsに適用した場合のその基
本構成の模式断面図である。
FIG. 1 is a schematic cross-sectional view of a basic configuration when the present invention is applied to SC-LDs.

【図2】図1のSC−LDsを製造するためのマスクパ
ターン図である。
FIG. 2 is a mask pattern diagram for manufacturing the SC-LDs of FIG.

【図3】本発明におけるマスク幅に対する結晶組成変化
特性と結晶層変化特性を示す図である。
FIG. 3 is a diagram showing a crystal composition change characteristic and a crystal layer change characteristic with respect to a mask width in the present invention.

【図4】本発明におけるマスク幅に対するIII/V組成変
化特性を示す図である。
FIG. 4 is a diagram showing a III / V composition change characteristic with respect to a mask width in the present invention.

【図5】本発明の第1の実施形態の断面図とそのマスク
パターン図である。
FIG. 5 is a sectional view and a mask pattern diagram of the first embodiment of the present invention.

【図6】本発明の第2の実施形態の断面図とそのマスク
パターン図である。
FIG. 6 is a cross-sectional view and a mask pattern diagram of a second embodiment of the present invention.

【図7】従来のSC−LDsの基本構成の模式断面図で
ある。
FIG. 7 is a schematic sectional view of a basic configuration of a conventional SC-LDs.

【符号の説明】 1 InP半導体基板 2 下部光閉じ込め層 3 MQW層 4 上部光閉じ込め層 5 埋め込みクラッド層 6 クラッド層 7 上部電極 8 下部電極 9 スペーサ層 10 SiO2 膜 20 誘電体マスク 21 成長領域 30 回折格子DESCRIPTION OF SYMBOLS 1 InP semiconductor substrate 2 lower optical confinement layer 3 MQW layer 4 upper optical confinement layer 5 buried cladding layer 6 cladding layer 7 upper electrode 8 lower electrode 9 spacer layer 10 SiO 2 film 20 dielectric mask 21 growth area 30 Diffraction grating

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光導波路方向に連続する少なくとも2つ
の光機能領域からなり、各光機能領域は単層または多層
の量子井戸層とそれを挟む光閉じ込め層からなる多層構
造の光導波層を有する半導体光集積素子において、少な
くとも1つの光機能領域における前記光導波層は層厚が
光導波方向にテーパ状に薄くなる光ビームのスポットサ
イズ変換構造をなしており、かつそのテーパ部の層厚変
化率は、前記量子井戸層よりも前記光閉じ込め層の方が
大きいことを特徴とする半導体光集積素子。
1. An optical waveguide comprising at least two optical functional regions continuous in an optical waveguide direction, each optical functional region having a multilayer optical waveguide layer comprising a single or multiple quantum well layer and an optical confinement layer sandwiching the quantum well layer. In the semiconductor optical integrated device, the optical waveguide layer in at least one optical functional region has a spot size conversion structure of a light beam in which a layer thickness is tapered in an optical waveguide direction, and a change in a layer thickness of the tapered portion is provided. A semiconductor optical integrated device, wherein the ratio is higher in the light confinement layer than in the quantum well layer.
【請求項2】 光導波路方向に連続する少なくとも2つ
の光機能領域からなり、各光機能領域は単層または多層
の量子井戸層とそれを挟む光閉じ込め層からなる多層構
造の光導波層を有する半導体光集積素子において、少な
くとも1つの光機能領域における前記光導波層は、前記
光閉じ込め層の組成波長が光導波方向に向かって短波長
化する光ビームのスポットサイズ変換構造をなしている
ことを特徴とする半導体光集積素子。
2. An optical waveguide comprising at least two optical functional regions continuous in the optical waveguide direction, each optical functional region having a multilayer optical waveguide layer comprising a single or multiple quantum well layer and an optical confinement layer sandwiching the quantum well layer. In the semiconductor optical integrated device, the optical waveguide layer in at least one optical functional region has a spot size conversion structure of a light beam in which the composition wavelength of the optical confinement layer is shortened in the optical waveguide direction. Characteristic semiconductor optical integrated device.
【請求項3】 半導体基板上に形成されたストライプ状
誘電体薄膜に挟まれた光導波路領域へ、光閉じ込め層、
半導体多重量子井戸層等の多層の半導体結晶を選択的に
有機金属気相成長法により結晶成長する工程を含む半導
体光集積素子の製造方法において、該多層の半導体結晶
を選択的に結晶成長する際、各層でV族とIII 族の原料
比であるV/III 比を変えることを特徴とする半導体光
集積素子の製造方法。
3. An optical confinement layer is formed on an optical waveguide region sandwiched between stripe-shaped dielectric thin films formed on a semiconductor substrate.
In a method of manufacturing a semiconductor optical integrated device, the method includes selectively growing a multi-layer semiconductor crystal such as a semiconductor multiple quantum well layer by a metal organic chemical vapor deposition method. A method of manufacturing a semiconductor optical integrated device, wherein a V / III ratio, which is a raw material ratio of a group V and a group III, is changed in each layer.
【請求項4】 光閉じ込め層の成長時のV/III 比が、
多重量子井戸層の成長時のV/III 比よりも大きいこと
を特徴とする請求項3に記載の半導体光集積素子の製造
方法。
4. The V / III ratio during growth of the light confinement layer is as follows:
4. The method according to claim 3, wherein the ratio is larger than the V / III ratio during growth of the multiple quantum well layer.
【請求項5】 半導体基板上に形成されたストライプ状
誘電体膜に挟まれた光導波路領域へ、光閉じ込め層、半
導体多重量子井戸層等の多層の半導体結晶を選択的に有
機金属気相成長法により結晶成長する工程を含む半導体
光集積素子の製造方法において、該多層の半導体結晶を
選択的に結晶成長する際、各層で成長圧力を変えること
を特徴とする半導体光集積素子の製造方法。
5. A metal organic chemical vapor deposition method for selectively forming a multilayer semiconductor crystal such as an optical confinement layer and a semiconductor multiple quantum well layer in an optical waveguide region sandwiched between stripe-shaped dielectric films formed on a semiconductor substrate. A method for manufacturing a semiconductor optical integrated device, comprising a step of growing a crystal by a method, wherein a growth pressure is changed for each layer when selectively growing the multilayer semiconductor crystal.
【請求項6】 光閉じ込め層の成長時の成長圧力が、多
重量子井戸層の成長時の成長圧力よりも大きいことを特
徴とする請求項5に記載の半導体光集積素子の製造方
法。
6. The method of manufacturing a semiconductor optical integrated device according to claim 5, wherein the growth pressure during growth of the optical confinement layer is higher than the growth pressure during growth of the multiple quantum well layer.
【請求項7】 光導波路領域幅が10μm以下であるこ
とを特徴とする請求項3ないし6のいずれかに記載の半
導体光集積素子の製造方法。
7. The method for manufacturing a semiconductor optical integrated device according to claim 3, wherein an optical waveguide region width is 10 μm or less.
【請求項8】 半導体基板がInPであり、結晶成長時
に用いるIII 族原料が、Ga、In、またはAlを含む
有機金属であり、V族原料がAs、P、またはNを含ん
でいることを特徴とする請求項3ないし7のいずれかに
記載の半導体光集積素子の製造方法。
8. The method according to claim 1, wherein the semiconductor substrate is InP, the group III source used for crystal growth is an organic metal containing Ga, In, or Al, and the group V source contains As, P, or N. A method for manufacturing a semiconductor optical integrated device according to any one of claims 3 to 7, wherein:
JP24952696A 1996-09-20 1996-09-20 Semiconductor optical integrated device and manufacturing method thereof Expired - Fee Related JP2924811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24952696A JP2924811B2 (en) 1996-09-20 1996-09-20 Semiconductor optical integrated device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24952696A JP2924811B2 (en) 1996-09-20 1996-09-20 Semiconductor optical integrated device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1098231A true JPH1098231A (en) 1998-04-14
JP2924811B2 JP2924811B2 (en) 1999-07-26

Family

ID=17194302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24952696A Expired - Fee Related JP2924811B2 (en) 1996-09-20 1996-09-20 Semiconductor optical integrated device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2924811B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846967A2 (en) * 1996-12-05 1998-06-10 Nec Corporation Optical semiconductor device and method of fabricating the same
US7046435B2 (en) * 2004-02-19 2006-05-16 Samsung Electronics Co Ltd Reflective semiconductor optical amplifier
KR100842277B1 (en) 2006-12-07 2008-06-30 한국전자통신연구원 Reflective semiconductor optical amplifierR-SOA and reflective superluminescent diodeR-SLD
US9052449B2 (en) 2013-02-25 2015-06-09 Hitachi, Ltd. Light emitting device, manufacturing method thereof, and optical transceiver
US9188953B2 (en) 2011-08-24 2015-11-17 Samsung Electronics Co., Ltd. Acousto-optic device having nanostructure, and optical scanner, optical modulator, and display apparatus using the acousto-optic device
CN110088995A (en) * 2016-12-19 2019-08-02 古河电气工业株式会社 Optical integrating element and optical transmitter module
JPWO2020255565A1 (en) * 2019-06-19 2021-09-13 三菱電機株式会社 Semiconductor optical device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846967A2 (en) * 1996-12-05 1998-06-10 Nec Corporation Optical semiconductor device and method of fabricating the same
EP0846967A3 (en) * 1996-12-05 2000-06-07 Nec Corporation Optical semiconductor device and method of fabricating the same
US6167070A (en) * 1996-12-05 2000-12-26 Nec Corporation Optical semiconductor device and method of fabricating the same
US6383829B1 (en) 1996-12-05 2002-05-07 Nec Corporation Optical semiconductor device and method of fabricating the same
US7046435B2 (en) * 2004-02-19 2006-05-16 Samsung Electronics Co Ltd Reflective semiconductor optical amplifier
US7920322B2 (en) 2006-12-07 2011-04-05 Electronics And Telecommunications Research Institute Reflective semiconductor optical amplifier (R-SOA) with dual buried heterostructure
KR100842277B1 (en) 2006-12-07 2008-06-30 한국전자통신연구원 Reflective semiconductor optical amplifierR-SOA and reflective superluminescent diodeR-SLD
US8363314B2 (en) 2006-12-07 2013-01-29 Electronics And Telecommunications Research Institute Reflective semiconductor optical amplifier (R-SOA) and superluminescent diode (SLD)
US9188953B2 (en) 2011-08-24 2015-11-17 Samsung Electronics Co., Ltd. Acousto-optic device having nanostructure, and optical scanner, optical modulator, and display apparatus using the acousto-optic device
US9052449B2 (en) 2013-02-25 2015-06-09 Hitachi, Ltd. Light emitting device, manufacturing method thereof, and optical transceiver
CN110088995A (en) * 2016-12-19 2019-08-02 古河电气工业株式会社 Optical integrating element and optical transmitter module
US11002909B2 (en) 2016-12-19 2021-05-11 Furukawa Electric Co,. Ltd. Optical integrated device and optical transmitter module
JPWO2020255565A1 (en) * 2019-06-19 2021-09-13 三菱電機株式会社 Semiconductor optical device
CN114008879A (en) * 2019-06-19 2022-02-01 三菱电机株式会社 Semiconductor optical device

Also Published As

Publication number Publication date
JP2924811B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5926493A (en) Optical semiconductor device with diffraction grating structure
JP3104789B2 (en) Semiconductor optical device and method of manufacturing the same
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
JPH10117040A (en) Semiconductor laser element and manufacture of the same
JPH0794833A (en) Semiconductor laser and its manufacturing method
EP0572917B1 (en) Compound semiconductor device and fabrication method of producing the compound semiconductor device
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2001244576A (en) Optical semiconductor device and its manufacturing method
JP3336994B2 (en) Method of manufacturing semiconductor optical waveguide array and semiconductor optical device having array structure
JPH07154024A (en) Semiconductor laser
JP2924811B2 (en) Semiconductor optical integrated device and manufacturing method thereof
US6526087B1 (en) Distributed feedback semiconductor laser
US6084901A (en) Semiconductor laser device
JPH08274295A (en) Manufacture of optical semiconductor device
JP2917913B2 (en) Method for manufacturing semiconductor optical device
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
JPH05327111A (en) Semiconductor laser and its manufacture
JP2002026461A (en) Optical semiconductor device, its manufacturing method, optical device module with optical semiconductor device and optical communication apparatus
JPH0936496A (en) Semiconductor light emitting element and fabrication thereof
JPH01248585A (en) Distributed feedback type semiconductor laser
JP2914235B2 (en) Semiconductor optical device and method of manufacturing the same
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JP2780687B2 (en) Semiconductor optical integrated device and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees