JPH1090303A - Probe incorporating high frequency circuit - Google Patents

Probe incorporating high frequency circuit

Info

Publication number
JPH1090303A
JPH1090303A JP8261201A JP26120196A JPH1090303A JP H1090303 A JPH1090303 A JP H1090303A JP 8261201 A JP8261201 A JP 8261201A JP 26120196 A JP26120196 A JP 26120196A JP H1090303 A JPH1090303 A JP H1090303A
Authority
JP
Japan
Prior art keywords
electrode
probe
ground
circuit
probe according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8261201A
Other languages
Japanese (ja)
Other versions
JP3726170B2 (en
Inventor
Shigeo Kiyota
清田茂男
Eiji Mori
栄二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYANDOTSUKUSU SYST KK
KIYOTA SEISAKUSHO KK
Kiyota Manufacturing Co
Original Assignee
KIYANDOTSUKUSU SYST KK
KIYOTA SEISAKUSHO KK
Kiyota Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYANDOTSUKUSU SYST KK, KIYOTA SEISAKUSHO KK, Kiyota Manufacturing Co filed Critical KIYANDOTSUKUSU SYST KK
Priority to JP26120196A priority Critical patent/JP3726170B2/en
Publication of JPH1090303A publication Critical patent/JPH1090303A/en
Application granted granted Critical
Publication of JP3726170B2 publication Critical patent/JP3726170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid various losses and the like by holding an electrode and a ground formed of metallic sheets interposing an insulating material and incorporating a microwave circuit at a specific part of a conduction line constituted of the electrode and ground. SOLUTION: A metallic thin sheet electrode 1 having spring properties is held between thin sheet grounds 3 and 3' having spring properties via an insulating body 2. A microwave circuit is incorporated at a part of a transmission line constituted of the electrode 1 and grounds 3, 3' where influences by an electric field are negligible. The incorporated microwave circuit is a circuit utilizing a distribution constant theory, e.g. a filter, an impedance conversion circuit, a transmission line, an amplifier, a comparator, etc. A single or a plurality of the circuits are incorporated. If the electrode 1 and grounds 3, 3' are not required to be movable, these are not necessary to be formed of metallic thin sheets of spring properties. The insulating material 2 may be air. Since the electrode 1 and grounds 3, 3' are sheet-like parts, there is no restriction to a space in a plane direction, so that the microwave circuit can be arranged easily in a probe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、集積回路、面実
装デバイス等の回路検査を行う積層プローブに係り、詳
記すれば、マイクロ波回路を内蔵させることによって、
プローブから取り出した信号を正確に伝送し、プローブ
点に近い部分で処理することによって、正確な処理デ−
タとして計算機に取り込むことができるようにし、しか
もIC等の測定システムを小型化し得るようにしたプロ
ーブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated probe for inspecting a circuit such as an integrated circuit and a surface mount device, and more particularly, to a laminated probe having a built-in microwave circuit.
By accurately transmitting the signal extracted from the probe and processing it near the probe point, accurate processing data can be obtained.
The present invention relates to a probe that can be taken into a computer as a data and that can reduce the size of a measurement system such as an IC.

【0002】[0002]

【従来の技術】従来、高周波領域で使用するプロ−ブと
しては、中心の細長い針金状の電極を、誘電体を介し
て、グラウンドとなる筒体に内装し、全体を細長い円筒
状に形成した同軸プロ−ブが主として使用されていた。
2. Description of the Related Art Conventionally, as a probe used in a high frequency region, an elongated wire-shaped electrode at the center is housed in a cylindrical body serving as a ground via a dielectric material, and the whole is formed in an elongated cylindrical shape. Coaxial probes were mainly used.

【0003】[0003]

【発明が解決しようとする課題】上記同軸プロ−ブは、
微細ピッチのプロ−ブほど、各種ロス・インピ−ダンス
マッチングエラ−等が問題となり、これが測定誤差の一
因となっている。同軸プロ−ブにマイクロ波回路を内蔵
させれば良いが、同軸構造の場合、被測定物のピン間若
しくは最高動作周波数で、同軸線路の外部導体の大きさ
が決まる。従って、外部導体を大きくしてマイクロ波回
路を内蔵させるには、同軸線路間のスペ−スが取れるま
で、同軸線路・ケ−ブル等で引き回さなければならず、
その結果伝送ロスが増えたり、構造が複雑になる問題が
ある。
The above coaxial probe has the following features.
As the probe has a finer pitch, various loss / impedance matching errors or the like become a problem, and this contributes to a measurement error. The microwave circuit may be built in the coaxial probe. However, in the case of a coaxial structure, the size of the outer conductor of the coaxial line is determined between the pins of the device under test or at the highest operating frequency. Therefore, in order to increase the size of the outer conductor and incorporate the microwave circuit, the coaxial line must be routed with a coaxial line or cable until space between the coaxial lines is obtained.
As a result, there are problems that transmission loss increases and the structure becomes complicated.

【0004】そればかりか、同軸プローブの場合、被測
定物のピン間が細くなると、同軸線路も細くなり、導体
が細くなるため、大電流を流すことができず、また直流
抵抗値も上昇するため、ラインのロスも増大する欠点が
あった。
In addition, in the case of a coaxial probe, when the distance between the pins of the device under test becomes narrow, the coaxial line also becomes thin, and the conductor becomes thin, so that a large current cannot flow and the DC resistance increases. Therefore, there is a disadvantage that the line loss increases.

【0005】マイクロ波回路を、同軸プローブの外に設
けることも考えられるが、測定点から遠くなると、信号
が歪んだり、信号ロスのためノイズの影響を受ける問題
があるほか、マイクロ波回路の場合、被測定物とのプロ
−ブ点とアンプなどとの回路間の距離が長くなると、伝
送線路に定住波が生じ、信号を正しく伝達できなくな
る。
It is conceivable that the microwave circuit is provided outside the coaxial probe. However, when the distance from the measurement point is increased, there is a problem that the signal is distorted or the signal loss causes the influence of noise. If the distance between the probe point to the device under test and the circuit between the amplifier and the like becomes long, a stationary wave is generated in the transmission line, and the signal cannot be transmitted properly.

【0006】この発明は、このような問題点を解決しよ
うとするものであり、容易にマイクロ波回路を内蔵した
プロ−ブを構成することができ、内蔵させることによっ
て、各種ロス・インピ−ダンスマッチングエラ−等を生
じ難くしたマイクロ波回路内蔵プロ−ブを提供すること
を目的とする。
The present invention is intended to solve such a problem, and a probe having a built-in microwave circuit can be easily formed. By incorporating the probe, various loss impedances can be obtained. It is an object of the present invention to provide a probe with a built-in microwave circuit, which hardly causes a matching error or the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、電極とグラウンドとを金属板で形成し、
該電極とグラウンドとを絶縁材を介して保持してプロ−
ブを構成し、前記電極とグラウンドとで構成される伝送
ラインの電界の影響を無視し得る部分に、マイクロ波回
路を内蔵させたことを特徴とする。マイクロ波回路は、
被測定物にできるだけ近いプロ−ブ部に内蔵させるの
が、電気的特性が良好となることから好ましい。
In order to achieve the above object, the present invention provides an electrode and a ground formed of a metal plate,
The electrode and the ground are held through an insulating material and
A microwave circuit is built in a portion where the influence of the electric field of the transmission line composed of the electrode and the ground can be ignored. The microwave circuit is
It is preferable to incorporate the probe in a probe section as close as possible to the device under test, because the electrical characteristics are improved.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の実施例を示す斜
視図であり、バネ性を有する金属製薄板状電極1を誘導
体(絶縁材)2を介してバネ性を有する薄板状グラウン
ド(GND)3,3′でサンドイッチし、前記電極とグ
ラウンドとで構成される伝送ラインの電界の影響を無視
し得る部分に、マイクロ波回路(図3の符号10)を内
蔵した例を示す。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention, in which a metal thin plate electrode 1 having spring properties is connected to a thin plate ground (GND) 3, 3 'having spring properties via a dielectric (insulating material) 2. An example is shown in which a microwave circuit (reference numeral 10 in FIG. 3) is built in a portion where the influence of the electric field of the transmission line composed of the electrode and the ground can be ignored.

【0009】本発明でマイクロ波回路を、電極とグラウ
ンドとで構成される伝送ラインの電界の影響を無視し得
る部分に内蔵させるのは、これら部分は、実質的にイン
ピ−ダンスを決める部分以外となるからである。
In the present invention, the microwave circuit is built in a portion where the influence of the electric field of the transmission line composed of the electrode and the ground can be neglected. These portions are those other than the portion which substantially determines the impedance. This is because

【0010】図1はストリップライン型プロ−ブについ
ての実施例であるが、図2に示すように、電極1aとグ
ラウンド3aとを間隔付けて面一となるように保持した
コプレ−ナライン型プロ−ブに、マイクロ波回路及び能
動素子を内蔵させても勿論良い。
FIG. 1 shows an embodiment of a strip line type probe. As shown in FIG. 2, a coplanar line type probe in which an electrode 1a and a ground 3a are spaced apart and held flush with each other. Of course, a microwave circuit and an active element may be built in the antenna.

【0011】図2の実施例においては、面一となるグラ
ウンド3aと電極1aとの下方の絶縁材2aと2a′と
の間に、電極1aとは異なる形の電極1bとグラウンド
(図示せず)とを内蔵している。このように構成するこ
とによって、電極を多数積層した場合にアイソレ−ショ
ン特性が改善されるだけでなく、よりフアインピッチな
プロ−ブを実現することができる。
In the embodiment shown in FIG. 2, an electrode 1b having a different shape from the electrode 1a and a ground (not shown) are provided between the insulating material 2a and 2a 'below the ground 3a and the electrode 1a, which are flush with each other. ) And built-in. With this configuration, not only the isolation characteristics are improved when a large number of electrodes are stacked, but also a finer pitch probe can be realized.

【0012】図3〜図6は、本発明のプロ−ブに、マイ
クロ波回路を内蔵させた例を示すものである。図3は、
金属製の薄板から形成した電極1に、長さ方向と直交し
て十字形に、突片6を3枚連設した例を示す。マイクロ
波回路(フイルタ−)10は、上記突片6に内蔵させれ
ば良い。
FIGS. 3 to 6 show an example in which a microwave circuit is incorporated in the probe of the present invention. FIG.
An example in which three protruding pieces 6 are continuously provided in a cross shape orthogonal to the length direction on an electrode 1 formed from a thin metal plate is shown. The microwave circuit (filter) 10 may be built in the protruding piece 6.

【0013】図4は、電極1をプロ−ブ内に固定し、該
電極1に近接して金属板7を位置させて結合線路を構成
し、該結合線路にマイクロ波回路の機能を付与させた例
を示す。尚、図5に示すように、電極1と金属板7とを
連結して結合線路を構成しても良い。
FIG. 4 shows a structure in which the electrode 1 is fixed in a probe, a metal plate 7 is positioned close to the electrode 1 to form a coupling line, and the coupling line has a function of a microwave circuit. Here is an example. In addition, as shown in FIG. 5, the electrode 1 and the metal plate 7 may be connected to form a coupling line.

【0014】図6は、電極1にアンプ8を内蔵し、電極
1に近接して、金属片9を位置させて方向性結合器を構
成した例を示す。上記方向性結合器やブリッジ等の方向
性を持った回路をプロ−ブの先端に内蔵することによっ
て、図6の矢印で示すプロ−ブ先端からの反射した信号
を測定することができる。
FIG. 6 shows an example in which an amplifier 8 is built in the electrode 1 and a metal piece 9 is positioned close to the electrode 1 to form a directional coupler. By incorporating a directional circuit such as a directional coupler or a bridge at the tip of the probe, a signal reflected from the tip of the probe shown by an arrow in FIG. 6 can be measured.

【0015】上記反射信号と印加した信号の位相と振幅
を測定することによって、プロ−ブの伝達特性を算出す
ることができる。伝達特性がわかることで、プロ−ブに
よる信号の歪みを算出できる。印加する信号を、信号を
印加する部分で欲しい信号波形となるように変えること
によって、プロ−ブの伝達特性による歪みを補正するこ
とができ、プロ−ブ端の信号を理想状態にすることがで
きる。また、伝達特性がわかっているため、プロ−ブか
らの信号を演算処理することで、プロ−ブ等の影響を取
り除いた信号を演算により推測できる。
By measuring the phase and amplitude of the reflected signal and the applied signal, the transfer characteristics of the probe can be calculated. By knowing the transfer characteristics, signal distortion due to the probe can be calculated. By changing the signal to be applied so as to have a desired signal waveform at the portion to which the signal is applied, distortion due to the transfer characteristics of the probe can be corrected, and the signal at the end of the probe can be brought into an ideal state. it can. Further, since the transfer characteristics are known, a signal from which the influence of the probe or the like has been removed can be estimated by calculation by processing the signal from the probe.

【0016】本発明で内蔵するマイクロ波回路は、分布
定数理論を一部若しくは全部利用した回路であり、例え
ばフイルタ−、インピ−ダンス変換回路、伝送線路、ア
ンプ、コンパレ−タ及び各種スタブ等が挙げられ、これ
らは単独若しくは複数であっても良い。例えば、測定の
ための回路が入った半導体チップ(例えば、ピンドライ
バ−、コンパレ−タ、アンプ等)をプロ−ブ上に配置す
ると良い。
The microwave circuit incorporated in the present invention is a circuit utilizing part or all of the distributed constant theory, such as a filter, an impedance conversion circuit, a transmission line, an amplifier, a comparator, and various stubs. And these may be single or plural. For example, a semiconductor chip (for example, a pin driver, a comparator, an amplifier, etc.) containing a circuit for measurement may be arranged on the probe.

【0017】プロ−ブのインピ−ダンスは、決められた
インピ−ダンスになっていないと、被測定物との接点で
反射が起きる。また、プロ−ブが長くなると、被測定物
からみたプロ−ブインピ−ダンスを管理するのが難しく
なる。アンプ等をプロ−ブ点に近い位置に内蔵すると、
アンプまでのインピ−ダンスを管理すれば良いので、容
易にインピ−ダンスを管理することができることと、ア
ンプでアイソレ−ションをとることによって、伝送線路
とプロ−ブ点の反射を押えることができるから、高確度
の測定が可能となる。
If the impedance of the probe does not reach the predetermined impedance, reflection occurs at the contact point with the object to be measured. Also, as the probe lengthens, it becomes difficult to manage the probe impedance as viewed from the measured object. If you install an amplifier etc. near the probe point,
Since the impedance up to the amplifier may be managed, the impedance can be easily managed, and the isolation of the amplifier can suppress transmission line and probe point reflections. Therefore, highly accurate measurement is possible.

【0018】また、インピ−ダンス変換回路をプロ−ブ
点に配置することで、被測定物とプロ−ブとの接点部分
のミスマッチを少なくすることができる。これは、従来
のプロ−ブでは、難しかったことである。コンパレ−タ
を内蔵すると、信号が減衰し、歪んだり、ノイズの影響
を受けたりする前に、信号のレベルが判断できる。
Further, by disposing the impedance conversion circuit at the probe point, it is possible to reduce the mismatch of the contact point between the device under test and the probe. This is difficult with a conventional probe. With a built-in comparator, the signal level can be determined before the signal is attenuated, distorted, or affected by noise.

【0019】フイルタ−等の回路は、決められた信号を
取り出したり、群遅延時間を変えたり、インピ−ダンス
を変えるために用いる。単独でも、つなぎあわせても用
いることができる。各種スタブは、伝送線路に並列若し
くは直列に接続し、一方の回路のインピ−ダンスを、接
続される他方の回路のインピ−ダンスに整合させる作用
をするものである。
A circuit such as a filter is used for extracting a predetermined signal, changing a group delay time, and changing impedance. It can be used alone or connected. The various stubs are connected to the transmission line in parallel or in series, and serve to match the impedance of one circuit to the impedance of the other connected circuit.

【0020】上記マイクロ波回路に加えて、能動素子を
内蔵させると、信号を歪ませたり、減衰させたりするこ
となく、伝送することができる。インピ−ダンスの整合
の取れていない回路でも、能動素子(アンプ等)をプロ
−ブ内部に入れ、その出力インピ−ダンスを伝送線路の
インピ−ダンスとマッチングをとることで、定在波の量
を減らすことができ、信号の反射量を減らすことができ
るからである。上記図1に示す実施例では、1つの電極
の例を示したが、電極を多数設ける場合は、電極1とグ
ラウンド3とを、絶縁材2を介して交互に多数積層すれ
ば良い。また、図2に示す実施例の場合は、このまま多
数積層すればよい。
If an active element is incorporated in addition to the microwave circuit, the signal can be transmitted without distorting or attenuating the signal. Even in a circuit whose impedance is not matched, an active element (amplifier, etc.) is put inside the probe, and its output impedance is matched with the impedance of the transmission line to obtain the amount of standing wave. Is reduced, and the amount of signal reflection can be reduced. In the embodiment shown in FIG. 1 described above, an example of one electrode is shown. However, when a large number of electrodes are provided, a large number of electrodes 1 and grounds 3 may be alternately laminated via an insulating material 2. Further, in the case of the embodiment shown in FIG.

【0021】上記図1及び図2に示す実施例では、電極
1,1a,1bとグラウンド3,3′,3aとを、バネ
性を有する金属製薄板で形成している。これは、電極及
びグラウンドとも可動するように構成するためである
が、可動させる必要がない場合は、必ずしもバネ性を有
する金属製薄板でなくとも差し支えない。例えば、グラ
ウンドは、デバイスに接続する必要がなければ、可動し
ないように構成しても差し支えない。
In the embodiment shown in FIGS. 1 and 2, the electrodes 1, 1a, 1b and the grounds 3, 3 ', 3a are formed of a spring-made metal thin plate. This is because the electrode and the ground are configured to be movable. However, when the electrode and the ground do not need to be movable, the metal plate may not necessarily be a metal thin plate having a spring property. For example, the ground may be configured to be non-movable unless it needs to be connected to the device.

【0022】フアインピッチのプロ−ブとするには、電
極1,1a,1b及びグラウンド3,3′,3aの薄板
厚さは、0.2mm以下、好ましくは0.12mm以下
とするのが良い。このような薄板は、鋼、銅合金、タン
グステンまたは焼入れ帯鋼板から形成するのが好まし
く、このような材質から形成すると、0.02mmとい
う超薄板に容易に形成することができる。
In order to obtain a fine pitch probe, the thickness of the thin plates of the electrodes 1, 1a, 1b and the grounds 3, 3 ', 3a should be 0.2 mm or less, preferably 0.12 mm or less. Such a thin plate is preferably formed of steel, copper alloy, tungsten or a quenched steel plate, and if formed of such a material, it can be easily formed into an ultra-thin plate of 0.02 mm.

【0023】しかしながら、適用目的によっては、電極
1,1a,1b、グラウンド3,3a及び絶縁材2,2
aは、薄板でなくとも良い。例えば、低い周波数の大電
流デバイス等の検査に適用する場合は、電極、グラウン
ド及び絶縁材の厚さは、数mm〜数cmの厚さにするこ
とができる。図1及び図2において、絶縁材2,2a
は、空気であっても良く、プロ−ブの先端部分の絶縁材
2,2aを空気とし、根元は隣接するプロ−ブを保持す
る目的から、樹脂等から形成した板体若しくはシ−ト状
物としても良い。
However, depending on the purpose of application, the electrodes 1, 1a, 1b, the grounds 3, 3a and the insulating materials 2, 2
a need not be a thin plate. For example, when applied to inspection of a low-frequency large-current device or the like, the thickness of the electrode, the ground, and the insulating material can be several mm to several cm. 1 and 2, the insulating members 2 and 2a
May be air, the insulating material 2, 2a at the tip of the probe is air, and the base is a plate or sheet made of resin or the like for the purpose of holding the adjacent probe. Good as a thing.

【0024】電極1の被測定物への接触部及びグラウン
ドのデバイス等への接続部は、ニ−ドル構造として点接
触にしても、或は面接触にしても差し支えない。ウエハ
−上のデバイスを測定する場合は、酸化膜を破る必要が
あることから、ニ−ドル構造の方が有利であり、デバイ
スの端子で測定する場合は、デバイスとプロ−ブとのミ
スマッチを減らすためにも、ある一定の広さとした面構
造とするのが有利である。
The contact portion of the electrode 1 to the object to be measured and the connection portion to the ground device or the like may be a point contact as a needle structure or a surface contact. When measuring devices on a wafer, it is necessary to break the oxide film, so a needle structure is more advantageous.When measuring at the device terminals, mismatch between the device and the probe is measured. In order to reduce the size, it is advantageous to adopt a surface structure having a certain width.

【0025】また、電極部分のみ可動させるようにして
も、電極とグラウンドとを一体として可動させるように
しても良い。ニ−ドル構造とするには、例えば図1に示
すように、薄板からなる電極1のニ−ドル部4の後方に
切り欠き5を形成し、先端ニ−ドル部4が矢印で示すよ
うに、上下方向に弾性移動するようにすれば良い。図2
は、単一の電極の例を示すものであるが、電極を多数設
ける場合は、図2に示すプロ−ブを多数積層するように
すれば良い。
Further, only the electrode portion may be moved, or the electrode and the ground may be moved integrally. In order to form a needle structure, for example, as shown in FIG. 1, a notch 5 is formed behind the needle portion 4 of the electrode 1 made of a thin plate, and the distal end needle portion 4 is formed as shown by an arrow. In this case, the elastic member may be elastically moved in the vertical direction. FIG.
Shows an example of a single electrode. When a large number of electrodes are provided, a large number of probes shown in FIG. 2 may be laminated.

【0026】本発明では、電極とグラウンドとは、板状
に形成されているので、伝送ラインのライン幅を一定の
法則に則って設計すれば良く、面方向のスペ−スの制約
はないので、伝送線路上の誘導体に素子などを配置し、
伝送線路と接続することで、容易にプロ−ブの中に、マ
イクロ波回路や能動素子を配置することができる。この
場合、面の上に配置することができるので、プリント基
板に部品を配置するような簡単な組み配技術で、回路を
構成できる。
In the present invention, since the electrode and the ground are formed in a plate shape, the line width of the transmission line may be designed according to a certain law, and there is no restriction on the space in the plane direction. , Place elements etc. on the derivative on the transmission line,
By connecting to a transmission line, a microwave circuit or an active element can be easily arranged in the probe. In this case, since the circuit can be arranged on the surface, the circuit can be configured by a simple assembling technique such as arranging components on a printed circuit board.

【0027】従来の同軸構造のプロ−ブの場合は、電源
ライン・信号線等、他の信号線をプロ−ブの中に組み込
むことは困難であった。仮に、同軸線路の中にものを配
置すると、線路のインピ−ダンスが変わるが、その同軸
線路のインピ−ダンスを物を配置した状態で、所定のイ
ンピ−ダンスに管理するのは難しいからである。これに
対し、本発明は、伝送ラインのインピ−ダンスを決める
部分以外の部分に、デバイス・素子等を配置するので、
プリント基板と同様に、同一面上に電源ライン・信号線
等を容易に支障なく組み込み、回路を内蔵したプロ−ブ
を構成することができる。
In the case of a conventional probe having a coaxial structure, it is difficult to incorporate other signal lines such as a power supply line and a signal line into the probe. If an object is placed in a coaxial line, the impedance of the line changes, but it is difficult to manage the impedance of the coaxial line at a predetermined impedance with the object placed. . On the other hand, according to the present invention, devices and elements are arranged in portions other than the portion that determines the impedance of the transmission line.
As in the case of the printed circuit board, a power supply line, a signal line, and the like can be easily incorporated on the same surface without any trouble, thereby forming a probe having a built-in circuit.

【0028】また同軸構造のプロ−ブの場合は、被測定
物のピン間が細くなると、導体が細いため、大電流を流
すことができず、また直流抵抗値も上昇するため、ライ
ンのロスも増大する。これに対し、本発明では、面方向
の制約はないので、大電流デバイスをプロ−ブの中に配
置しても、電流用の端子を広くすることで直流抵抗値を
下げることができるので、比較的大きな電流を素子に供
給することができる。このようにしても、同軸構造のプ
ロ−ブと異なり、被測定物のピン間を広げる必要はな
い。
In the case of a probe having a coaxial structure, if the distance between the pins of the device under test becomes narrow, the conductor is too thin to allow a large current to flow, and the DC resistance value also rises, resulting in line loss. Also increase. On the other hand, in the present invention, since there is no restriction in the plane direction, even if a large current device is arranged in the probe, the DC resistance value can be reduced by widening the terminals for the current. A relatively large current can be supplied to the device. Even in this case, unlike the probe having the coaxial structure, it is not necessary to increase the distance between the pins of the device under test.

【0029】[0029]

【発明の効果】以上述べた如く、本発明によれば、プロ
−ブにマイクロ波回路を内蔵させているので、プロ−ブ
から取り出した信号を正確に伝送することができ、しか
もプロ−ブ点に近い部分で処理できるので、正確な処理
データとして計算機に取り込むことができる。
As described above, according to the present invention, since a microwave circuit is built in a probe, a signal taken out of the probe can be transmitted accurately, and furthermore, Since the data can be processed in a portion close to a point, it can be taken into a computer as accurate processing data.

【0030】[0030]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1a,1b 電極 2,2a 絶縁材(誘導体) 3,3a,3b グラウンド(GND) 4 電極のニ−ドル部 5 切り欠き 1, 1a, 1b electrode 2, 2a Insulating material (derivative) 3, 3a, 3b Ground (GND) 4 Needle part of electrode 5 Notch

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年7月25日[Submission date] July 25, 1997

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the present invention.

【図3】本発明の他の実施例を示す側面図である。FIG. 3 is a side view showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す側面図である。FIG. 4 is a side view showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す側面図である。FIG. 5 is a side view showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す側面図である。FIG. 6 is a side view showing another embodiment of the present invention.

【符号の説明】 1,1a,1b 電極 2,2a 絶縁材(誘導体) 3,3a,3b グラウンド(GND) 4 電極のニードル部 5 切り欠き[Description of Signs] 1, 1a, 1b Electrode 2, 2a Insulating material (derivative) 3, 3a, 3b Ground (GND) 4 Electrode needle part 5 Notch

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】電極とグラウンドとを金属板で形成し、該
電極とグラウンドとを絶縁材を介して保持してプロ−ブ
を構成し、前記電極とグラウンドとで構成される伝送ラ
インの電界の影響を無視し得る部分に、マイクロ波回路
を内蔵させたことを特徴とする高周波回路内蔵プロー
ブ。
An electrode and a ground are formed by a metal plate, a probe is formed by holding the electrode and the ground via an insulating material, and an electric field of a transmission line formed by the electrode and the ground is formed. A probe with a built-in high frequency circuit, wherein a microwave circuit is built in a portion where the effect of the above can be ignored.
【請求項2】前記マイクロ波回路を、被測定物に近い部
分のプロ−ブに内蔵させてなる請求項1に記載のプロー
ブ。
2. The probe according to claim 1, wherein said microwave circuit is built in a probe at a portion close to an object to be measured.
【請求項3】前記マイクロ波回路が、分布定数のフイル
タ−、インピ−ダンス変換回路または伝送線路である請
求項1に記載のプローブ。
3. The probe according to claim 1, wherein the microwave circuit is a distributed constant filter, an impedance conversion circuit, or a transmission line.
【請求項4】前記伝送ラインの電界の影響を無視し得る
部分に、能動素子を内蔵させてなる請求項1に記載のプ
ローブ。
4. The probe according to claim 1, wherein an active element is incorporated in a portion where the influence of the electric field of the transmission line can be ignored.
【請求項5】前記電極の長さ方向と交差する方向に、突
片を連設し、該突片に前記マイクロ波回路を内蔵させて
なる請求項1に記載のプローブ。
5. The probe according to claim 1, wherein a protruding piece is continuously provided in a direction intersecting the length direction of the electrode, and the microwave circuit is built in the protruding piece.
【請求項6】前記プローブが、電極に絶縁材を介してグ
ラウンドを積層したストリップライン型積層プローブで
ある請求項4に記載のプローブ。
6. The probe according to claim 4, wherein the probe is a stripline type laminated probe in which a ground is laminated on an electrode via an insulating material.
【請求項7】前記絶縁材の厚さと前記電極の幅とを選択
することによって、回路インピ−ダンスが、所望の特性
インピ−ダンスになるように設定してなる請求項6に記
載のプローブ。
7. The probe according to claim 6, wherein the circuit impedance is set to have a desired characteristic impedance by selecting the thickness of the insulating material and the width of the electrode.
【請求項8】前記プローブを、電極とグラウンドとを、
間隔付けて面一となるように保持し、該同一面に伝送線
路を形成したプローブである請求項4に記載のプロー
ブ。
8. The method according to claim 8, wherein the probe is connected to an electrode and a ground.
The probe according to claim 4, wherein the probe is held so as to be flush with the surface and a transmission line is formed on the same surface.
【請求項9】前記電極とグラウンドとの間隔を調節する
ことによって、所望の特性インピ−ダンスとなるように
設定してなる請求項8に記載のプローブ。
9. The probe according to claim 8, wherein a desired characteristic impedance is set by adjusting a distance between said electrode and ground.
【請求項10】前記面一となる電極とグラウンドとの面
の下方に、絶縁材を配し、該絶縁材の間に、前記電極と
は異なる形の第2の電極を配してなる請求項8に記載の
プローブ。
10. An insulating material is provided below the plane of the flush electrode and the ground, and a second electrode having a shape different from that of the electrode is arranged between the insulating materials. Item 9. The probe according to item 8.
【請求項11】前記プローブを多数積層してなる請求項
6または10に記載のプローブ。
11. The probe according to claim 6, wherein a number of said probes are laminated.
【請求項12】前記金属板を、鋼、銅合金、タングステ
ンまたは焼入れ帯鋼板から形成してなる請求項1に記載
のプローブ。
12. The probe according to claim 1, wherein said metal plate is formed from steel, copper alloy, tungsten, or a quenched steel plate.
JP26120196A 1996-09-11 1996-09-11 High frequency circuit built-in probe Expired - Fee Related JP3726170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26120196A JP3726170B2 (en) 1996-09-11 1996-09-11 High frequency circuit built-in probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26120196A JP3726170B2 (en) 1996-09-11 1996-09-11 High frequency circuit built-in probe

Publications (2)

Publication Number Publication Date
JPH1090303A true JPH1090303A (en) 1998-04-10
JP3726170B2 JP3726170B2 (en) 2005-12-14

Family

ID=17358555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26120196A Expired - Fee Related JP3726170B2 (en) 1996-09-11 1996-09-11 High frequency circuit built-in probe

Country Status (1)

Country Link
JP (1) JP3726170B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045089A (en) * 2002-07-09 2004-02-12 Fujitsu Ltd Probe card and semiconductor tester
JP2005241645A (en) * 2004-02-25 2005-09-08 Tektronix Inc Calibration method and device thereof
KR100795909B1 (en) 2006-12-12 2008-01-21 삼성전자주식회사 Probe card of semiconductor test apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045089A (en) * 2002-07-09 2004-02-12 Fujitsu Ltd Probe card and semiconductor tester
JP2005241645A (en) * 2004-02-25 2005-09-08 Tektronix Inc Calibration method and device thereof
KR100795909B1 (en) 2006-12-12 2008-01-21 삼성전자주식회사 Probe card of semiconductor test apparatus

Also Published As

Publication number Publication date
JP3726170B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US7898273B2 (en) Probe for testing a device under test
JP3998996B2 (en) High frequency transmission line connection system and method
US6501278B1 (en) Test structure apparatus and method
US7034544B2 (en) Methods for minimizing the impedance discontinuity between a conductive trace and a component and structures formed thereby
US7173433B2 (en) Circuit property measurement method
JP2004325306A (en) Coaxial probe for inspection, and inspection unit using the same
US5812039A (en) Apparatus for providing a ground for circuits on carriers
JPH1090303A (en) Probe incorporating high frequency circuit
JPH07191058A (en) Device for testing intrinsic position of broad-band microwave
US6593829B2 (en) Microstrip dot termination usable with optical modulators
JP2019186729A (en) Antenna and measuring probe
CN112098749B (en) Measuring device
TWI802934B (en) Measuring apparatus
US5099201A (en) Stripline test adapter
JP6895568B1 (en) measuring device
JP2572932Y2 (en) High frequency measurement probe
JP3852589B2 (en) Microwave integrated circuit, dielectric substrate
JP2003207531A (en) Near magnetic field probe
JP2000314755A (en) Neighborhood electromagnetic field detecting probe system
JP2010008275A (en) Transmission line board and measuring device of high-frequency component
JPH07307202A (en) Shunt resistor
JPH06310917A (en) Microstrip line device
JPH1090302A (en) Probe formed of metallic sheet
JP2006129232A (en) High-frequency circuit board
JP2000230951A (en) Jig for measuring low inductance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees