JPH1092364A - Focused ion beam processing positioning method - Google Patents

Focused ion beam processing positioning method

Info

Publication number
JPH1092364A
JPH1092364A JP8247523A JP24752396A JPH1092364A JP H1092364 A JPH1092364 A JP H1092364A JP 8247523 A JP8247523 A JP 8247523A JP 24752396 A JP24752396 A JP 24752396A JP H1092364 A JPH1092364 A JP H1092364A
Authority
JP
Japan
Prior art keywords
ion beam
sample
scanning
sem image
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8247523A
Other languages
Japanese (ja)
Inventor
Koji Iwata
浩二 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8247523A priority Critical patent/JPH1092364A/en
Publication of JPH1092364A publication Critical patent/JPH1092364A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize damage due to an ion beam on a sample face by providing a mechanism for aligning an SEM image to be obtained by scanning an electron beam with an SIM image to be obtained by scanning an ion beam. SOLUTION: An ion beam mirror barrel 6 and an electron beam mirror barrel 7 are installed so that an electron beam 17 has a certain angle relevant to an ion beam 16. They are mechanically adjusted so that the beam 17 is applied near the beam 16 irradiation point onto a sample 15 placed on an sample stage 9. In this case, a distance between plural registration marks provided on the sample 15 is measured each on an SIM image and an SEM image, a correction value obtained by a specific calculation expression is set to an offset controller 25 and a gain controller 26, and thereby the SIM image and the SEM image are aligned. As a result, since it is possible to set a processing area using the SEM image obtained by scanning of the beam 17 without scanning a top of a target sample face by means of the beam 16, damage of the sample 15 due to the beam 16 can be decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集束イオンビーム
加工装置における加工位置合わせ方法に係わり、特に対
象試料のダメージを最小限に押えることが可能な集束イ
オンビーム加工位置合わせ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing position alignment method in a focused ion beam processing apparatus, and more particularly to a focused ion beam processing position alignment method capable of minimizing damage to a target sample.

【0002】[0002]

【従来の技術】従来の集束イオンビーム加工方法および
加工装置については、特開平1−181529号公報で論じら
れている。その装置の概要を図4に示す。
2. Description of the Related Art A conventional focused ion beam processing method and processing apparatus are discussed in JP-A-1-181529. FIG. 4 shows an outline of the apparatus.

【0003】[0003]

【発明が解決しようとする課題】従来技術ではイオンビ
ーム軸と電子ビーム軸が必ずしも対象試料面上で一致し
ないために、加工位置を設定するためには対象試料面上
をイオンビームで走査する必要があった。このため試料
面上にイオンビームによるダメージを与えてしまってい
た。
In the prior art, since the ion beam axis and the electron beam axis do not always coincide on the target sample surface, it is necessary to scan the target sample surface with the ion beam in order to set the processing position. was there. For this reason, the sample surface was damaged by the ion beam.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は電子ビームを走査する制御系に偏向領域の
2軸方向に個別の倍率を設定する機構と中心位置をシフ
トする機構を設け、試料面上に設けた検出パターンの位
置関係をSIM像,SEM像各々で求めその相関値を前
述の倍率を設定する機構、中心位置をシフトする機構に
設定することによりSIM像と同一のSEM像を得られ
る。この後、試料ステージを移動し目的対象物をSEM
像で検索し、得られたSEM像を基にイオンビームによ
る加工領域の設定を行う。
In order to achieve the above object, the present invention provides a control system for scanning an electron beam with a mechanism for setting individual magnifications in two directions of a deflection area and a mechanism for shifting a center position. The SIM and the SEM image are used to determine the positional relationship of the detection pattern provided on the sample surface, and the correlation value is set to the above-described mechanism for setting the magnification and the mechanism for shifting the center position, thereby obtaining the same as the SIM image. An SEM image can be obtained. After this, the sample stage is moved and the target object is
An image is searched, and a processing area is set by an ion beam based on the obtained SEM image.

【0005】この機構を設けることにより対象試料表面
上をイオンビームで一度も走査すること無く、電子ビー
ムを走査することにより得られるSEM像を用いて加工
領域の設定が可能となる。
By providing this mechanism, it is possible to set a processing area using an SEM image obtained by scanning an electron beam without scanning the surface of the target sample with an ion beam.

【0006】[0006]

【発明の実施の形態】本発明の実施例を図1に示す。メ
インチャンバ1にはゲートバルブ2を介してロードロッ
クチャンバ3が設けられており、メインチャンバ1はバ
ルブ4を介して真空ポンプにより排気され、ロードロッ
クチャンバ3もまたバルブ5を介して真空ポンプにより
排気される。メインチャンバ1にはイオンビーム鏡筒
6,電子ビーム鏡筒7,2次電子ディテクタ8及び試料
ステージ9が設けられている。このうちイオンビーム鏡
筒6には液体金属イオン源10,イオンビーム集束用静
電レンズ系11,ブランキング電極12,ブランキング
アパーチャ13及び偏向制御電極14が設けられてお
り、各々の電極には必要な電圧が外部から印加されるよ
うになっている。また、電子ビーム鏡筒7は通常の走査
電子顕微鏡(SEM)に用いられているものと同様なも
ので、レンズ系やブランキング電極,偏向制御電極等に
より試料15上に焦点を結んだ状態で試料15上を電子
ビーム17によって走査するが、イオンビーム16が照
射されている間、電子ビーム17はブランキングされる
ようになっている。ここで、イオンビーム16と電子ビ
ーム17の切替はイオンビーム・ブランキング制御器1
9,イオンビーム・スキャニング制御器18,電子ビー
ム・ブランキング制御器21及び電子ビーム・スキャニ
ング制御器20を制御装置24からのタイミング指令に
より、スキャン制御,ブランキング制御を所望に切替え
て行う。イオンビーム16が試料15上に照射されてい
る場合は、イオンビーム16による2次電子を2次電子
ディテクタ8で捕らえ、イメージ制御器22によりSI
M像をモニタ23上に表示する。電子ビーム17が試料
15上に照射されている場合は、電子ビーム17による
2次電子を2次電子ディテクタ8で捕らえ、イメージ制
御器22によりSEM像をモニタ23上に表示する。
FIG. 1 shows an embodiment of the present invention. The main chamber 1 is provided with a load lock chamber 3 via a gate valve 2. The main chamber 1 is evacuated by a vacuum pump via a valve 4, and the load lock chamber 3 is also exhausted by a vacuum pump via a valve 5. Exhausted. The main chamber 1 is provided with an ion beam column 6, an electron beam column 7, a secondary electron detector 8, and a sample stage 9. Among them, the ion beam column 6 is provided with a liquid metal ion source 10, an ion beam focusing electrostatic lens system 11, a blanking electrode 12, a blanking aperture 13, and a deflection control electrode 14. The required voltage is applied from outside. The electron beam column 7 is similar to that used in a normal scanning electron microscope (SEM), and is focused on the sample 15 by a lens system, a blanking electrode, a deflection control electrode, and the like. The sample 15 is scanned with the electron beam 17, and the electron beam 17 is blanked while the ion beam 16 is irradiated. Here, the switching between the ion beam 16 and the electron beam 17 is performed by the ion beam blanking controller 1.
9, the ion beam scanning controller 18, the electron beam blanking controller 21, and the electron beam scanning controller 20 are switched between scan control and blanking control as desired by a timing command from the control device 24. When the sample 15 is irradiated with the ion beam 16, secondary electrons generated by the ion beam 16 are captured by the secondary electron detector 8, and the secondary electrons are detected by the image controller 22.
The M image is displayed on the monitor 23. When the electron beam 17 is irradiated on the sample 15, secondary electrons generated by the electron beam 17 are captured by the secondary electron detector 8, and an SEM image is displayed on the monitor 23 by the image controller 22.

【0007】なお、電子シャワー銃29はイオンビーム
16による加工でチャージアップが生じた際に試料15
表面での正電荷を中和するもので、SEM像観察時はブ
ランキング制御器28によりブランキングがかけられる
ようになっている。また、XeF等のガスをガス制御器
32でガスバルブ31を制御することによりメインチャ
ンバ1内に設けたガス吹き付けノズル30から試料15
面上に引き付けて加工時に発生するスパッタ粒子の再付
着を発生させなくすることができる。本装置構成で、イ
オンビーム鏡筒6と電子ビーム鏡筒7は電子ビーム17
がイオンビーム16に対してある角度θをもつように設
置されている。また、試料ステージ9上に設置された試
料15上へのイオンビーム16照射点の近くに電子ビー
ム17が照射されるように機械的な調整がされている。
但し、機械的な調整では数μm単位で各ビームの照射点
を一致させるのは困難である。そこで図2に示すように
試料15上に設けた複数の登録マーク33間の距離をS
IM像上及びSEM像上で各々計測し以下の演算式によ
り求めた補正値をオフセット制御器25及びゲイン制御
器26に設定することによりSIM像とSEM像を一致
させる。
When the electron shower gun 29 is charged up by processing with the ion beam 16, the sample 15
It neutralizes the positive charge on the surface, and is blanked by the blanking controller 28 during SEM image observation. The gas such as XeF is controlled by the gas valve 31 by the gas controller 32 so that the gas spray nozzle 30 provided in the main chamber 1 supplies the sample 15.
It is possible to prevent sputter particles from being reattached during processing by being attracted to the surface. In this device configuration, the ion beam column 6 and the electron beam column 7
Are set to have a certain angle θ with respect to the ion beam 16. In addition, mechanical adjustment is performed so that the electron beam 17 is irradiated near the irradiation point of the ion beam 16 on the sample 15 placed on the sample stage 9.
However, it is difficult to match the irradiation points of the respective beams in units of several μm by mechanical adjustment. Therefore, as shown in FIG. 2, the distance between the plurality of registration marks 33 provided on the sample 15 is represented by S
The SIM image and the SEM image are matched by setting the correction values measured on the IM image and the SEM image and obtained by the following arithmetic expressions in the offset controller 25 and the gain controller 26.

【0008】X方向の倍率補正値=L1/L2 Y方向の倍率補正値=H1/H2 X方向の中心位置補正値=X2−(L2/L1)×X1 Y方向の中心位置補正値=Y2−(H2/H1)×Y1 この操作で各計測ポイントの指定はモニタ23上に表示
されたSIM像及びSEM像上にカーソルを表示し、そ
れを移動させることに行うが、イメージ制御器22に設
けた画像検出器27で画像処理により検出することとし
てもよい。
Magnification correction value in X direction = L1 / L2 Magnification correction value in Y direction = H1 / H2 Center position correction value in X direction = X2- (L2 / L1) × X1 Center position correction value in Y direction = Y2- (H2 / H1) × Y1 In this operation, each measurement point is designated by displaying a cursor on the SIM image and the SEM image displayed on the monitor 23 and moving the cursor. Alternatively, it may be detected by the image detector 27 by image processing.

【0009】この操作によりSEM画像をSIM画像と
一致させた状態で試料ステージ9上の試料15の所望の
位置がイオンビーム16下に来るようにSEM像を観察
しながら移動させる。移動終了後SEM像で所望の加工
位置を設定し先の各補正値に基づいてイオンビーム16
の走査領域をイオンビーム・スキャン制御器に設定して
ビーム走査を行い加工を実行する。
By this operation, the SEM image is moved while observing the SEM image so that the desired position of the sample 15 on the sample stage 9 is located below the ion beam 16 in a state where the SEM image matches the SIM image. After the movement, a desired processing position is set on the SEM image, and the ion beam 16 is set based on the respective correction values.
Is set in the ion beam scan controller to perform beam scanning and execute processing.

【0010】[0010]

【発明の効果】本発明によれば、対象試料面上をイオン
ビームで一度も走査することなく、電子ビームを走査す
ることにより得られるSEM像を用いて加工領域の設定
が加工となるため、試料ダメージを減らす効果がある。
According to the present invention, the processing region is set by using the SEM image obtained by scanning the electron beam without scanning the target sample surface with the ion beam once. This has the effect of reducing sample damage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の集束イオンビーム加工装置のブロック
図。
FIG. 1 is a block diagram of a focused ion beam processing apparatus according to the present invention.

【図2】SIM像とSEM像の関係を示す説明図。FIG. 2 is an explanatory diagram showing a relationship between a SIM image and an SEM image.

【図3】従来の集束イオンビーム加工装置のブロック
図。
FIG. 3 is a block diagram of a conventional focused ion beam processing apparatus.

【符号の説明】[Explanation of symbols]

2…ゲートバルブ、3…ロードロックチャンバ、4,5
…バルブ、6…イオンビーム鏡筒、7…電子ビーム鏡
筒、8…2次電子ディテクタ、9…試料ステージ、10
…液体金属イオン源、11…イオンビーム集束用静電レ
ンズ系、12…ブランキング電極、13…ブランキング
アパーチャ、14…偏向制御電極、15…試料、16…
イオンビーム、17…電子ビーム、18,20…スキャ
ン制御器、19,21,28…ブランキング制御器、2
2…イメージ制御器、23…モニタ、24…制御装置、
25…オフセット制御器、26…ゲイン制御器、27…
画像検出器、29…電子シャワー銃、30…ガス吹き付
けノズル、31…ガスバルブ、32…ガス制御器。
2 ... Gate valve, 3 ... Load lock chamber, 4,5
... Valve, 6 ... Ion beam column, 7 ... Electron beam column, 8 ... Secondary electron detector, 9 ... Sample stage, 10
... Liquid metal ion source, 11 ... Ion beam focusing electrostatic lens system, 12 ... Blanking electrode, 13 ... Blanking aperture, 14 ... Deflection control electrode, 15 ... Sample, 16 ...
Ion beam, 17 ... electron beam, 18, 20 ... scan controller, 19, 21, 28 ... blanking controller, 2
2 ... Image controller, 23 ... Monitor, 24 ... Control device,
25 ... offset controller, 26 ... gain controller, 27 ...
Image detector, 29: electronic shower gun, 30: gas spray nozzle, 31: gas valve, 32: gas controller.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】イオン源からの放出イオンを静電レンズに
より集束して集束イオンビームを形成し、上記集束イオ
ンビームを用いて試料を加工する集束イオンビーム加工
装置において、イオンビーム軸方向から傾いた軸方向に
電子ビームを走査する光学系を設け、前記電子ビームを
走査して得られたSEM像を、前記イオンビームを走査
して得られたSIM像に合わせる機構を有することを特
徴とする集束イオンビーム加工位置合わせ方法。
An ion beam emitted from an ion source is focused by an electrostatic lens to form a focused ion beam, and a focused ion beam processing apparatus for processing a sample using the focused ion beam is inclined from an ion beam axis direction. An optical system for scanning the electron beam in the axial direction, and a mechanism for matching a SEM image obtained by scanning the electron beam with a SIM image obtained by scanning the ion beam. Focused ion beam processing alignment method.
【請求項2】前記SEM像を前記SIM像に合わせるの
に上記試料面上の登録マークを使用する請求項1に記載
の集束イオンビーム加工位置合わせ方法。
2. The focused ion beam processing position alignment method according to claim 1, wherein a registration mark on the sample surface is used to align the SEM image with the SIM image.
【請求項3】前記イオンビームによる加工位置指定を前
記SEM像を基に行う請求項1に記載の集束イオンビー
ム加工位置合わせ方法。
3. The focused ion beam processing position alignment method according to claim 1, wherein the processing position is designated by the ion beam based on the SEM image.
JP8247523A 1996-09-19 1996-09-19 Focused ion beam processing positioning method Pending JPH1092364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247523A JPH1092364A (en) 1996-09-19 1996-09-19 Focused ion beam processing positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247523A JPH1092364A (en) 1996-09-19 1996-09-19 Focused ion beam processing positioning method

Publications (1)

Publication Number Publication Date
JPH1092364A true JPH1092364A (en) 1998-04-10

Family

ID=17164766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247523A Pending JPH1092364A (en) 1996-09-19 1996-09-19 Focused ion beam processing positioning method

Country Status (1)

Country Link
JP (1) JPH1092364A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521902B1 (en) 2000-08-15 2003-02-18 International Business Machines Corporation Process for minimizing electrostatic damage and pole tip recession of magnetoresistive magnetic recording head during pole tip trimming by focused ion beam milling
JP2006309952A (en) * 2005-04-26 2006-11-09 Sii Nanotechnology Inc Composite charged particle beam device and method for determining irradiation position in it
US8109236B2 (en) 2007-04-05 2012-02-07 Sumitomo Corporation Of America Fluid delivery assembly
US20120211652A1 (en) * 2009-10-23 2012-08-23 Kunio Sakamoto Charged Particle Beam Device, Position Specification Method Used for Charged Particle Beam Device, and Program
US8668400B2 (en) 2007-04-05 2014-03-11 The Hartz Mountain Corporation Fluid applicator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521902B1 (en) 2000-08-15 2003-02-18 International Business Machines Corporation Process for minimizing electrostatic damage and pole tip recession of magnetoresistive magnetic recording head during pole tip trimming by focused ion beam milling
JP2006309952A (en) * 2005-04-26 2006-11-09 Sii Nanotechnology Inc Composite charged particle beam device and method for determining irradiation position in it
US8109236B2 (en) 2007-04-05 2012-02-07 Sumitomo Corporation Of America Fluid delivery assembly
US8668400B2 (en) 2007-04-05 2014-03-11 The Hartz Mountain Corporation Fluid applicator
US20120211652A1 (en) * 2009-10-23 2012-08-23 Kunio Sakamoto Charged Particle Beam Device, Position Specification Method Used for Charged Particle Beam Device, and Program
US8912487B2 (en) * 2009-10-23 2014-12-16 Hitachi High-Technologies Corporation Charged particle beam device, position specification method used for charged particle beam device, and program

Similar Documents

Publication Publication Date Title
US6534766B2 (en) Charged particle beam system and pattern slant observing method
TW201637062A (en) Charged particle beam system and methods
US6765217B1 (en) Charged-particle-beam mapping projection-optical systems and methods for adjusting same
TWI803572B (en) Charged particle beam device, sample processing and observation method
JPH0286036A (en) Ion micro-analyzer
JP2000321040A (en) Apparatus and method for measuring dimension of pattern
JPH0917369A (en) Scanning electron microscope
JP2926132B1 (en) Secondary ion image observation method using focused ion beam
US20010032936A1 (en) Ion beam processing position correction method
JP3101130B2 (en) Complex charged particle beam device
JP3101114B2 (en) Scanning electron microscope
JPH1092364A (en) Focused ion beam processing positioning method
JP2003022771A (en) Particle beam device
US5012109A (en) Charged particle beam apparatus
JP2946537B2 (en) Electron optical column
US20070018100A1 (en) Charged-particle beam instrument and method of detecting information from specimen using charged-particle beam
JPH07230784A (en) Composite charge particle beam device
JP4752138B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP3085390B2 (en) Charged beam local processing equipment
JP4192290B2 (en) Charged particle beam projection optical system and adjustment method thereof
JPH06290726A (en) Charged particle beam converging apparatus
JP4117427B2 (en) Method for adjusting charged particle beam projection optical system and charged particle beam projection optical system
WO2002073653A1 (en) Focused ion beam system and machining method using it
JP2000323083A (en) Projection type ion beam machining device
JPH0234144B2 (en)