JPH1096621A - Tooth shape evaluation method for bevel gear and its device - Google Patents

Tooth shape evaluation method for bevel gear and its device

Info

Publication number
JPH1096621A
JPH1096621A JP8271842A JP27184296A JPH1096621A JP H1096621 A JPH1096621 A JP H1096621A JP 8271842 A JP8271842 A JP 8271842A JP 27184296 A JP27184296 A JP 27184296A JP H1096621 A JPH1096621 A JP H1096621A
Authority
JP
Japan
Prior art keywords
tooth contact
tooth
pmd
contact position
bevel gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8271842A
Other languages
Japanese (ja)
Other versions
JP3586997B2 (en
Inventor
Eiji Abe
英士 阿部
Yukitoshi Nakada
行俊 中田
Takeo Bando
武夫 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27184296A priority Critical patent/JP3586997B2/en
Publication of JPH1096621A publication Critical patent/JPH1096621A/en
Application granted granted Critical
Publication of JP3586997B2 publication Critical patent/JP3586997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tooth shape evaluation method for bevel gear capable of avoiding judgment by appearance and fully automatically quantitatively evaluating the tooth shape by varying and controlling PMD(pinion mount distance) and a pinion offset value so that a specific tooth contact shape (scare tooth contact) is obtained at the position of specific first tooth contact, then varying and controlling the PMD and the pinion offset value so that a specific tooth contact shape (scare tooth contact) is obtained at the second tooth contact position apart from the first tooth contact position and evaluating the tooth shape from the variation of the PMD and the pinion offset value between the two tooth contact positions. SOLUTION: In this tooth shape evaluation method, PMD and pinion offset value are varied and controlled so that a specific tooth contact shape is obtained at the first tooth contact position X1 and PMD and pinion offset value are varied and controlled so that a specific tooth contact shape is obtained at the second tooth contact position X2 apart from the first tooth contact position X1 for a specific distance. Thus, tooth shape evaluation is made based on the variation of the PMD and pinion offset value between the first and the second tooth contact positions X1 and X2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば自動車用
最終減速歯車(ハイポイドギヤ)など傘歯車(ベベルギ
ヤ)の歯形を評価するような傘歯車の歯形評価方法およ
びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bevel gear tooth profile evaluation method and apparatus for evaluating the tooth profile of a bevel gear (bevel gear) such as a final reduction gear (hypoid gear) for an automobile.

【0002】[0002]

【従来の技術】一般に、図11、図12に示すようなベ
ベルギヤ100とピニオンギヤ101との傘歯車対のP
MD(ピニオン・マウント・ディスタンス)方向、E
(ピニオンオフセット量)方向の相対位置変化により図
13に示す噛合接触痕(つまり歯当り)103が移動す
ることが知られている。
2. Description of the Related Art Generally, a bevel gear pair P of a bevel gear 100 and a pinion gear 101 as shown in FIGS.
MD (pinion mount distance) direction, E
It is known that the meshing contact mark (that is, the tooth contact) 103 shown in FIG. 13 moves due to a relative position change in the (pinion offset amount) direction.

【0003】この特性を利用して特定の歯当り形状(ス
ケア歯当り)が歯面のある2点間を移動するのに要した
相対位置変化量を求めると歯形(歯当りの形状)を次式
により評価することができる。 歯形=ΔE/ΔPMD=(V2−V1)/(H2−H
1) 但し、ΔEはE方向の変化量 ΔPMDはPMD方向の変化量 H1,H2はPMD方向の配置誤差(図7参照) V1,V2はE方向の配置誤差(図7参照)。
Using this characteristic, the relative position change amount required for a specific tooth contact shape (scare tooth contact) to move between two points on the tooth surface is obtained. It can be evaluated by an equation. Tooth profile = ΔE / ΔPMD = (V2-V1) / (H2-H
1) However, ΔE is a change amount in the E direction. ΔPMD is a change amount in the PMD direction. H1 and H2 are arrangement errors in the PMD direction (see FIG. 7). V1 and V2 are arrangement errors in the E direction (see FIG. 7).

【0004】しかし、従来、上述のベベルギヤ100と
ピニオンギヤ101とのセット化された歯形を評価する
には、これら両ギヤ100,101が予め一体的に組合
わされたものを回転させながら、作業者の目視により評
価が実行されていた関係上、正確な評価が不可能で、判
定誤差などが多発する問題点があった。一方、特開平6
−229880号公報に記載の如きかみ合い式歯車回転
誤差検出装置が既に発明されているが、この装置は単に
歯車伝達誤差を検出するものに過ぎず、歯形の評価を行
なうことは不可能である。
However, conventionally, in order to evaluate the set tooth profile of the above-described bevel gear 100 and pinion gear 101, while rotating a gear in which these two gears 100 and 101 are combined in advance, the operator is required to rotate the gear. Due to the fact that the evaluation has been performed visually, there has been a problem that accurate evaluation is impossible, and judgment errors and the like frequently occur. On the other hand,
Although a meshing gear rotation error detecting device as described in JP-A-229880 has already been invented, this device merely detects a gear transmission error and cannot evaluate the tooth profile.

【0005】[0005]

【発明が解決しようとする課題】この発明の請求項1記
載の発明は、特定の歯当り形状(スケア歯当り)が所定
の第1歯当り位置で得られるようにPMD、ピニオンオ
フセット量を変化させて調整し、次に第1歯当り位置よ
りも離反した第2歯当り位置にて特定の歯当り形状(ス
ケア歯当り)が得られるようにPMD、ピニオンオフセ
ット量を変化させて調整し、各歯当り位置間のPMD、
ピニオンオフセット量の変化量により歯形評価を行なう
ことで、目視判断を排除して、歯形の全自動定量評価を
行なうことができる傘歯車の歯形評価方法の提供を目的
とする。
According to the first aspect of the present invention, the PMD and the pinion offset amount are changed so that a specific tooth contact shape (scare tooth contact) can be obtained at a predetermined first tooth contact position. Then, the PMD and the pinion offset amount are changed and adjusted so that a specific tooth contact shape (scare tooth contact) is obtained at the second tooth contact position separated from the first tooth contact position. PMD between each tooth contact position,
An object of the present invention is to provide a bevel gear tooth profile evaluation method capable of performing a fully automatic quantitative evaluation of a tooth profile by performing a tooth profile evaluation based on a change amount of a pinion offset amount, thereby eliminating visual judgment.

【0006】この発明の請求項2記載の発明は、上記請
求項1記載の発明の目的と併せて、上述の第1および第
2の各歯当り位置での特定の歯当り形状(スケア歯当
り)における歯当り位置を画像処理により得ることで、
この画像処理により容易かつ正確に歯当り位置を得るこ
とができる傘歯車の歯形評価方法の提供を目的とする。
In addition to the object of the first aspect of the present invention, the second aspect of the present invention provides a specific tooth contact shape (scare tooth contact) at each of the first and second tooth contact positions. By obtaining the tooth contact position in) by image processing,
An object of the present invention is to provide a bevel gear tooth profile evaluation method capable of easily and accurately obtaining a tooth contact position by this image processing.

【0007】この発明の請求項3記載の発明は、上記請
求項1記載の発明の目的と併せて、特定の歯当りにおけ
るPMDを噛合伝達誤差の測定により得ることで、例え
ば噛合伝達誤差が最小となるポイントを的確に測定し
て、特定の歯当りを正確に検出することができる傘歯車
の歯形評価方法の提供を目的とする。
According to a third aspect of the present invention, in addition to the object of the first aspect, a PMD at a specific tooth contact is obtained by measuring an engagement transmission error, so that, for example, an engagement transmission error is minimized. It is an object of the present invention to provide a bevel gear tooth profile evaluation method capable of accurately measuring a point to be detected and accurately detecting a specific tooth contact.

【0008】この発明の請求項4記載の発明は、PMD
調整手段、ピニオンオフセット量調整手段、画像処理手
段および評価手段を備えることで、従前の目視判断を排
除して、歯形の全自動定量評価を行なうことができると
共に、第1歯当り位置および第2歯当り位置での特定の
形状(スケア歯当り)における歯当り位置を画像処理手
段による画像処理にて求めることで、歯当り位置を容易
かつ正確に求めることができる傘歯車の歯形評価装置の
提供を目的とする。
According to a fourth aspect of the present invention, a PMD
With the provision of the adjusting means, the pinion offset amount adjusting means, the image processing means and the evaluating means, it is possible to perform the full-automatic quantitative evaluation of the tooth profile by eliminating the conventional visual judgment, and to perform the first tooth contact position and the second Provided is a bevel gear tooth profile evaluation device that can easily and accurately determine the tooth contact position by determining the tooth contact position in a specific shape (scare tooth contact) at the tooth contact position by image processing by image processing means. With the goal.

【0009】この発明の請求項5記載の発明は、上記請
求項4記載の発明の目的と併せて、上述の特定の歯当り
におけるPMDを噛合伝達誤差の測定による求める噛合
伝達誤差測定手段を設けて、この測定手段にて例えば噛
合伝達誤差が最小となるポイントを適確に測定して、特
定の歯当りを正確に検出することができる傘歯車の歯形
評価装置の提供を目的とする。
According to a fifth aspect of the present invention, in addition to the object of the fourth aspect of the present invention, there is provided a meshing transmission error measuring means for determining the PMD at the specific tooth contact by measuring the meshing transmission error. It is another object of the present invention to provide a bevel gear tooth profile evaluation device capable of accurately measuring, for example, a point at which a meshing transmission error is minimized by this measuring means and accurately detecting a specific tooth contact.

【0010】[0010]

【課題を解決するための手段】この発明の請求項1記載
の発明は、傘歯車の歯形評価方法であって、特定の歯当
り形状が所定の第1歯当り位置で得られるようにPM
D、ピニオンオフセット量を変化させて調整し、次に上
記第1歯当り位置より所定位置離れた第2歯当り位置に
て特定の歯当り形状が得られるようにPMD、ピニオン
オフセット量を変化させて調整し、上記第1および第2
の各歯当り位置間のPMD、ピニオンオフセット量の変
化量により歯形評価を行なう傘歯車の歯形評価方法であ
ることを特徴とする。
According to a first aspect of the present invention, there is provided a method for evaluating the tooth profile of a bevel gear, wherein a PM contact shape is obtained at a predetermined first contact position.
D, the pinion offset amount is changed and adjusted, and then the PMD and the pinion offset amount are changed so that a specific tooth contact shape is obtained at a second tooth contact position that is a predetermined position away from the first tooth contact position. And adjust the first and second
The present invention is characterized in that it is a method for evaluating the tooth profile of a bevel gear in which the tooth profile is evaluated based on the amount of change in the amount of PMD and pinion offset between each tooth contact position.

【0011】この発明の請求項2記載の発明は、上記請
求項1記載の発明の構成と併せて、上記各歯当り位置で
の特定の歯当り形状における歯当り位置を画像処理によ
り得る傘歯車の歯形評価方法であることを特徴とする。
According to a second aspect of the present invention, in addition to the configuration of the first aspect of the present invention, a bevel gear for obtaining a tooth contact position in a specific tooth contact shape at each tooth contact position by image processing. Characterized in that it is a tooth profile evaluation method.

【0012】この発明の請求項3記載の発明は、上記請
求項1記載の発明の構成と併せて、上記特定の歯当りに
おけるPMDを噛合伝達誤差の測定により得る傘歯車の
歯形評価方法であることを特徴とする。
According to a third aspect of the present invention, there is provided a bevel gear tooth profile evaluation method for obtaining the PMD at the specific tooth contact by measuring a meshing transmission error in addition to the configuration of the first aspect of the present invention. It is characterized by the following.

【0013】この発明の請求項4記載の発明は、傘歯車
の歯形評価装置であって、特定の歯当り形状が所定の第
1歯当り位置で得られるようにPMD、ピニオンオフセ
ット量を変化させて調整すると共に、上記第1歯当り位
置より所定位置離れた第2歯当り位置にて特定の歯当り
形状が得られるようにPMD、ピニオンオフセット量を
変化させて調整するPMD調整手段およびピニオンオフ
セット量調整手段と、第1および第2の各歯当り位置間
のPMD、ピニオンオフセット量の変化量により歯形評
価を行なう評価手段と、上記第1および第2の各歯当り
位置での特定の歯当り形状における歯当り位置を画像処
理により求める画像処理手段とを備えた傘歯車の歯形評
価装置であることを特徴とする。
According to a fourth aspect of the present invention, there is provided a tooth profile evaluation device for a bevel gear, wherein a PMD and a pinion offset amount are changed so that a specific tooth contact shape is obtained at a predetermined first tooth contact position. PMD adjusting means and a pinion offset for adjusting by adjusting the PMD and the pinion offset amount so as to obtain a specific tooth contact shape at a second tooth contact position separated from the first tooth contact position by a predetermined position. Amount adjusting means, evaluation means for evaluating the tooth profile based on the amount of change in the amount of PMD and pinion offset between the first and second tooth contact positions, and specific teeth at the first and second tooth contact positions The present invention is characterized in that the bevel gear tooth profile evaluation device includes image processing means for obtaining a tooth contact position in a contact shape by image processing.

【0014】この発明の請求項5記載の発明は、上記請
求項4記載の発明の構成と併せて、上記特定の歯当りに
おけるPMDを噛合伝達誤差の測定により求める噛合伝
達誤差測定手段を備えた傘歯車の歯形評価装置であるこ
とを特徴とする。
According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect of the present invention, there is provided a meshing transmission error measuring means for determining a PMD at the specific tooth contact by measuring a meshing transmission error. It is a bevel gear tooth profile evaluation device.

【0015】[0015]

【発明の作用及び効果】この発明の請求項1記載の発明
によれば、傘歯車の歯形を評価する場合、まず特定の歯
当り形状が所定の第1歯当り位置で得られるようにPM
D(ピニオン・マウント・ディスタンス)、ピニオンオ
フセット量を変化させて調整し、次に上述の第1歯当り
位置よりも所定位置離れた第2歯当り位置にて特定の歯
当り形状が得られるようにPMD、ピニオンオフセット
量を変化させて調整し、次に上述の第1歯当り位置と第
2歯当り位置との間のPMD、ピニオンオフセット量の
変化量により歯形評価を行なう。このため、従前の目視
判断を排除して、歯形の全自動定量評価を行なうことが
できる効果がある。
According to the first aspect of the present invention, when the tooth profile of the bevel gear is evaluated, first, the PM contact is set so that a specific tooth contact shape is obtained at a predetermined first tooth contact position.
D (pinion mount distance), the pinion offset amount is changed and adjusted, and then a specific tooth contact shape is obtained at a second tooth contact position that is a predetermined position away from the above-described first tooth contact position. Then, the PMD and the pinion offset amount are changed and adjusted, and then the tooth profile is evaluated based on the change amount of the PMD and the pinion offset amount between the first tooth contact position and the second tooth contact position. For this reason, there is an effect that a full automatic quantitative evaluation of the tooth profile can be performed without the conventional visual judgment.

【0016】ここで、上述の歯形はΔE/ΔPMD=
(V2−V1)/(H2−H1)で示される。 但し、ΔEはピニオンオフセット量方向の変化量 ΔPMDはPMD方向の変化量 H1,H2はPMD方向の配置誤差(図7参照) V1,V2はE方向の配置誤差(図7参照) 上式の値が約1.2となることが良好な歯形であると実
験結果により認識されており、1.2以上でも1.2未
満でも歯当り、ギヤノイズともに悪化することが認識さ
れておるので、上記方法により歯形の自動定量評価を実
行することができる。
Here, the above-mentioned tooth profile is ΔE / ΔPMD =
It is represented by (V2-V1) / (H2-H1). Where ΔE is the change amount in the pinion offset amount direction ΔPMD is the change amount in the PMD direction H1 and H2 are the placement errors in the PMD direction (see FIG. 7) V1 and V2 are the placement errors in the E direction (see FIG. 7) It has been recognized from experimental results that a tooth profile of about 1.2 is a good tooth profile. It has been recognized that tooth contact and gear noise are degraded at both 1.2 and less than 1.2. Thus, automatic quantitative evaluation of the tooth profile can be executed.

【0017】この発明の請求項2記載の発明によれば、
上記請求項1記載の発明の効果と併せて、上述の各歯当
り位置つまり第1歯当り位置と第2歯当り位置での特定
の歯当り形状における歯当り位置を画像処理により得る
ので、この画像処理により容易かつ正確に歯当り位置を
得ることができて、歯形評価の自動化を達成することが
できる効果がある。
According to the invention described in claim 2 of the present invention,
In addition to the effect of the first aspect of the present invention, the above-mentioned tooth contact position, that is, the tooth contact position in the specific tooth contact shape at the first tooth contact position and the second tooth contact position is obtained by image processing. There is an effect that a tooth contact position can be easily and accurately obtained by image processing, and automation of tooth profile evaluation can be achieved.

【0018】この発明の請求項3記載の発明によれば、
上記請求項1記載の発明の効果と併せて、上述の特定の
歯当りにおけるPMDを噛合伝達誤差の測定により得る
ので、例えば噛合伝達誤差が最小となるポイントを適確
に測定して、特定の歯当りを正確に検出することができ
る効果がある。
According to the third aspect of the present invention,
In addition to the effect of the first aspect of the present invention, since the PMD at the specific tooth contact is obtained by measuring the mesh transmission error, for example, a point where the mesh transmission error is minimized is accurately measured, There is an effect that tooth contact can be accurately detected.

【0019】この発明の請求項4記載の発明によれば、
上述のPMD調整手段およびピニオンオフセット量調整
手段は、特定の歯当り形状が所定の第1歯当り位置で得
られるようにPMD、ピニオンオフセット量を変化させ
て調整すると共に、上述の第1歯当り位置よりも所定位
置離反した第2歯当り位置にて特定の歯当り形状が得ら
れるようにPMD、ピニオンオフセット量を変化させて
調整する。
According to the invention described in claim 4 of the present invention,
The above-mentioned PMD adjustment means and pinion offset amount adjustment means adjust the PMD and pinion offset amount so as to obtain a specific tooth contact shape at a predetermined first tooth contact position, and adjust the above-mentioned first tooth contact. The PMD and the pinion offset amount are changed and adjusted so that a specific tooth contact shape is obtained at the second tooth contact position that is separated from the position by a predetermined position.

【0020】また上述の評価手段は第1および第2の各
歯当り位置間のPMD、ピニオンオフセット量の変化量
(ΔPMD、ΔE)により歯形評価を行ない、画像処理
手段は上述の第1および第2の各歯当り位置での特定の
歯当り形状における歯当り位置を画像処理により求め
る。この結果、従前の目視判断を排除して、歯形の全自
動定量評価を行なうことができると共に、歯当り位置を
画像処理手段による画像処理にて求めるので、歯当り位
置を容易かつ正確に求めることができる効果がある。
The above-mentioned evaluation means performs the tooth profile evaluation based on the change amount (ΔPMD, ΔE) of the PMD and the pinion offset amount between the first and second contact positions, and the image processing means performs the above-described first and second tooth positions. The tooth contact position in the specific tooth contact shape at each tooth contact position of No. 2 is obtained by image processing. As a result, it is possible to perform the full-automatic quantitative evaluation of the tooth profile by eliminating the conventional visual judgment, and to obtain the tooth contact position easily and accurately because the tooth contact position is obtained by image processing by the image processing means. There is an effect that can be.

【0021】この発明の請求項5記載の発明によれば、
上記請求項4記載の発明の効果と併せて、上述の噛合伝
達誤差測定手段は、特定の歯当りにおけるPMDを噛合
伝達誤差の測定により求めるので、この測定手段にて例
えば噛合伝達誤差が最小となるポイントを適確に測定し
て、特定の歯当りを正確に検出することができる効果が
ある。
According to the invention described in claim 5 of the present invention,
In addition to the effect of the fourth aspect of the present invention, the above-mentioned meshing transmission error measuring means obtains the PMD at a specific tooth contact by measuring the meshing transmission error. There is an effect that a certain point can be accurately measured to accurately detect a specific tooth contact.

【0022】[0022]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。本発明の傘歯車の歯形評価方法の説明に先立っ
て、まず傘歯車の歯形評価装置の構成を図1乃至図4に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. Prior to the description of the bevel gear tooth profile evaluation method of the present invention, first, the configuration of a bevel gear tooth profile evaluation device will be described with reference to FIGS.

【0023】図1は傘歯車の歯形評価装置を示す側面図
で、装置本体1上に2本の平行なガイドレール2,2を
介してPMD方向(H軸方向)へ移動可能なスライダ3
を設け、このスライダ3をPMD調整手段としてのPM
Dサーボモータ4でPMD方向へ移動すべく構成してい
る。具体的にはPMDサーボモータ4の回転軸にスクリ
ュを連結し、スライダ3のネジ孔にスクリュを螺合する
ことで、PMDサーボモータ4の回転時にスライダ3を
PMD方向へ移動するように構成すると共に、移動量を
リニアスケールにて検出して指令値に一致するようにフ
ィードバックすべく構成している。
FIG. 1 is a side view showing an apparatus for evaluating the tooth profile of a bevel gear, and a slider 3 movable on the apparatus main body 1 via two parallel guide rails 2 and 2 in the PMD direction (H-axis direction).
And the slider 3 is used as a PMD adjusting means.
The D servo motor 4 is configured to move in the PMD direction. Specifically, a screw is connected to a rotation shaft of the PMD servomotor 4 and a screw is screwed into a screw hole of the slider 3 to move the slider 3 in the PMD direction when the PMD servomotor 4 rotates. At the same time, the moving amount is detected on a linear scale and fed back so as to match the command value.

【0024】上述のスライダ3上には図1、図2に示す
ように一対のガイド部材5,5を離間状に立設し、これ
ら一対のガイド部材5,5間にはE方向(ピニオンオフ
セット両の方向)に移動可能に支持されたギヤアーバコ
ラム6を設け、このギヤアーバコラム6をピニオンオフ
セット量調整手段としてのサーボモータ7でE方向(V
軸方向)へ移動すべく構成している。具体的にはサーボ
モータ7の回転軸にスクリュ8を連結し、ギヤアーバコ
ラム6のネジ孔にスクリュ8を螺合することで、サーボ
モータ7の回転時にギヤアーバコラム6をE方向へ移動
するように構成すると共に、移動量をリニアスケールに
て検出して指令値に一致するようにフィードバックすべ
く構成している。
As shown in FIGS. 1 and 2, a pair of guide members 5 and 5 are erected on the slider 3 as described above, and between the pair of guide members 5 and 5 is a direction E (pinion offset). A gear arbor column 6 movably supported in both directions is provided, and the gear arbor column 6 is moved in a direction E (V) by a servomotor 7 as a pinion offset amount adjusting means.
(Axial direction). Specifically, the screw 8 is connected to the rotation shaft of the servomotor 7 and the screw 8 is screwed into the screw hole of the gear arbor column 6 to move the gear arbor column 6 in the E direction when the servomotor 7 rotates. In addition to such a configuration, the moving amount is detected on a linear scale and is fed back so as to match the command value.

【0025】また上述のギヤアーバコラム6はE方向の
適宜位置に置いて油圧クランプ装置もしくはエアクラン
プ装置などのクランプ手段にて解除可能にクランプされ
る。
The above-mentioned gear arbor column 6 is placed at an appropriate position in the direction E and is releasably clamped by a clamping means such as a hydraulic clamping device or an air clamping device.

【0026】上述のギヤアーバコラム6は図1、図4に
示すようにモータ9、動力伝達機構10、ロータリエン
コーダ11、回転軸12、ギヤ取付部13を備え、この
ギヤ取付部13に傘歯車対の一方としてのベベルギヤ1
4を取付ける。
The above-mentioned gear arbor column 6 is provided with a motor 9, a power transmission mechanism 10, a rotary encoder 11, a rotary shaft 12, and a gear mounting portion 13 as shown in FIGS. Bevel gear 1 as one of the pair
4 Install.

【0027】一方、図1においてPMD方向と直交する
横方向(矢印a方向)に摺動固定可能なピニオンアーバ
コラム15を設けている。このピニオンアーバコラム1
5は図1、図4に示すようにモータ16、動力伝達機構
17、ロータリエンコーダ18、ピニオンギヤ取付部を
備え、このピニオンギヤ取付部にピニオンギヤ19を取
付ける。
On the other hand, in FIG. 1, a pinion arbor column 15 which can be slidably fixed in a lateral direction (direction of arrow a) orthogonal to the PMD direction is provided. This pinion arbor column 1
5 includes a motor 16, a power transmission mechanism 17, a rotary encoder 18, and a pinion gear mounting portion, as shown in FIGS. 1 and 4, and a pinion gear 19 is mounted on the pinion gear mounting portion.

【0028】上述のギヤアーバコラム6のトップデッキ
にはL字状の支持部材20等を介してエアシリンダ21
を取付け、このエアシリンダ21の可動部22にはCC
Dカメラ等の撮像手段(以下単にカメラと略記する)2
3を取付けて、画像取込み時にのみエアシリンダ21で
カメラ23を下動(図1の仮想線α参照)させ、このカ
メラ23で図3に示す撮像位置βの画像を撮像すべく構
成している。
An air cylinder 21 is provided on the top deck of the gear arbor column 6 via an L-shaped support member 20 or the like.
Is attached to the movable part 22 of the air cylinder 21.
Imaging means such as a D camera (hereinafter simply referred to as a camera) 2
3, the camera 23 is moved downward by the air cylinder 21 (see the virtual line α in FIG. 1) only at the time of image capturing, and the camera 23 captures an image at the image capturing position β shown in FIG. .

【0029】つまり、上述のカメラ23は、ベベルギヤ
14とピニオンギヤ19とが噛合した状態下においてベ
ベルギヤ14の中心から開角θだけオフセットした非噛
合部位の画像を撮像する。ここで、上述の開角θは約3
0度に設定される。なお、このカメラ23は図4に示す
如くリバース側カメラ23Rとドライブ側カメラ23D
とを備えている。
That is, the camera 23 captures an image of a non-meshed portion offset from the center of the bevel gear 14 by the opening angle θ in a state where the bevel gear 14 and the pinion gear 19 are meshed. Here, the above-mentioned opening angle θ is about 3
Set to 0 degrees. The camera 23 has a reverse camera 23R and a drive camera 23D as shown in FIG.
And

【0030】次に図4を参照して傘歯車の歯形評価装置
の制御回路の構成について説明する。モータ制御部24
はモータ9,16、サーボモータ4,7を駆動制御する
が、ピニオン駆動用のモータ16は加速時に駆動用とし
て作用し、減速時にブレーキ用として作用する。また負
荷付勢用のモータ9は加速時に制動用として作用し、減
速時に駆動用として作用する。
Next, the configuration of a control circuit of the bevel gear tooth profile evaluation device will be described with reference to FIG. Motor control unit 24
Drives and controls the motors 9 and 16 and the servo motors 4 and 7, while the pinion drive motor 16 acts as a drive during acceleration and acts as a brake during deceleration. The load urging motor 9 acts as a brake during acceleration and acts as a drive during deceleration.

【0031】ロータリエンコーダ11,18は噛合伝達
誤差を得るために必要なパルス信号を次段の補正部25
に出力する。上述の補正部25は増幅器26,27、逓
倍部28.29、歯数比補正部30,31を備え、ピニ
オンギヤ19側のロータリエンコーダ18出力は増幅器
26で増幅された後に、逓倍部28で逓倍処理され、次
の歯数比補正部30でベベルギヤ14の歯数Z2の逆数
つまり(1/Z2)が乗算される。
The rotary encoders 11 and 18 transmit pulse signals necessary for obtaining the meshing transmission error to the correction unit 25 in the next stage.
Output to The correction unit 25 includes amplifiers 26 and 27, a multiplication unit 28.29, and a gear ratio correction unit 30 and 31. The output of the rotary encoder 18 on the pinion gear 19 side is amplified by the amplifier 26 and then multiplied by the multiplication unit 28. The bevel gear 14 is multiplied by the reciprocal of the number of teeth Z2 of the bevel gear 14, that is, (1 / Z2).

【0032】ベベルギヤ14側のロータリエンコーダ1
1出力は増幅器27で増幅された後に、逓倍部29で逓
倍処理され、次の歯数比補正部31でピニオンギヤ19
の歯数Z1の逆数つまり(1/Z1)が乗算される。こ
のようにして、パルスが揃えられた信号は位相差演算部
32に入力され、この位相差演算部32にてピニオン回
転角とベベルギヤ回転角との位相差が演算される。
Rotary encoder 1 on bevel gear 14 side
The one output is amplified by the amplifier 27, then multiplied by the multiplying unit 29, and then output to the pinion gear 19 by the next gear ratio correcting unit 31.
Is multiplied by the reciprocal of the number of teeth Z1, ie, (1 / Z1). The signal in which the pulses are aligned in this manner is input to the phase difference calculator 32, which calculates the phase difference between the pinion rotation angle and the bevel gear rotation angle.

【0033】上述の位相差演算部32の次段にはFFT
アナライザ33(ファースト・フーリエ・トランスファ
・アナライザ)が接続され、このFFTアナライザ33
ではモータ16が一定回転しないことに起因して生ずる
噛み合い一次成分をフーリエ変換して、ピニオン回転角
に対するベベルギヤ回転角の特性を直線化すべく構成
し、このFFTアナライザ33の出力段に噛合伝達誤差
に相当する信号を得る。この噛合伝達誤差の信号はCP
U34に入力される。一方、ピニオンギヤ19の軸の近
傍には加速度検出器35を配置し、その出力を増幅器3
6を介してFFTアナライザ33と打痕演算部37に出
力すべく構成している。
The next stage of the above-mentioned phase difference calculation unit 32 has an FFT
An analyzer 33 (first Fourier transfer analyzer) is connected, and the FFT analyzer 33
In this configuration, the primary component of the meshing caused by the motor 16 not rotating at a constant speed is Fourier-transformed to linearize the characteristic of the bevel gear rotation angle with respect to the pinion rotation angle. Obtain the corresponding signal. The signal of this meshing transmission error is CP
It is input to U34. On the other hand, an acceleration detector 35 is arranged near the axis of the pinion gear 19, and its output is
6 to be output to the FFT analyzer 33 and the dent calculating section 37.

【0034】上述のCPU34は噛合伝達誤差の信号入
力に基づいてプロッタ38(plotter 、直線グラフ、図
形を描く装置)、プリンタ39を駆動制御すると共に、
インタフェース40を介してモータ制御部24、V,H
位置表示部41、回転数表示部42、トルク表示部43
を駆動制御する。
The CPU 34 controls the driving of a plotter 38 (plotter, a device for drawing a straight line graph, a figure) and a printer 39 based on the signal input of the mesh transmission error.
The motor control unit 24, V, H via the interface 40
Position display section 41, rotation number display section 42, torque display section 43
Drive control.

【0035】また、上述のカメラ23で撮像された画像
信号は画像処理演算部44に送られ、ここで画像処理演
算されたデータはCPU34に入力される。一方、カメ
ラ23昇降用のエアシリンダ21はシリンダコントロー
ルユニット45により昇降制御される。
The image signal picked up by the camera 23 is sent to the image processing / calculating section 44, and the data subjected to the image processing / calculating is input to the CPU 34. On the other hand, the vertical movement of the camera 23 is controlled by a cylinder control unit 45.

【0036】ここで、PMD調整手段としてのPMDサ
ーボモータ4およびピニオンオフセット量調整手段とし
てのサーボモータ7は、特定の歯当り形状(スケア歯当
り)が所定の第1歯当り位置x1(図7参照)で得られ
るようにPMD、Eを変化させて調整すると共に、上述
の第1歯当り位置x1より所定位置離れた第2歯当り位
置x2(図7参照)にて特定の歯当り形状(スケア歯当
り)が得られるようにPMD、Eを変化させて調整す
る。なおx1=12〜15mm、x2=20mmに予め設定
する。
Here, the PMD servo motor 4 as the PMD adjusting means and the servo motor 7 as the pinion offset amount adjusting means have a specific tooth contact shape (scare tooth contact) having a predetermined first tooth contact position x1 (FIG. 7). In addition to changing the PMD and E so as to obtain the same, the specific tooth contact shape (see FIG. 7) at the second tooth contact position x2 (see FIG. 7) away from the first tooth contact position x1 by a predetermined position. PMD and E are changed and adjusted so as to obtain (scare tooth contact). Note that x1 = 12 to 15 mm and x2 = 20 mm are set in advance.

【0037】また図4に示す各要素11,18,25〜
33で噛合伝達誤差測定手段46を構成し、この噛合伝
達誤差測定手段46は特定の歯当り(スケア歯当り)に
おけるPMDを噛合伝達誤差の測定により求める。さら
に、上述のCPU34は、第1歯当り位置x1および第
2歯当り位置x2での特定の歯当り形状(スケア歯当
り)における歯当り位置を画像処理により求める画像処
理手段(図5に示すフローチャートの第3ステップS3
および第8ステップS8参照)と、第1歯当り位置x1
および第2歯当り位置x2間のPMD、Eの変化量(Δ
PMD、ΔE)により歯形評価を行なう評価手段(図5
に示すフローチャートの第10ステップS10参照)と
を兼ねる。
Each of the elements 11, 18, 25- shown in FIG.
The meshing transmission error measuring means 46 is constituted by 33, and the meshing transmission error measuring means 46 obtains the PMD at a specific tooth contact (scare tooth contact) by measuring the meshing transmission error. Further, the above-mentioned CPU 34 performs image processing means for obtaining the tooth contact position in the specific tooth contact shape (scare tooth contact) at the first tooth contact position x1 and the second tooth contact position x2 by image processing (flow chart shown in FIG. 5). Of the third step S3
And the eighth step S8), and the first tooth contact position x1
And the amount of change in PMD, E between the second tooth contact position x2 (Δ
Evaluation means (PMD, ΔE) for evaluating the tooth profile (FIG. 5)
(See the tenth step S10 in the flowchart shown in FIG. 3).

【0038】次に図5に示すフローチャート、並びに図
8に示すフローチャートを参照して、傘歯車の歯形評価
方法について説明する。第1ステップS1で、図1、図
3に示す如くベベルギヤ14とピニオンギヤ19とを装
置に取付けて、これら両ギヤ14,19を噛合わせる。
Next, a method for evaluating the tooth profile of the bevel gear will be described with reference to the flowchart shown in FIG. 5 and the flowchart shown in FIG. In the first step S1, the bevel gear 14 and the pinion gear 19 are attached to the device as shown in FIGS. 1 and 3, and these two gears 14, 19 are meshed.

【0039】次に第2ステップS2で、図4の噛合伝達
誤差測定手段46により傘歯車対の噛合伝達誤差(図6
参照)を測定し、特定歯当り(スケア歯当り)のPMD
つまり噛合伝達誤差が最小となるポイントを得る。次に
第3ステップS3で、エアシリンダ21の可動部22お
よびカメラ23を図1の仮想線α位置に下降させて、カ
メラ23で図3の撮像位置βの画像を撮像して、特定歯
当り形状(スケア歯当り)における歯当り位置を画像2
値化処理により得る(但し、詳細については図8のフロ
ーチャートを参照して後述する)。
Next, in a second step S2, the meshing transmission error of the bevel gear pair (FIG. 6) is measured by the meshing transmission error measuring means 46 of FIG.
PMD of specific tooth (scare tooth contact)
That is, a point at which the meshing transmission error is minimized is obtained. Next, in a third step S3, the movable part 22 of the air cylinder 21 and the camera 23 are lowered to the position of the imaginary line α in FIG. 1, and the image of the imaging position β in FIG. Image 2 shows the tooth contact position in the shape (scare tooth contact)
It is obtained by a binarization process (however, details will be described later with reference to the flowchart of FIG. 8).

【0040】次に第4ステップS4で、特定歯当り形状
における歯当り位置が図7に示す特定位置としての第1
歯当り位置x1か否かを判定し、NO判定時には第5ス
テップS5に移行する一方、YES判定時には第1歯当
り位置x1におけるPMD=H1、E=V1のデータを
RAM等の記憶手段に記憶させた後に別の第6ステップ
S6に移行する。
Next, in a fourth step S4, the tooth contact position in the specific tooth contact shape is set to the first position as the specific position shown in FIG.
It is determined whether or not the tooth contact position is x1. When the determination is NO, the process proceeds to the fifth step S5. On the other hand, when the determination is YES, the data of PMD = H1, E = V1 at the first tooth contact position x1 is stored in storage means such as a RAM. After that, the process proceeds to another sixth step S6.

【0041】上述の第5ステップS5で、CPU34は
データベースにより第1歯当り位置x1へのPMD、E
移動量を算出し、インタフェース40、モータ制御部2
4および各サーボモータ4,7を制御して、傘歯車対を
移動させる。この実施例では各サーボモータ4,7によ
りベベルギヤ14のみをPMD方向、E方向に移動させ
た後に前述の第2ステップS2にリターンする。
In the above-mentioned fifth step S5, the CPU 34 determines the PMD, E to the first tooth contact position x1 based on the database.
The movement amount is calculated, and the interface 40, the motor control unit 2
4 and the servomotors 4 and 7 are controlled to move the bevel gear pair. In this embodiment, only the bevel gear 14 is moved in the PMD direction and the E direction by the servomotors 4 and 7, and then the process returns to the above-described second step S2.

【0042】一方、上述の第4ステップS4で、特定歯
当り形状における歯当り位置が第1歯当り位置x1であ
るとYES判定されると次の第6ステップS6で、CP
U34はデータベースにより特定位置としての第2歯当
り位置x2(但し、第1歯当り位置x1より離れた位
置)へのPMD、E移動量を算出し、インタフェース4
0、モータ制御部24および各サーボモータ4,7を制
御してベベルギヤ14を移動させる。
On the other hand, if it is determined in the fourth step S4 that the tooth contact position in the specific tooth contact shape is the first tooth contact position x1, the control proceeds to the next sixth step S6 in which the CP is determined.
U34 calculates the amount of PMD and E movement to the second tooth contact position x2 as a specific position (however, a position distant from the first tooth contact position x1) from the database, and
0, the bevel gear 14 is moved by controlling the motor control unit 24 and the servomotors 4 and 7.

【0043】次に第7ステップS7で、図4の噛合伝達
誤差測定手段46により傘歯車対の噛合伝達誤差(図6
参照)を測定し、特定歯当り(スケア歯当り)のPMD
つまり噛合伝達誤差が最小となるポイントを得る。次に
第8ステップS8で、エアシリンダ21の可動部22お
よびカメラ23を図1の仮想線α位置に再び下降させ
て、カメラ23で図3の撮像位置βの画像を撮像して、
特定歯当り形状(スケア歯当り)における歯当り位置を
画像2値化処理により得る(但し、詳細については図8
のフローチャートを参照して後述する)。
Next, in a seventh step S7, the meshing transmission error (FIG. 6) of the bevel gear pair is measured by the meshing transmission error measuring means 46 of FIG.
PMD of specific tooth (scare tooth contact)
That is, a point at which the meshing transmission error is minimized is obtained. Next, in an eighth step S8, the movable part 22 of the air cylinder 21 and the camera 23 are lowered again to the position of the imaginary line α in FIG. 1, and the image of the imaging position β in FIG.
The tooth contact position in the specific tooth contact shape (scare tooth contact) is obtained by image binarization processing (for details, see FIG. 8).
Will be described later with reference to the flowchart of FIG.

【0044】次に第9ステップS9で特定歯当り形状に
おける歯当り位置が図7に示す特定位置としての第2歯
当り位置x2か否かを判定し、NO判定時には第6ステ
ップS6にリターンして各ステップS6,S7,S8で
の処理を繰返す一方、YES判定時には第2歯当り位置
x2におけるPMD=H2、E=V2のデータをRAM
等の記憶手段に記憶させた後に次の第10ステップS1
0に移行する。
Next, in a ninth step S9, it is determined whether or not the tooth contact position in the specific tooth contact shape is the second tooth contact position x2 as the specific position shown in FIG. 7. If NO, the process returns to the sixth step S6. On the other hand, when the determination is YES, the data of PMD = H2 and E = V2 at the second tooth contact position x2 is stored in the RAM when the determination of YES is made.
After storing in the storage means such as the following tenth step S1
Move to 0.

【0045】この第10ステップS10で、CPU34
は2点x1,x2間の移動に要した相対位置変化量(Δ
E=V2−V1、ΔPMD=H2−H1)を算出し、 ΔE/ΔPMD=(V2−X1)/(H2−H1) 上式により歯形評価を実行すると共に、上式の計算値を
表示する。
In the tenth step S10, the CPU 34
Is the relative position change amount (Δ) required for the movement between the two points x1 and x2.
E = V2−V1, ΔPMD = H2−H1), ΔE / ΔPMD = (V2−X1) / (H2−H1) Tooth profile evaluation is executed by the above equation, and the calculated value of the above equation is displayed.

【0046】次に図8のフローチャートを参照して画像
2値化処理について説明する。この図8のフローチャー
トは先に述べた図5のフローチャートにおける第3ステ
ップS3、第8ステップS8での処理に相当するサブル
ーチンである。第1ステップS11で、CPU34はカ
メラ23からの画像の取込みを実行し、次の第2ステッ
プS12で、CPU34はフィルタ処理により濃淡画像
のノイズを除去する。
Next, the image binarization processing will be described with reference to the flowchart of FIG. The flowchart in FIG. 8 is a subroutine corresponding to the processing in the third step S3 and the eighth step S8 in the flowchart in FIG. 5 described above. In a first step S11, the CPU 34 captures an image from the camera 23, and in a next second step S12, the CPU 34 removes noise of the gray image by a filtering process.

【0047】次に第3ステップS13で、CPU34は
歯筋方向、歯形方向の形状エッジを抽出する。(図9参
照)。次に第4ステップS14で、CPU34は歯筋方
向、歯形方向の基準ラインおよび交点を算出する(図9
参照)。この第3、第4ステップS13,S14での処
理は歯面の位置を画面上で認識するための処理である。
Next, in a third step S13, the CPU 34 extracts shape edges in the tooth trace direction and the tooth profile direction. (See FIG. 9). Next, in a fourth step S14, the CPU 34 calculates a reference line and an intersection in the tooth trace direction and the tooth profile direction (FIG. 9).
reference). The processing in the third and fourth steps S13 and S14 is processing for recognizing the position of the tooth surface on the screen.

【0048】次に第5ステップS15で、CPU34は
歯当り検出領域の上限ライン、下限ラインを設定する
(図9参照)。次に第6ステップS16で、CPU34
は歯当り抽出用のしきい値算出ウインドを設定する。
(図9参照)。次に第7ステップS17で、CPU34
は2値化処理に必要な歯当り抽出用しきい値を算出す
る。
Next, in a fifth step S15, the CPU 34 sets an upper limit line and a lower limit line of the tooth contact detection area (see FIG. 9). Next, in a sixth step S16, the CPU 34
Sets a threshold calculation window for tooth contact extraction.
(See FIG. 9). Next, in a seventh step S17, the CPU 34
Calculates the threshold value for tooth contact extraction necessary for the binarization process.

【0049】次に第8ステップS18で、CPU34は
上述のしきい値により歯当り部(明部)をハイレベル信
号、非歯当り部(暗部)をローレベル信号に2値化し、
ノイズを除去すると共に、ラベリング処理を行なって歯
当り部b(図9参照)を抽出する。次に第9ステップS
19で、CPU34は特徴量を検出する。具体的には歯
当り部bの重心位置を計算により求める。
Next, in an eighth step S18, the CPU 34 binarizes the tooth contact portion (bright portion) into a high level signal and the non-tooth contact portion (dark portion) into a low level signal according to the above-described threshold value.
The noise is removed and a labeling process is performed to extract a tooth contact portion b (see FIG. 9). Next, the ninth step S
At 19, the CPU 34 detects the feature amount. Specifically, the position of the center of gravity of the tooth contact portion b is obtained by calculation.

【0050】次に第10ステップS20で、CPU34
は重心位置の歯筋、歯形に対する直交距離(トウ部から
の距離)を算出することで、図7に示す歯当り位置x
1,x2に相当する値が求められる。この図8に示すサ
ブルーチンでの処理が図5に示すメインルーチンの処理
に反映され、第10ステップS10(図5参照)にて歯
形評価が実行される。
Next, in a tenth step S20, the CPU 34
Calculates the orthogonal distance (distance from the toe portion) to the tooth trace and the tooth profile at the center of gravity, and calculates the tooth contact position x shown in FIG.
A value corresponding to 1, x2 is determined. The processing in the subroutine shown in FIG. 8 is reflected in the processing of the main routine shown in FIG. 5, and the tooth profile evaluation is executed in the tenth step S10 (see FIG. 5).

【0051】なお、図10に示す工程図を参照して傘歯
車の歯切からOK品認定処理までの工程について略記す
ると、第1工程S31で傘歯車が歯切され、第2工程S
32で傘歯車に熱処理が施され、第3工程S33で傘歯
車にラップ(lapping )処理が施され、第4工程S34
で抜き取り検査により傘歯車対の噛合伝達誤差測定チェ
ック、画像処理によるV(ピニオンオフセット量),H
(PMD)のチェックが実行(図5、図8の各フローチ
ャート参照)され、評価OK時には第5工程S35でO
K品であると認定され、評価NG時には第6工程S36
で3次元測定器を用いて歯面を測定した後に、第7工程
(S37)で歯切セッティング修正を行なうか或はラッ
プセッティング修正を行なうかが判定され、ラップ判定
時には第3工程S33のラッピング処理へフィードバッ
クされ、歯切判定時には第1工程S31の歯切処理へフ
ィードバックされる。
The steps from the cutting of the bevel gear to the OK product qualification process will be briefly described with reference to the process chart shown in FIG. 10. The bevel gear is cut in the first step S 31, and the second step S 31
At 32, the bevel gear is subjected to a heat treatment, and at a third step S33, the bevel gear is subjected to a lapping process, and at a fourth step S34.
Checking the transmission error of the bevel gear pair by sampling inspection, V (Pinion offset), H by image processing
(PMD) is checked (see the flowcharts in FIGS. 5 and 8), and when the evaluation is OK, O is set in the fifth step S35.
It is determined that the product is a K product.
After the tooth surface is measured using the three-dimensional measuring device in step 7, it is determined whether the gear cutting setting correction or the lap setting correction is to be performed in the seventh step (S37). When the lap is determined, the lapping in the third step S33 is performed. This is fed back to the processing, and is fed back to the gear cutting processing in the first step S31 when the gear cutting is determined.

【0052】以上要するに本実施例の傘歯車の歯形評価
方法によれば、傘歯車の歯形を評価する場合、まず特定
の歯当り形状(スケア歯当り)が所定の第1歯当り位置
x1で得られるようにPMD(ピニオン・マウント・デ
ィスタンス)、ピニオンオフセット量を変化させて調整
し、次に上述の第1歯当り位置x1よりも所定位置離れ
た第2歯当り位置x2にて特定の歯当り形状(スケア歯
当り)が得られるようにPMD、ピニオンオフセット量
を変化させて調整し、次に上述の第1歯当り位置x1と
第2歯当り位置x2との間のPMD、ピニオンオフセッ
ト量の変化量により歯形評価を行なう。このため、従前
の目視判断を排除して、歯形の全自動定量評価を行なう
ことができる効果がある。
In short, according to the bevel gear tooth profile evaluation method of this embodiment, when evaluating the bevel gear tooth profile, first, a specific tooth contact shape (scare tooth contact) is obtained at a predetermined first tooth contact position x1. The pinion mount distance (PMD) and the pinion offset amount are adjusted so as to be adjusted, and then a specific tooth contact is made at a second tooth contact position x2 which is a predetermined position away from the above-mentioned first tooth contact position x1. The PMD and the pinion offset amount are changed and adjusted so as to obtain the shape (scare tooth contact), and then the PMD and the pinion offset amount between the first tooth contact position x1 and the second tooth contact position x2 are adjusted. The tooth profile is evaluated based on the amount of change. For this reason, there is an effect that a full automatic quantitative evaluation of the tooth profile can be performed without the conventional visual judgment.

【0053】上述の歯形はΔE/ΔPMD=(V2−V
1)/(H2−H1)で示される。
The above-described tooth profile is ΔE / ΔPMD = (V2−V
1) / (H2-H1).

【0054】上式の値が約1.2となることが良好な歯
形であると実験結果により認識されており、1.2以上
でも1.2未満でも歯当り、ギヤノイズともに悪化する
ことが認識されておるので、上記方法により歯形の自動
定量評価を実行することができる。
It has been recognized by experiment results that the value of the above equation is about 1.2, which is a good tooth profile. It is recognized that the tooth contact and gear noise are deteriorated when the value is 1.2 or more and less than 1.2. Therefore, automatic quantitative evaluation of the tooth profile can be executed by the above method.

【0055】また、上述の各歯当り位置つまり第1歯当
り位置x1と第2歯当り位置x2での特定の歯当り形状
(スケア歯当り)における歯当り位置を画像処理により
得るので、この画像処理により容易かつ正確に歯当り位
置を得ることができて、歯形評価の自動化を達成するこ
とができる効果がある。
Further, since the tooth contact position in the specific tooth contact shape (scare tooth contact) at each of the above-mentioned tooth contact positions, that is, the first tooth contact position x1 and the second tooth contact position x2, is obtained by image processing, this image is obtained. There is an effect that the contact position can be easily and accurately obtained by the processing, and automation of the tooth profile evaluation can be achieved.

【0056】さらに、上述の特定の歯当りにおけるPM
Dを噛合伝達誤差の測定により得るので、例えば噛合伝
達誤差が最小となるポイントを適確に測定して、特定の
歯当りを正確に検出することができる効果がある。
Further, the PM at the specific tooth contact described above is determined.
Since D is obtained by measuring the meshing transmission error, there is an effect that, for example, a point where the meshing transmission error is minimized is accurately measured, and a specific tooth contact can be accurately detected.

【0057】加えて、本実施例の傘歯車の波形評価装置
によれば、上述のPMD調整手段(PMDサーボモータ
4参照)およびピニオンオフセット量調整手段(サーボ
モータ7参照)は、特定の歯当り形状(スケア歯当り)
が所定の第1歯当り位置x1で得られるようにPMD、
Eを変化させて調整すると共に、上述の第1歯当り位置
x1よりも所定位置離反した第2歯当り位置x2にて特
定の歯当り形状(スケア歯当り)が得られるようにPM
D、Eを変化させて調整する。
In addition, according to the bevel gear waveform evaluation apparatus of the present embodiment, the above-described PMD adjusting means (see the PMD servo motor 4) and the pinion offset amount adjusting means (see the servo motor 7) are provided with a specific tooth contact. Shape (Scare tooth contact)
PMD so that is obtained at the predetermined first contact position x1.
E is changed and adjusted, and the PM is adjusted so that a specific tooth contact shape (scare tooth contact) is obtained at the second tooth contact position x2 which is separated from the first tooth contact position x1 by a predetermined position.
Adjust by changing D and E.

【0058】また上述の評価手段S10は第1および第
2の各歯当り位置x1,x2間のPMD、Eの変化量
(ΔPMD、ΔE)により歯形評価を行ない、画像処理
手段S3,S8は上述の第1および第2の各歯当り位置
x1,x2での特定の歯当り形状(スケア歯当り)にお
ける歯当り位置を画像処理により求める。この結果、従
前の目視判断を排除して、歯形の全自動定量評価を行な
うことができると共に、歯当り位置を画像処理手段S
3,S8による画像処理にて求めるので、歯当り位置を
容易かつ正確に求めることができる効果がある。
The evaluation means S10 evaluates the tooth profile based on the amount of change (.DELTA.PMD, .DELTA.E) in PMD and E between the first and second tooth contact positions x1 and x2, and the image processing means S3 and S8 perform the above-described evaluation. The tooth contact position in the specific tooth contact shape (scare tooth contact) at the first and second tooth contact positions x1 and x2 is determined by image processing. As a result, it is possible to perform the full-automatic quantitative evaluation of the tooth profile by eliminating the conventional visual judgment and to determine the tooth contact position by the image processing means S.
3, since it is obtained by image processing in S8, there is an effect that the contact position can be easily and accurately obtained.

【0059】しかも、上述の噛合伝達誤差測定手段46
は、特定の歯当りにおけるPMDを噛合伝達誤差の測定
により求めるので、この測定手段46にて例えば噛合伝
達誤差が最小となるポイントを適確に測定して、特定の
歯当りを正確に検出することができる効果がある。
In addition, the above-described meshing transmission error measuring means 46
Calculates the PMD at a specific tooth contact by measuring the meshing transmission error. Therefore, the measuring means 46 accurately measures, for example, a point at which the meshing transmission error is minimized, and accurately detects the specific tooth contact. There is an effect that can be.

【0060】この発明の構成と、上述の実施例におい
て、この発明の傘歯車は、実施例のベベルギヤ14に対
応し、以下同様に、特定の歯当り形状は、スケア歯当り
に対応し、PMD調整手段は、PMDサーボモータ4に
対応し、ピニオンオフセット量調整手段は、サーボモー
タ7に対応し、評価手段は、CPU制御による第10ス
テップS10に対応し、画像処理手段は、CPU制御に
よる各ステップS3,S8に対応するもこの発明は、上
述の実施例の構成のみに限定されるものではない。
In the configuration of the present invention and the above-described embodiment, the bevel gear of the present invention corresponds to the bevel gear 14 of the embodiment. Similarly, the specific tooth contact shape corresponds to the scare tooth contact, and the PMD The adjusting means corresponds to the PMD servomotor 4, the pinion offset amount adjusting means corresponds to the servomotor 7, the evaluating means corresponds to the tenth step S10 under CPU control, and the image processing means corresponds to each of the CPU controlling steps. Although corresponding to steps S3 and S8, the present invention is not limited to only the configuration of the above-described embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の傘歯車の歯形評価方法に用いる歯形
評価装置の側面図。
FIG. 1 is a side view of a tooth profile evaluation device used in the bevel gear tooth profile evaluation method of the present invention.

【図2】 図1の部分斜視図。FIG. 2 is a partial perspective view of FIG.

【図3】 カメラによる画像の撮像部位を示す説明図。FIG. 3 is an explanatory view showing an image pickup site of an image by a camera.

【図4】 歯形評価装置の制御回路ブロック図。FIG. 4 is a control circuit block diagram of the tooth profile evaluation device.

【図5】 歯形評価を示すフローチャート。FIG. 5 is a flowchart showing tooth profile evaluation.

【図6】 PMDと噛合伝達誤差との関係を示す説明
図。
FIG. 6 is an explanatory diagram showing a relationship between a PMD and a mesh transmission error.

【図7】 第1歯当り位置と第2歯当り位置とを示す説
明図。
FIG. 7 is an explanatory diagram showing a first tooth contact position and a second tooth contact position.

【図8】 画像2値化処理を示すフローチャート。FIG. 8 is a flowchart illustrating image binarization processing.

【図9】 画像2値化処理に必要な各要素の説明図。FIG. 9 is an explanatory diagram of each element required for image binarization processing.

【図10】 歯切からOK品認定処理までの工程を示す
工程図。
FIG. 10 is a process chart showing steps from gear cutting to OK product certification processing.

【図11】 ピニオン・マウント・ディスタンスの説明
図。
FIG. 11 is an explanatory diagram of a pinion mount distance.

【図12】 ピニオンオフセット量説明図。FIG. 12 is an explanatory diagram of a pinion offset amount.

【図13】 噛合接触痕の説明図。FIG. 13 is an explanatory view of an engagement contact mark.

【符号の説明】[Explanation of symbols]

4…PMDサーボモータ 7…サーボモータ 14…ベベルギヤ 46…噛合伝達誤差測定手段 S3,S8…画像処理手段 S10…評価手段 x1…第1歯当り位置 x2…第2歯当り位置 4 PMD servo motor 7 Servo motor 14 Bevel gear 46 Meshing transmission error measuring means S3, S8 Image processing means S10 Evaluation means x1 First tooth contact position x2 Second tooth contact position

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】傘歯車の歯形評価方法であって、特定の歯
当り形状が所定の第1歯当り位置で得られるようにPM
D、ピニオンオフセット量を変化させて調整し、次に上
記第1歯当り位置より所定位置離れた第2歯当り位置に
て特定の歯当り形状が得られるようにPMD、ピニオン
オフセット量を変化させて調整し、上記第1および第2
の各歯当り位置間のPMD、ピニオンオフセット量の変
化量により歯形評価を行なう傘歯車の歯形評価方法。
1. A method for evaluating a tooth profile of a bevel gear, wherein a PM contact shape is obtained so that a specific tooth contact shape is obtained at a predetermined first tooth contact position.
D, the pinion offset amount is changed and adjusted, and then the PMD and the pinion offset amount are changed so that a specific tooth contact shape is obtained at a second tooth contact position that is a predetermined position away from the first tooth contact position. And adjust the first and second
The bevel gear tooth profile evaluation method of performing the tooth profile evaluation based on the amount of change in the PMD and pinion offset between each tooth contact position.
【請求項2】上記各歯当り位置での特定の歯当り形状に
おける歯当り位置を画像処理により得る請求項1記載の
傘歯車の歯形評価方法。
2. The bevel gear tooth profile evaluation method according to claim 1, wherein the tooth contact position in the specific tooth contact shape at each tooth contact position is obtained by image processing.
【請求項3】上記特定の歯当りにおけるPMDを噛合伝
達誤差の測定により得る請求項1記載の傘歯車の歯形評
価方法。
3. The bevel gear tooth profile evaluation method according to claim 1, wherein the PMD at the specific tooth contact is obtained by measuring a mesh transmission error.
【請求項4】傘歯車の歯形評価装置であって、特定の歯
当り形状が所定の第1歯当り位置で得られるようにPM
D、ピニオンオフセット量を変化させて調整すると共
に、上記第1歯当り位置より所定位置離れた第2歯当り
位置にて特定の歯当り形状が得られるようにPMD、ピ
ニオンオフセット量を変化させて調整するPMD調整手
段およびピニオンオフセット量調整手段と、第1および
第2の各歯当り位置間のPMD、ピニオンオフセット量
の変化量により歯形評価を行なう評価手段と、上記第1
および第2の各歯当り位置での特定の歯当り形状におけ
る歯当り位置を画像処理により求める画像処理手段とを
備えた傘歯車の歯形評価装置。
4. An apparatus for evaluating the tooth profile of a bevel gear, wherein a specific contact shape is obtained at a predetermined first contact position.
D, while changing and adjusting the pinion offset amount, and changing the PMD and the pinion offset amount so that a specific tooth contact shape is obtained at a second tooth contact position that is a predetermined position away from the first tooth contact position. PMD adjusting means and pinion offset amount adjusting means for adjusting; PMD between the first and second tooth contact positions; and evaluation means for performing tooth profile evaluation based on the amount of change in pinion offset amount;
A bevel gear tooth profile evaluation device, comprising: image processing means for obtaining a tooth contact position in a specific tooth contact shape at each second tooth contact position by image processing.
【請求項5】上記特定の歯当りにおけるPMDを噛合伝
達誤差の測定により求める噛合伝達誤差測定手段を備え
た請求項4記載の傘歯車の歯形評価装置。
5. The bevel gear tooth profile evaluation device according to claim 4, further comprising a meshing transmission error measuring means for determining the PMD at the specific tooth contact by measuring a meshing transmission error.
JP27184296A 1996-09-20 1996-09-20 Bevel gear tooth profile evaluation method and apparatus Expired - Fee Related JP3586997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27184296A JP3586997B2 (en) 1996-09-20 1996-09-20 Bevel gear tooth profile evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27184296A JP3586997B2 (en) 1996-09-20 1996-09-20 Bevel gear tooth profile evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JPH1096621A true JPH1096621A (en) 1998-04-14
JP3586997B2 JP3586997B2 (en) 2004-11-10

Family

ID=17505640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27184296A Expired - Fee Related JP3586997B2 (en) 1996-09-20 1996-09-20 Bevel gear tooth profile evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP3586997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310266A (en) * 2001-04-16 2002-10-23 Mazda Motor Corp Gear mesh adjusting method
JP2011052813A (en) * 2009-09-04 2011-03-17 Ono Sokki Co Ltd Hypoid gear measuring instrument
JP2012088166A (en) * 2010-10-19 2012-05-10 Mitsubishi Motors Corp Dent inspection device, method for inspecting dent, and manufacturing apparatus of bevel gear
CN108489421A (en) * 2018-03-12 2018-09-04 四川大学 A kind of fringe projection detection plane component face shape method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407104B2 (en) 2018-07-10 2022-08-09 Fanuc Corporation Tooth contact position adjustment amount estimation device, machine learning device, and robot system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310266A (en) * 2001-04-16 2002-10-23 Mazda Motor Corp Gear mesh adjusting method
JP4639513B2 (en) * 2001-04-16 2011-02-23 マツダ株式会社 Gear mesh adjustment method
JP2011052813A (en) * 2009-09-04 2011-03-17 Ono Sokki Co Ltd Hypoid gear measuring instrument
JP2012088166A (en) * 2010-10-19 2012-05-10 Mitsubishi Motors Corp Dent inspection device, method for inspecting dent, and manufacturing apparatus of bevel gear
CN108489421A (en) * 2018-03-12 2018-09-04 四川大学 A kind of fringe projection detection plane component face shape method and device

Also Published As

Publication number Publication date
JP3586997B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP2554938B1 (en) Method of calibrating gear measuring device
US6655205B2 (en) Continuous measurement for determining a suitable mounting position or for quality-testing of gear sets
KR20200011145A (en) Inspection apparatus and methode of gear automatically
EP2426473A1 (en) Actuating device for calibrating torque-rotation angle keys
DE4432016A1 (en) Method and device for balancing a wheel
US6427350B1 (en) Target-lens-shape measuring device, and eyeglass-lens processing apparatus having the same
CN113447670B (en) Rotation speed measuring method and system for monocular linear array visual tracking stripe coding mark
US7153183B2 (en) Method and apparatus for lapping gears
JP3586997B2 (en) Bevel gear tooth profile evaluation method and apparatus
CN106405130B (en) A kind of rigid test macro of automation and test method
CN114993202A (en) Rocker arm type multifunctional medium-small modulus straight-tooth cylindrical gear visual detection device and detection method
DE102009059331A1 (en) Apparatus and method for fine machining a workpiece
JP3586994B2 (en) Bevel gear tooth contact evaluation method and apparatus
JP4639513B2 (en) Gear mesh adjustment method
CN209784087U (en) Torsion testing device in sheet material plane
CN105627056B (en) A kind of industrial camera support and its control method for automatically adjusting angle
CN109946002B (en) Non-contact measuring rack for tire grounding pressure
KR101921865B1 (en) Testing device for vehicle transmission
JP2009250954A (en) Apparatus for inspecting double-tooth-surface engaging gear
DE10012158B4 (en) Method for detecting and displaying toothing defects and measuring device for quality testing of toothed wheels and / or toothed shafts
JP3620218B2 (en) Gear inspection apparatus and method
CN217764922U (en) Be applied to removal body construction of thin slice coating thickness detection
JP2967969B2 (en) Gear meshing inspection method
CN210322845U (en) Probe horizontal direction mobile device
JP3203916B2 (en) Automatic gear measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees