JPH1092602A - Metallic film resistor and its manufacture - Google Patents

Metallic film resistor and its manufacture

Info

Publication number
JPH1092602A
JPH1092602A JP8245006A JP24500696A JPH1092602A JP H1092602 A JPH1092602 A JP H1092602A JP 8245006 A JP8245006 A JP 8245006A JP 24500696 A JP24500696 A JP 24500696A JP H1092602 A JPH1092602 A JP H1092602A
Authority
JP
Japan
Prior art keywords
film
copper
resistor
pulse
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8245006A
Other languages
Japanese (ja)
Other versions
JP3623864B2 (en
Inventor
Naohiro Mikamoto
直弘 三家本
Hisashi Nakamura
恒 中村
Hidehiko Enomoto
英彦 榎本
Masami Ishikawa
正巳 石川
Masaya Chikane
正也 千金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City
Panasonic Holdings Corp
Original Assignee
Osaka City
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City, Matsushita Electric Industrial Co Ltd filed Critical Osaka City
Priority to JP24500696A priority Critical patent/JP3623864B2/en
Publication of JPH1092602A publication Critical patent/JPH1092602A/en
Application granted granted Critical
Publication of JP3623864B2 publication Critical patent/JP3623864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metallic film resistor which is composed of a homogeneous alloy film and has excellent characteristics such as a low resistance- temperature coefficient by forming a plurality of kinds of metallic films by a pulse electroplating method in a plating bath containing a plurality of metal salts. SOLUTION: A resistor film composed at least of two metals, for example, a plating copper-nickel alloy film 2 is formed on an insulating substrate 1. The layered metallic film 2 in which a copper nickel alloy layer containing copper at a high concentration and another copper-nickel alloy layer containing copper at low concentration are alternately deposited electrically by a pulse electroplating method in which a low current-density pulse of 0.08-0.4A/dm<2> and a high current-density pulse 0.1-2A/dm<2> are alternately impressed by using a pyrophosphoric acid batch as a plating bath. The pule electroplating is performed without agitating the pyrophosphoric acid path. When the metallic film 2 is formed, the film 2 is crystallized by heat-treating the film 2 at >=600 deg.C in an inert gas or reducing atmosphere.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種エレクトロニ
クス機器に使用される金属皮膜抵抗器およびその製造方
法に関するものである。 【0002】 【従来の技術】金属皮膜抵抗器は、各種電気・電子機器
に使用されている。そして近年、精密電子機器だけでな
く家電製品にも、環境温度の変化に対して安定な抵抗値
を維持する、すなわち抵抗温度係数の優れた抵抗器が要
求されている。従来、金属皮膜抵抗器において、高抵抗
領域から低抵抗領域にまで適用することができ、かつ抵
抗温度係数が優れたものとして、金属皮膜に銅−ニッケ
ル合金皮膜を用いたものが知られている。 【0003】この種の金属皮膜抵抗器の代表的な製造方
法を説明すると、まず、縦方向および横方向に分割用ス
リットが入っているアルミナ基板をフッ酸と硝酸の混合
水溶液でエッチングする。次に、センシタイジングとア
クチベイチングの活性化処理を2回ほど繰り返した後、
下地めっきとして無電解ニッケル−リン合金めっき処理
をする。以上の前処理の後、電解めっきにより一定の電
流密度で銅−ニッケル合金めっき皮膜を形成した後、水
素と窒素の混合ガス雰囲気中において熱処理をする。次
に、目的の抵抗値が得られるようめっき皮膜をレーザで
トリミングして抵抗値を修正した後、めっき皮膜の特定
部分にエポキシ系樹脂のペーストをスクリーン印刷し、
大気雰囲気中において加熱して樹脂を硬化させる。この
後、横方向のスリットの部分で切り離して、個々のチッ
プが横方向につながっている状態にし、次に前記の分割
した面からめっき皮膜にまたがって導電性ペーストを塗
布し、大気雰囲気中において硬化処理をする。次に、縦
方向のスリットの部分で分割して個々のチップに切り離
す。そして、電解めっきによりニッケルめっき皮膜、最
後にはんだめっき皮膜を形成して角形金属皮膜抵抗器が
完成する。 【0004】 【発明が解決しようとする課題】従来の銅−ニッケル合
金皮膜を形成する方法は、電解めっき液を高速で循環さ
せながら一定の電流密度で、銅−ニッケル合金を電析さ
せるものである。このために基板全体にわたって、均一
な膜厚の抵抗皮膜を得るのは困難であった。また、均質
な銅−ニッケル合金皮膜が得られないため、この合金皮
膜を用いた抵抗器は、その抵抗温度係数が均一性に乏し
いという欠点も有している。従って、本発明は、高抵抗
領域から低抵抗領域まで適用可能で、均質な合金皮膜で
抵抗温度係数の小さい優れた特性の金属皮膜抵抗器を提
供することを目的とするものである。 【0005】 【課題を解決するための手段】本発明は、少なくとも絶
縁性基材、前記絶縁性基材の表面に形成された少なくと
も2種の金属からなる抵抗体皮膜および前記抵抗体皮膜
に接触する一対の電極により構成される金属皮膜抵抗器
の製造方法において、前記抵抗体皮膜を形成する工程と
して、少なくとも2種の金属塩を含むめっき浴中におい
て、パルス電解めっき法により前記少なくとも2種の金
属の皮膜を形成する工程を有することを特徴とする。 【0006】ここにおいて、前記2種の金属が銅とニッ
ケルであり、銅塩およびニッケル塩を含むピロリン酸浴
中において、低電流密度パルスと高電流密度パルスとを
交互に印加するパルス電解めっき法により銅含有比率の
高い銅−ニッケル合金層と銅含有率の低い銅−ニッケル
合金層を交互に電析させた層状の金属皮膜を形成する工
程を有することが好ましい。前記の低電流密度パルスは
0.08〜0.4A/dm2、高電流密度パルスは0.
1〜2A/dm2の範囲が好ましい。前記の金属皮膜は
不活性雰囲気または還元雰囲気中において600℃以上
の温度で熱処理するのが好ましい。 【0007】 【発明の実施の形態】本発明は、上記のように、少なく
とも2種の金属からなる抵抗体皮膜をパルス電解めっき
法により形成する。このパルス電解めっきは、一定の電
流密度のパルスを所定の時間間隔で印加する方法、およ
び低電流密度パルスと高電流密度パルスとを交互に印加
する方法などがある。そして、パルスが印加されないと
き、または低電流密度パルスが印加されているとき、被
めっき物近傍におけるめっき浴中のめっきされる金属の
イオン濃度が回復することにより、濃度分極が抑制さ
れ、均質なめっき皮膜が得られる。従って、大判の絶縁
性基板に抵抗体金属皮膜を形成し、これを分割して多数
の抵抗器を作製する方法においては、歩留まりよく、特
性の一定した製品を得ることができる。前記の金属皮膜
が銅とニッケルからなる場合、銅とニッケルの比率を選
ぶことにより、抵抗温度係数の小さい合金めっき皮膜を
得ることができる。 【0008】また、めっき浴として、銅塩およびニッケ
ル塩を含むピロリン酸浴を用い、低電流密度パルスと高
電流密度パルスとを交互に印加するパルス電解めっき法
によると、低電流密度パルス印加時には銅含有比率の高
い銅−ニッケル合金層が得られ、高電流密度パルス印加
時には銅含有率の低い銅−ニッケル合金層が得られる。
従って、低電流密度パルスと高電流密度パルスとを交互
に印加するパルス電解めっき法によれば、銅含有比率の
高い銅−ニッケル合金層と銅含有率の低い銅−ニッケル
合金層を交互に電析させた層状の金属皮膜を形成するこ
とができる。この方法によれば、めっき皮膜厚さの均一
性が得られ、また、使用するめっき浴の安定性に優れて
いるという利点がある。 【0009】上記のピロリン酸浴を無撹拌でパルス電解
することにより、理由は明らかではないが、撹拌する場
合に比べて、均質な合金めっき皮膜が得られる。このた
め、抵抗器の製造歩留まりが向上する。 【0010】パルス電解めっきにより金属皮膜を形成す
る工程に先立って、絶縁性基材の表面に無電解めっきに
より金属層を析出させる。この金属層を析出させる方法
としては、絶縁性基材の表面全体または一部を触媒化処
理し、無電解めっきにより銅層、ニッケル合金層、また
は銅−ニッケル合金層を析出させるのが好ましい。この
方法によると、無電解めっき皮膜の析出性が良好であ
り、しかも抵抗特性の良好な金属皮膜が得られる。 【0011】上記のようにして得られる金属皮膜を、不
活性雰囲気または還元雰囲気中において、600℃以上
の温度で熱処理することにより、銅−ニッケル合金皮膜
の合金の結晶化がすすみ、緻密な合金皮膜となる。特
に、銅含有比率の高い銅−ニッケル合金層と銅含有率の
低い銅−ニッケル合金層を交互に電析させた層状の金属
皮膜は、通常の電解めっきにより銅層とニッケル層を交
互に電析させたものに比較すると、各層がきわめて薄い
層でできているため、低い熱処理温度および短い処理時
間で均質な合金皮膜とすることができる。 【0012】 【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図1は本発明の一実施例における金
属皮膜抵抗器の断面図である。1は絶縁性基板を示す。
この基板1の上面には銅−ニッケル合金めっき皮膜2が
形成され、めっき皮膜2の特定部分には保護膜3が被覆
されている。めっき皮膜2の端部から基板の下面の端部
にまたがって銀を主とする電極4が印刷され、電極4の
表面にニッケルめっき皮膜5およびはんだめっき皮膜6
が形成されている。 【0013】本発明に使用できる絶縁性基板としては、
アルミナや碍子などがある。まず、絶縁性基材の表面に
エッチング処理をする。エッチング処理剤には、フッ
酸、フッ化アンモニウム、水酸化ナトリウムおよび水酸
化カリウムなどがある。次に、絶縁性基材の表面に触媒
化処理を施す。この処理は2回繰り返すのがよい。触媒
化処理の方法としては、センシタイジング・アクチベイ
チング法、キャタライジング・アクセレーティング法、
アルカリキャタリスト法および有機パラジウム熱処理法
などがある。その後、下地めっき浴を用いて下地めっき
処理をする。下地めっきの材料としては、無電解めっき
により析出可能な金属を用いる。銅、ニッケル−ホウ素
合金が特に好ましい。また、銅−ニッケル−リン合金お
よび銅−ニッケル合金についても同様の効果が得られ
る。 【0014】以上の下地めっき処理の後、パルス電解め
っき処理を行う。この際使用するめっき浴としては、以
下に示すめっき浴(1)が適当であるが、めっき浴
(2)によると、良質のめっき皮膜が得られるので好ま
しい。さらに、均質な皮膜を得るには、pH緩衝剤とし
て例えば、Na247・10H2Oを0.10〜0.2
0mol/l加え、無撹拌で、パルス電解するのが好ま
しい。 【0015】 めっき浴(1) CuSO4・5H2O 0.005〜0.050mol/l NiSO4・6H2O 0.050〜0.150mol/l K427 0.200〜0.500mol/l pH 7.0〜10.0 浴温度 20〜70℃ 【0016】 めっき浴(2) CuSO4・5H2O 0.015〜0.030mol/l NiSO4・6H2O 0.070〜0.085mol/l K427 0.200〜0.300mol/l pH 8.0〜9.0 温度 40〜60℃ 【0017】銅含有率の高い合金層を析出するための低
電流密度パルスは、0.08〜0.4A/dm2、ニッ
ケル含有率の高い合金層を析出するための高電流密度パ
ルスは0.1〜2A/dm2が好ましいが、銅の優先析
出を抑制するため、低電流密度パルスは0.1〜0.2
A/dm2、また、不溶性化合物の析出を抑制するた
め、高電流密度パルスは0.7〜1.1A/dm2が特
に好ましい。低電流密度パルス印加時間および高電流密
度パルス印加時間は、任意に設定可能であるが、めっき
皮膜の合金結晶化を低温の熱処理で行うためには、低電
流密度パルスおよび高電流密度パルスにより交互に薄い
層状皮膜を電析させることが好ましく、従って、0.0
01〜10秒の範囲が好ましい。 【0018】次に、銅−ニッケル合金皮膜を合金結晶化
するための熱処理の雰囲気は、不活性ガスまたは還元ガ
スを用いる。水素雰囲気中においては還元反応により合
金皮膜中の酸素含有率を低下させるため、水素と窒素の
混合ガスを用いるのが、特に好ましい。熱処理温度は、
銅−ニッケル合金皮膜の合金結晶化と緻密な合金皮膜を
得るため、600℃以上800℃程度までの温度範囲で
行うのが好ましい。 【0019】次に、めっき皮膜の特定部分に保護膜を印
刷し、大気雰囲気中において加熱して保護膜を硬化させ
た後、電極を塗布し、大気雰囲気中において硬化処理を
する。さらに、はんだ付け時の信頼性を確保するため、
電解めっきによりニッケルめっき皮膜、次いで、はんだ
めっき皮膜を形成して角形金属皮膜抵抗器を製造する。
保護膜3や電極4、ニッケルめっき皮膜5およびはんだ
めっき皮膜6の形成方法は従来と同様でよい。以上のよ
うにして製造された本発明による金属皮膜抵抗器は、以
下の具体的実施例に示すように、銅比率30〜65mo
l%の均質な皮膜で、600℃以上の熱処理により抵抗
温度係数の小さな抵抗体皮膜を有する。 【0020】《実施例1》大きさ64mm×52mm、
厚さ0.5mmのアルミナ基板(Al23 96%、S
iO2 4%)を弱アルカリ水溶液で脱脂した後、20%
のフッ酸水溶液からなるエッチング処理剤で25℃にお
いて10分間エッチング処理した。次に、アルカリキャ
タリスト法を用いて触媒化処理を行い、下地めっきとし
て以下に示すめっき浴で無電解銅めっき処理をした。こ
の基板は、縦方向および横方向に分割用スリットが入っ
ている。 【0021】下地めっき浴 CuSO4・5H2O 10.0g/l EDTA・2Na 36.0g/l NaOH 3.2g/l HCHO 5.0ml/l 2,2’−ビピリジル 2.5mg/l ポリエチレングリコール 50mg/l pH 12.3〜12.5 温度 60℃ 処理時間 5分間 【0022】以上の下地めっき処理の後、下記のめっき
浴を用いてパルス電解めっきをした。低電流密度パルス
を0.2A/dm2とし、0.9、1.0、1.1A/
dm
2の各高電流密度パルスで、低電流密度パルス印加時間
および高電流密度パルス印加時間を3秒に設定して、1
時間めっきした。この際、試料極を下、白金めっきした
チタン板からなる陽極を上にし、両者の間隔を50mm
とし、めっき浴は無撹拌とした。めっき浴のpHの調整
は、高くするときは水酸化ナトリウムを、また低くする
ときは硫酸をそれぞれ用いた。このめっき浴には、pH
緩衝剤として四ホウ酸ナトリウムを用いた。 【0023】めっき浴 NiSO 4・6H2O 0.08mol/l CuSO 4・5H2O 0.02mol/l 427 0.30mol/l Na 247・10H2O 0.20mol/l pH 9.0 温度 50℃ 【0024】上記のめっきにより銅−ニッケル合金皮膜
を形成した後、得られためっき皮膜中のニッケル比率と
膜厚を測定した。 【0025】《比較例1》めっき浴をスターラーで撹拌
した他は実施例1と同じ条件で銅−ニッケル合金皮膜を
形成し、得られためっき皮膜中のニッケル比率と膜厚を
測定した。 【0026】図2は、実施例1と比較例1について、高
電流密度パルスと、アルミナ基板全体にわたり得られた
めっき皮膜中のニッケル比率の平均値およびその変動係
数(標準偏差を平均値で除算した値)との関係を示す。
また、図3は、同じく実施例1と比較例1について、高
電流密度パルスと、アルミナ基板全体にわたり得られた
めっき皮膜の膜厚の平均値およびその変動係数との関係
を示す。これらの図から明らかなように、本発明によれ
ば、無撹拌でパルス電解することにより、均質なめっき
皮膜を得ることができる。 【0027】《比較例2》一定電流密度0.9A/dm
2 で電解めっきした他は実施例1と同じ条件で銅−ニッ
ケル合金皮膜を形成し、熱処理せずに得られためっき皮
膜中のニッケル比率と膜厚を測定した。 【0028】表1は、実施例(実施例1において高電流
密度パルスを0.9A/dm2としたとき)と比較例2
について、パルス電解めっきと電解めっきから形成され
るめっき皮膜中のニッケル比率の平均値と膜厚の平均値
およびそれぞれの変動係数を示す。この表から明らかな
ように、本発明によれば、パルス電解めっきを行うこと
により、基板全体にわたり、均一な膜厚のめっき皮膜を
得ることができる。 【0029】 【表1】 【0030】《実施例2》表2に示したパルス電解めっ
き条件の他は実施例1と同じ条件で銅−ニッケル合金皮
膜を形成し、水素と窒素との体積比5:95の混合ガス
雰囲気中において800℃で1時間熱処理をした。次
に、縦方向および横方向のスリットの部分で分割して個
々のチップに切り離し、金属皮膜抵抗器として特性を測
定した。なお、以下に示す抵抗温度係数(以下、TCR
で表す)は、25℃と125℃における抵抗値から求め
たものである。 【0031】《比較例2》一定電流密度0.9A/dm
2で電解めっきした他は実施例1と同じ条件で銅−ニッ
ケル合金皮膜を形成し、次に実施例2と同じ水素と窒素
の混合ガス雰囲気中において800℃で1時間熱処理し
た。次に、実施例2と同様に個々のチップに切り離し、
金属皮膜抵抗器として特性を測定した。 【0032】表2に、実施例2と比較例3について、得
られた抵抗器の25℃における抵抗値の平均値と変動係
数を示す。これから明らかなように、低電流密度パルス
印加時間および高電流密度パルス印加時間が少なくとも
0.1秒以上では、基板全体にわたり、均一な抵抗値を
得ることができる。 【0033】 【表2】 【0034】《実施例3》以下に示したパルス電解めっ
き条件の他は実施例1と同じ条件で銅−ニッケル合金皮
膜を形成し、次に実施例2と同じ水素と窒素の混合ガス
雰囲気中において600℃と800℃の各温度で1時間
熱処理した。 【0035】 めっき浴中の銅およびニッケル塩濃度 NiSO4.6H2O 0.070〜0.085mol/l CuSO4.5H2O 0.030〜0.015mol/l 低電流密度パルス 0.2A/dm2 高電流密度パルス 0.8〜1.0A/dm2 パルス印加時間 1.0〜3.0秒 【0036】図4に、得られためっき皮膜中のニッケル
比率と600℃の熱処理をして得た抵抗器のTCRとの
関係を示す。これから明らかなように、銅−ニッケル合
金皮膜のニッケル比率が少なくとも35〜57mol%
の範囲で、TCR±100ppm/℃の特性を得ること
ができる。 【0037】図5に、得られためっき皮膜中のニッケル
比率と800℃の熱処理をして得た抵抗器のTCRとの
関係を示す。これから明らかなように、銅−ニッケル合
金皮膜のニッケル比率が少なくとも30〜64mol%
の範囲で、TCR±100ppm/℃の特性を得ること
ができる。 【0038】《実施例4》表3に示したパルス電解めっ
き条件の他は実施例1と同じ条件で銅−ニッケル合金皮
膜を形成し、次に実施例2と同じ水素と窒素の混合ガス
雰囲気中において800℃で1時間熱処理した。 【0039】 【表3】 【0040】図6に、パルス電解めっき時間と得られた
抵抗器の25℃における抵抗値の関係を示す。これから
明らかなように、表3に示す条件において、少なくとも
50mΩ以上の抵抗器を得ることができる。 【0041】以上の実施例では、角形のチップ抵抗器に
ついて説明したが、本発明は、角形のチップ抵抗器のみ
でなく円筒形の抵抗器など金属皮膜を抵抗体とする抵抗
器に適用できることはいうまでもない。 【0042】 【発明の効果】以上のように本発明によれば、抵抗体を
形成する均質なめっき皮膜が得られるとともに、高抵抗
領域から低抵抗領域までの抵抗温度係数の小さい優れた
金属皮膜抵抗器を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal film resistor used for various electronic devices and a method for manufacturing the same. [0002] Metal film resistors are used in various electric and electronic devices. In recent years, not only precision electronic devices but also home electric appliances have been demanded for resistors that maintain a stable resistance value against a change in environmental temperature, that is, have excellent resistance temperature coefficient. Conventionally, a metal film resistor using a copper-nickel alloy film as a metal film is known as a metal film resistor which can be applied from a high resistance region to a low resistance region and has an excellent temperature coefficient of resistance. . [0003] A typical method of manufacturing a metal film resistor of this type will be described. First, an alumina substrate having slits for dividing in the vertical and horizontal directions is etched with a mixed aqueous solution of hydrofluoric acid and nitric acid. Next, after activating the sensitizing and activating processes twice,
An electroless nickel-phosphorus alloy plating process is performed as a base plating. After the above pretreatment, a copper-nickel alloy plating film is formed at a constant current density by electrolytic plating, and then heat treatment is performed in a mixed gas atmosphere of hydrogen and nitrogen. Next, after trimming the plating film with a laser so as to obtain the desired resistance value and correcting the resistance value, screen-printing an epoxy resin paste on a specific portion of the plating film,
The resin is cured by heating in an air atmosphere. After this, the chip is cut off at the lateral slits so that the individual chips are connected in the horizontal direction, and then a conductive paste is applied over the plating film from the divided surface, and in an air atmosphere. Perform curing treatment. Next, the wafer is divided at the vertical slit and cut into individual chips. Then, a nickel plating film and finally a solder plating film are formed by electrolytic plating to complete a square metal film resistor. [0004] A conventional method for forming a copper-nickel alloy film is to deposit a copper-nickel alloy at a constant current density while circulating an electrolytic plating solution at a high speed. is there. For this reason, it has been difficult to obtain a resistive film having a uniform film thickness over the entire substrate. Further, since a homogeneous copper-nickel alloy film cannot be obtained, a resistor using this alloy film also has a disadvantage that its temperature coefficient of resistance is poor in uniformity. Accordingly, it is an object of the present invention to provide a metal film resistor which is applicable from a high resistance region to a low resistance region, has a uniform alloy film, and has excellent characteristics having a small temperature coefficient of resistance. SUMMARY OF THE INVENTION [0005] The present invention provides at least an insulating substrate, a resistor film made of at least two kinds of metals formed on the surface of the insulating substrate, and a contact film with the resistor film. In the method for manufacturing a metal film resistor constituted by a pair of electrodes, the step of forming the resistor film includes the step of forming the resistor film in a plating bath containing at least two kinds of metal salts by a pulse electrolytic plating method. A step of forming a metal film. [0006] Here, the two metals are copper and nickel, and a pulse electrolytic plating method in which a low current density pulse and a high current density pulse are alternately applied in a pyrophosphate bath containing a copper salt and a nickel salt. It is preferable to include a step of forming a layered metal film by alternately depositing a copper-nickel alloy layer having a high copper content ratio and a copper-nickel alloy layer having a low copper content ratio. The low current density pulse is 0.08 to 0.4 A / dm 2 , and the high current density pulse is 0.08 to 0.4 A / dm 2 .
The range of 1-2 A / dm < 2 > is preferable. Preferably, the metal film is heat-treated at a temperature of 600 ° C. or more in an inert atmosphere or a reducing atmosphere. DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention forms a resistor film made of at least two kinds of metals by a pulse electrolytic plating method. The pulse electrolytic plating includes a method of applying a pulse of a constant current density at a predetermined time interval, and a method of alternately applying a low current density pulse and a high current density pulse. When the pulse is not applied or when the low current density pulse is applied, the ion concentration of the metal to be plated in the plating bath in the vicinity of the object to be recovered is recovered, whereby the concentration polarization is suppressed, and A plating film is obtained. Therefore, in a method in which a resistor metal film is formed on a large-sized insulating substrate and divided into a large number of resistors, a product having a high yield and uniform characteristics can be obtained. When the metal film is made of copper and nickel, an alloy plating film having a small temperature coefficient of resistance can be obtained by selecting the ratio of copper and nickel. Further, according to a pulse electrolytic plating method in which a pyrophosphate bath containing a copper salt and a nickel salt is used as a plating bath and a low current density pulse and a high current density pulse are alternately applied, a low current density pulse is applied. A copper-nickel alloy layer having a high copper content ratio is obtained, and a copper-nickel alloy layer having a low copper content is obtained when a high current density pulse is applied.
Therefore, according to the pulse electrolytic plating method in which a low current density pulse and a high current density pulse are alternately applied, a copper-nickel alloy layer having a high copper content and a copper-nickel alloy layer having a low copper content are alternately applied. The deposited layered metal film can be formed. According to this method, there is an advantage that the uniformity of the thickness of the plating film is obtained and the stability of the plating bath used is excellent. The pulse electrolysis of the above pyrophosphoric acid bath without stirring can provide a more uniform alloy plating film than the case of stirring, although the reason is not clear. Therefore, the production yield of the resistor is improved. Prior to the step of forming a metal film by pulse electrolytic plating, a metal layer is deposited on the surface of the insulating substrate by electroless plating. As a method for depositing the metal layer, it is preferable to catalyze the entire surface or a part of the surface of the insulating base material and deposit a copper layer, a nickel alloy layer, or a copper-nickel alloy layer by electroless plating. According to this method, a metal film having good electroless plating film deposition property and good resistance characteristics can be obtained. By subjecting the metal film obtained as described above to a heat treatment at a temperature of 600 ° C. or more in an inert atmosphere or a reducing atmosphere, the crystallization of the copper-nickel alloy film proceeds, and It becomes a film. In particular, a layered metal film formed by alternately depositing a copper-nickel alloy layer having a high copper content ratio and a copper-nickel alloy layer having a low copper content ratio has a copper layer and a nickel layer alternately formed by ordinary electrolytic plating. Since each layer is formed of an extremely thin layer as compared with the case where the alloy is deposited, a homogeneous alloy film can be formed at a low heat treatment temperature and a short treatment time. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a metal film resistor according to an embodiment of the present invention. Reference numeral 1 denotes an insulating substrate.
A copper-nickel alloy plating film 2 is formed on the upper surface of the substrate 1, and a specific portion of the plating film 2 is covered with a protective film 3. An electrode 4 mainly composed of silver is printed from an end of the plating film 2 to an end of the lower surface of the substrate, and a nickel plating film 5 and a solder plating film 6 are formed on the surface of the electrode 4.
Are formed. The insulating substrate that can be used in the present invention includes:
There are alumina and insulators. First, the surface of the insulating base material is etched. Etching agents include hydrofluoric acid, ammonium fluoride, sodium hydroxide and potassium hydroxide. Next, the surface of the insulating substrate is catalyzed. This process is preferably repeated twice. As a method of the catalyzing treatment, a sensitizing activating method, a catalizing accelerator method,
There are an alkali catalyst method and an organic palladium heat treatment method. Thereafter, a base plating process is performed using a base plating bath. As a material for the base plating, a metal that can be deposited by electroless plating is used. Copper and nickel-boron alloys are particularly preferred. Similar effects can be obtained for copper-nickel-phosphorus alloys and copper-nickel alloys. After the above base plating, a pulse electrolytic plating is performed. As the plating bath used at this time, the following plating bath (1) is appropriate, but the plating bath (2) is preferable because a high-quality plating film can be obtained. Furthermore, in order to obtain a homogeneous film, for example, as a pH buffer, a Na 2 B 4 O 7 · 10H 2 O 0.10~0.2
It is preferable to add 0 mol / l and perform pulse electrolysis without stirring. Plating bath (1) CuSO 4 .5H 2 O 0.005 to 0.050 mol / l NiSO 4 .6H 2 O 0.050 to 0.150 mol / l K 4 P 2 O 7 0.200. 500 mol / l pH 7.0 to 10.0 Bath temperature 20 to 70 ° C. Plating bath (2) CuSO 4 .5H 2 O 0.015 to 0.030 mol / l NiSO 4 .6H 2 O 0.070 to 0.085 mol / l K 4 P 2 O 7 0.200 to 0.300 mol / l pH 8.0 to 9.0 Temperature 40 to 60 ° C. Low current for depositing an alloy layer having a high copper content The density pulse is preferably 0.08 to 0.4 A / dm 2 , and the high current density pulse for depositing an alloy layer having a high nickel content is preferably 0.1 to 2 A / dm 2, but preferential deposition of copper is suppressed. Low current density pulse 0.1 to 0.2
In order to suppress A / dm 2 and precipitation of insoluble compounds, the high current density pulse is particularly preferably 0.7 to 1.1 A / dm 2 . The time for applying the low current density pulse and the time for applying the high current density pulse can be set arbitrarily. However, in order to perform alloy crystallization of the plating film by a low-temperature heat treatment, the application of the low current density pulse and the high current density pulse alternately. It is preferred to deposit a thin layered coating on
A range from 01 to 10 seconds is preferred. Next, an inert gas or a reducing gas is used as an atmosphere for the heat treatment for crystallizing the copper-nickel alloy film. In a hydrogen atmosphere, it is particularly preferable to use a mixed gas of hydrogen and nitrogen in order to reduce the oxygen content in the alloy film by a reduction reaction. The heat treatment temperature is
In order to crystallize the copper-nickel alloy film and obtain a dense alloy film, it is preferable to perform the heating at a temperature in the range of 600 ° C. to 800 ° C. Next, after a protective film is printed on a specific portion of the plating film and heated in an air atmosphere to cure the protective film, an electrode is applied and a curing process is performed in the air atmosphere. In addition, to ensure reliability during soldering,
A nickel plating film and then a solder plating film are formed by electrolytic plating to produce a square metal film resistor.
The method of forming the protective film 3, the electrode 4, the nickel plating film 5, and the solder plating film 6 may be the same as the conventional method. As described in the following specific examples, the metal film resistor according to the present invention manufactured as described above has a copper ratio of 30 to 65 mo.
It has a 1% uniform film and a resistor film with a small temperature coefficient of resistance by heat treatment at 600 ° C. or higher. << Embodiment 1 >> A size of 64 mm × 52 mm,
0.5mm thick alumina substrate (Al 2 O 3 96%, S
After the iO 2 4%) were degreased with a weak alkaline aqueous solution, 20%
Was etched at 25 ° C. for 10 minutes using an etching agent comprising a hydrofluoric acid aqueous solution. Next, a catalyst treatment was performed using an alkaline catalyst method, and an electroless copper plating treatment was performed as a base plating in a plating bath described below. This substrate has slits for dividing in the vertical and horizontal directions. Underplating bath CuSO 4 .5H 2 O 10.0 g / l EDTA.2Na 36.0 g / l NaOH 3.2 g / l HCHO 5.0 ml / l 2,2′-bipyridyl 2.5 mg / l polyethylene glycol 50 mg / l pH 12.3 to 12.5 Temperature 60 ° C. Treatment time 5 minutes After the above base plating treatment, pulse electrolytic plating was performed using the following plating bath. The low current density pulse is 0.2 A / dm 2 and 0.9, 1.0, 1.1 A /
dm
For each high current density pulse of 2, the low current density pulse application time
And the high current density pulse application time was set to 3 seconds,
Time plated. At this time, the sample electrode was plated down with platinum.
With the anode made of titanium plate facing up, the distance between both is 50 mm
The plating bath was not stirred. Adjustment of plating bath pH
Lowers sodium hydroxide when raising, and lowers
Sometimes sulfuric acid was used. This plating bath has a pH
Sodium tetraborate was used as a buffer. Plating bath NiSO 4 .6H 2 O 0.08 mol / l CuSO 4 .5H 2 O 0.02 mol / l K 4 P 2 O 7 0.30 mol / l Na 2 B 4 O 7 .10H 2 O 20 mol / l pH 9.0 temperature 50 ° C. Copper-nickel alloy film by the above plating
After forming, the nickel ratio in the obtained plating film and
The film thickness was measured. << Comparative Example 1 >> Stirrer of plating bath with stirrer
The copper-nickel alloy film was formed under the same conditions as in Example 1 except that
The nickel ratio and film thickness in the resulting plating film
It was measured. FIG. 2 shows the results for Example 1 and Comparative Example 1.
Current density pulse and obtained across the alumina substrate
Average value of nickel ratio in plating film and its variation
The relationship with the number (value obtained by dividing the standard deviation by the average value) is shown.
FIG. 3 shows the same results for Example 1 and Comparative Example 1.
Current density pulse and obtained across the alumina substrate
Average value of plating film thickness and its relation to coefficient of variation
Is shown. As is apparent from these figures, according to the present invention,
If pulse electrolysis without stirring
A film can be obtained. << Comparative Example 2 >> Constant current density 0.9 A / dm
A copper-nickel alloy film was formed under the same conditions as in Example 1 except that electroplating was performed in 2 , and the nickel ratio and the film thickness in the plating film obtained without heat treatment were measured. Table 1 shows examples (when the high current density pulse was set to 0.9 A / dm 2 in Example 1) and Comparative Example 2.
The average value of the nickel ratio and the average value of the film thickness of the plating film formed by the pulse electrolytic plating and the electrolytic plating, and the respective coefficient of variation are shown. As is clear from this table, according to the present invention, by performing pulse electrolytic plating, a plating film having a uniform film thickness can be obtained over the entire substrate. [Table 1] Example 2 A copper-nickel alloy film was formed under the same conditions as in Example 1 except for the pulse electrolytic plating conditions shown in Table 2, and a mixed gas atmosphere of hydrogen and nitrogen at a volume ratio of 5:95. Heat treatment was performed at 800 ° C. for 1 hour. Next, it was divided at the slits in the vertical and horizontal directions and cut into individual chips, and the characteristics were measured as metal film resistors. The temperature coefficient of resistance (hereinafter referred to as TCR)
Is expressed by the resistance values at 25 ° C. and 125 ° C. << Comparative Example 2 >> Constant current density of 0.9 A / dm
A copper-nickel alloy film was formed under the same conditions as in Example 1 except that the electrolytic plating was performed in Step 2, and then heat treatment was performed at 800 ° C. for 1 hour in the same mixed gas atmosphere of hydrogen and nitrogen as in Example 2. Next, cut into individual chips as in the second embodiment.
The characteristics were measured as a metal film resistor. Table 2 shows the average value and the coefficient of variation of the obtained resistors at 25 ° C. for Example 2 and Comparative Example 3. As is clear from this, when the low current density pulse application time and the high current density pulse application time are at least 0.1 seconds or more, a uniform resistance value can be obtained over the entire substrate. [Table 2] Example 3 A copper-nickel alloy film was formed under the same conditions as in Example 1 except for the pulse electroplating conditions shown below, and then in a mixed gas atmosphere of hydrogen and nitrogen as in Example 2. At 600 ° C. and 800 ° C. for 1 hour. Copper and Nickel Salt Concentration in Plating Bath NiSO 4 . 6H 2 O 0.070~0.085mol / l CuSO 4 . 5H 2 O 0.030 to 0.015 mol / l Low current density pulse 0.2 A / dm 2 High current density pulse 0.8 to 1.0 A / dm 2 Pulse application time 1.0 to 3.0 seconds FIG. 4 shows the relationship between the nickel ratio in the plating film obtained and the TCR of the resistor obtained by performing the heat treatment at 600 ° C. As is clear from this, the nickel ratio of the copper-nickel alloy film is at least 35 to 57 mol%.
Within this range, characteristics of TCR ± 100 ppm / ° C. can be obtained. FIG. 5 shows the relationship between the nickel ratio in the plating film obtained and the TCR of the resistor obtained by heat treatment at 800 ° C. As is clear from this, the nickel ratio of the copper-nickel alloy film is at least 30 to 64 mol%.
Within this range, characteristics of TCR ± 100 ppm / ° C. can be obtained. Example 4 A copper-nickel alloy film was formed under the same conditions as in Example 1 except for the pulse electrolytic plating conditions shown in Table 3, and then a mixed gas atmosphere of hydrogen and nitrogen was used as in Example 2. Heat treatment was performed at 800 ° C. for 1 hour. [Table 3] FIG. 6 shows the relationship between the pulse electrolytic plating time and the resistance value of the obtained resistor at 25 ° C. As is clear from this, under the conditions shown in Table 3, a resistor having at least 50 mΩ or more can be obtained. In the above embodiments, a square chip resistor has been described. However, the present invention can be applied not only to a square chip resistor but also to a resistor having a metal film as a resistor, such as a cylindrical resistor. Needless to say. As described above, according to the present invention, a uniform plating film for forming a resistor can be obtained, and an excellent metal film having a small temperature coefficient of resistance from a high resistance region to a low resistance region. A resistor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における金属皮膜抵抗器を示
す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a metal film resistor according to an embodiment of the present invention.

【図2】実施例および比較例の高電流密度パルスと、得
られためっき皮膜中のニッケル比率およびその変動係数
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between high current density pulses of Examples and Comparative Examples, a nickel ratio in a plating film obtained, and a coefficient of variation thereof.

【図3】実施例および比較例の高電流密度パルスと、得
られためっき皮膜の膜厚およびその変動係数との関係を
示す図である。
FIG. 3 is a diagram showing a relationship between a high current density pulse of an example and a comparative example, a film thickness of a plating film obtained, and a coefficient of variation thereof.

【図4】得られためっき皮膜中のニッケル比率と600
℃の熱処理をして得た抵抗器の抵抗温度係数との関係を
示す図である。
FIG. 4 shows the nickel ratio in the obtained plating film and 600
It is a figure which shows the relationship with the temperature coefficient of resistance of the resistor obtained by heat processing of ° C.

【図5】得られためっき皮膜中のニッケル比率と800
℃の熱処理をして得た抵抗器の抵抗温度係数との関係を
示す図である。
FIG. 5 shows the nickel ratio in the plating film obtained and 800
It is a figure which shows the relationship with the temperature coefficient of resistance of the resistor obtained by heat processing of ° C.

【図6】パルス電解めっき時間と得られた抵抗器の25
℃における抵抗値との関係を示す図である。
FIG. 6: Pulse electroplating time and 25 of the obtained resistors
It is a figure which shows the relationship with the resistance value in ° C.

【符号の説明】[Explanation of symbols]

1 基板 2 金属皮膜 3 保護膜 4 電極 5 ニッケル皮膜 6 はんだ皮膜 DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal film 3 Protective film 4 Electrode 5 Nickel film 6 Solder film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 英彦 大阪市阿倍野区天王寺町北3丁目5番25− 706号 (72)発明者 石川 正巳 大阪市生野区小路2丁目22番28号 (72)発明者 千金 正也 大阪市東成区深江北2丁目4番36−307号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidehiko Enomoto 3-5-2-5-706 Kita, Tennoji-cho, Abeno-ku, Osaka (72) Inventor Masami Ishikawa 2--22-28, Oji, Ikuno-ku, Osaka (72) Invention Person Masaya Chigane 2-36-307 Fukae Kita 2-chome, Higashinari-ku, Osaka

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも絶縁性基材、前記絶縁性基材
の表面に形成された少なくとも2種の金属からなる抵抗
体皮膜および前記抵抗体皮膜に接触する一対の電極によ
り構成される金属皮膜抵抗器の製造方法であって、前記
抵抗体皮膜を形成する工程として、少なくとも2種の金
属塩を含むめっき浴中においてパルス電解めっき法によ
り前記少なくとも2種の金属の皮膜を形成する工程を有
することを特徴とする金属皮膜抵抗器の製造方法。
1. A metal film resistor comprising at least an insulating substrate, a resistor film made of at least two metals formed on the surface of the insulating substrate, and a pair of electrodes contacting the resistor film. A method of manufacturing the vessel, wherein the step of forming the resistor film includes a step of forming the film of the at least two metals by a pulse electrolytic plating method in a plating bath containing at least two metal salts. A method for manufacturing a metal film resistor, comprising:
【請求項2】 前記2種の金属が、銅とニッケルである
請求項1記載の金属皮膜抵抗器の製造方法。
2. The method according to claim 1, wherein the two metals are copper and nickel.
【請求項3】 少なくとも絶縁性基材、前記絶縁性基材
の表面に形成された銅とニッケルからなる抵抗体皮膜お
よび前記抵抗体皮膜に接触する一対の電極により構成さ
れる金属皮膜抵抗器の製造方法であって、銅塩およびニ
ッケル塩を含むピロリン酸浴中において低電流密度パル
スと高電流密度パルスとを交互に印加するパルス電解め
っき法により銅含有比率の高い銅−ニッケル合金層と銅
含有率の低い銅−ニッケル合金層を交互に電析させた層
状の金属皮膜を形成する工程を有することを特徴とする
金属皮膜抵抗器の製造方法。
3. A metal film resistor comprising at least an insulating substrate, a resistor film made of copper and nickel formed on the surface of the insulating substrate, and a pair of electrodes contacting the resistor film. A method for producing a copper-nickel alloy layer having a high copper content ratio by a pulse electrolytic plating method in which a low current density pulse and a high current density pulse are alternately applied in a pyrophosphate bath containing a copper salt and a nickel salt. A method for manufacturing a metal film resistor, comprising a step of forming a layered metal film by alternately depositing copper-nickel alloy layers having a low content.
【請求項4】 前記低電流密度パルスが0.08〜0.
4A/dm2であり、高電流密度パルスが0.1〜2A
/dm2である請求項3記載の金属皮膜抵抗器の製造方
法。
4. The method according to claim 1, wherein the low current density pulse is from 0.08 to 0.5.
4 A / dm 2 and high current density pulse of 0.1 to 2 A
4. The method for producing a metal film resistor according to claim 3, wherein the ratio is / dm 2 .
【請求項5】 前記パルス電解めっきが、無撹拌のピロ
リン酸浴中で行われる請求項3または4記載の金属皮膜
抵抗器の製造方法。
5. The method for manufacturing a metal film resistor according to claim 3, wherein the pulse electrolytic plating is performed in a non-stirred pyrophosphate bath.
【請求項6】 前記金属皮膜を形成する工程に先立っ
て、絶縁性基材の表面に無電解めっきにより金属層を析
出させる工程を有する請求項3、4または5記載の金属
皮膜抵抗器の製造方法。
6. The method of manufacturing a metal film resistor according to claim 3, further comprising a step of depositing a metal layer on the surface of the insulating substrate by electroless plating prior to the step of forming the metal film. Method.
【請求項7】 前記無電解めっきにより析出される金属
層が、銅層、ニッケル合金層、または銅−ニッケル合金
層である請求項6記載の金属皮膜抵抗器の製造方法。
7. The method according to claim 6, wherein the metal layer deposited by the electroless plating is a copper layer, a nickel alloy layer, or a copper-nickel alloy layer.
【請求項8】 前記金属皮膜を不活性雰囲気または還元
雰囲気中において600℃以上の温度で熱処理する工程
を有する請求項3〜7のいずれかに記載の金属皮膜抵抗
器の製造方法。
8. The method for manufacturing a metal film resistor according to claim 3, further comprising a step of heat-treating the metal film in an inert atmosphere or a reducing atmosphere at a temperature of 600 ° C. or more.
【請求項9】 請求項1〜8のいずれかに記載の製造方
法により得られた金属皮膜抵抗器。
9. A metal film resistor obtained by the method according to claim 1.
JP24500696A 1996-09-17 1996-09-17 Metal film resistor and manufacturing method thereof Expired - Fee Related JP3623864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24500696A JP3623864B2 (en) 1996-09-17 1996-09-17 Metal film resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24500696A JP3623864B2 (en) 1996-09-17 1996-09-17 Metal film resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1092602A true JPH1092602A (en) 1998-04-10
JP3623864B2 JP3623864B2 (en) 2005-02-23

Family

ID=17127181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24500696A Expired - Fee Related JP3623864B2 (en) 1996-09-17 1996-09-17 Metal film resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3623864B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140296A (en) * 2004-11-11 2006-06-01 Koa Corp Electronic component and manufacturing method therefor
US7540946B2 (en) 2005-03-18 2009-06-02 Tdk Corporation Plating apparatus
US8179660B2 (en) 2005-03-06 2012-05-15 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same
CN103594212A (en) * 2012-08-17 2014-02-19 三星电机株式会社 Chip resistor and method of manufacturing the same
WO2016027692A1 (en) * 2014-08-18 2016-02-25 株式会社村田製作所 Electronic component and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140296A (en) * 2004-11-11 2006-06-01 Koa Corp Electronic component and manufacturing method therefor
US8179660B2 (en) 2005-03-06 2012-05-15 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same
US7540946B2 (en) 2005-03-18 2009-06-02 Tdk Corporation Plating apparatus
US8894836B2 (en) 2005-06-03 2014-11-25 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same
CN103594212A (en) * 2012-08-17 2014-02-19 三星电机株式会社 Chip resistor and method of manufacturing the same
KR101412951B1 (en) * 2012-08-17 2014-06-26 삼성전기주식회사 Resistor and method for manufacturing the same
US8994491B2 (en) 2012-08-17 2015-03-31 Samsung Electro-Mechanics Co., Ltd. Chip resistor and method of manufacturing the same
WO2016027692A1 (en) * 2014-08-18 2016-02-25 株式会社村田製作所 Electronic component and method for producing same
US9633795B2 (en) 2014-08-18 2017-04-25 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component

Also Published As

Publication number Publication date
JP3623864B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
KR100497077B1 (en) Method of manufacturing electronic part, electronic part and electroless plating method
US4668925A (en) Dielectric resonator and method for making
JPS6133077B2 (en)
JPH08264372A (en) Manufacture of electronic component with electroless plated film
JP3498919B2 (en) Metal film resistor having fuse function and method of manufacturing the same
USRE30434E (en) Electroless tin and tin-lead alloy plating baths
GB1568941A (en) Method of providing printed circuits
JPH1092602A (en) Metallic film resistor and its manufacture
US3984290A (en) Method of forming intralayer junctions in a multilayer structure
US5560812A (en) Method for producing a metal film resistor
US4067783A (en) Gold electroplating process
JP2003253454A (en) Method for plating electronic parts, and electronic parts
JP3348705B2 (en) Electrode formation method
WO2021261122A1 (en) Structure and method for manufacturing structure
JPS596365A (en) Electroless gold plating method
JP2863710B2 (en) Manufacturing method of metal film resistor
JP3388298B2 (en) Etching solution for pretreatment in plating on glass surface, plating method and method for manufacturing glass substrate
JP4090602B2 (en) Plated ceramic / metal composite material and method for producing the same
DE3543615C2 (en)
US3934985A (en) Multilayer structure
JPH0548601B2 (en)
JPH0888104A (en) Chip-shaped electronic component and its manufacture
JP2005146372A (en) Catalyst-imparting solution for electroless plating
JPS63254685A (en) Electric contact device with nickel base
SU1366294A1 (en) Method of obtaining porous cellular material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees