JPH1090217A - Sensor for analyzing polarograph type dissolved gas - Google Patents

Sensor for analyzing polarograph type dissolved gas

Info

Publication number
JPH1090217A
JPH1090217A JP8263655A JP26365596A JPH1090217A JP H1090217 A JPH1090217 A JP H1090217A JP 8263655 A JP8263655 A JP 8263655A JP 26365596 A JP26365596 A JP 26365596A JP H1090217 A JPH1090217 A JP H1090217A
Authority
JP
Japan
Prior art keywords
electrolyte
working electrode
diaphragm
gas
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8263655A
Other languages
Japanese (ja)
Inventor
Koji Uchimura
幸治 内村
Hiyousuke Yonezawa
俵介 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP8263655A priority Critical patent/JPH1090217A/en
Publication of JPH1090217A publication Critical patent/JPH1090217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarograph type sensor for analyzing dissolved gas capable of infallibly removing influence of interfering component gas dissolved in an electrolyte regardless of the concentration of the measurement objective gas in liquid. SOLUTION: This sensor, which includes a diaphragm 4 permeating measurement objective gas in a liquid 5 contacting with its exterior surface 'a' but not permeating an electrolyte 6 contacting with its interior surface 'b', and an action pole 7 provided closely to the interior surface 'b' so that an electrolyte phase 11 isolated from the liquid 5 by the diaphragm 4 is formed, measures the density of the measurement objective gas in the liquid 5 by an electrochemical reaction on an action pole surface 7a of the measurement objective gas reaching the action pole surface 7a by diffusing the electrolyte phase 11 after permeating the diaphragm 4. In this case, an electrolyte passage 14 formed on the electrolyte phase 11 by running the action pole 7 through it so that they may communicate with each other and a sealing means 10 for sealing the electrolyte from coming in and out of the electrolyte phase 11 other through the electrolyte passage 14 are provided and an auxiliary pole 8 is also provided for consuming the interfering component dissolved in the electrolyte 6 inside the electrolyte passage on this side of the action pole 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電解液中に溶存
している妨害成分ガスの影響を除去する新規な構造のポ
ーラログラフ式溶存ガス分析用センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarographic sensor for dissolved gas analysis having a novel structure for eliminating the influence of interfering component gases dissolved in an electrolytic solution.

【0002】[0002]

【従来の技術】図4に、従来の隔膜式の溶存ガス分析用
センサを水中の溶存酸素測定に使用した場合の濃度測定
方法を示す。図4において、作用極41と隔膜42の間
に数十から数百ミクロンの隙間(電解液相)43を形成
し、作用極41の周囲から電解液相43に電解液Aを供
給した状態で、作用極41と対極(図示せず)間に外部
電圧を印加すると、隔膜42を透過した測定対象ガス
(O2 ガス)が溶存した状態で電解液相43を拡散して
作用極表面41aへ到達し、溶存ガス(O2 ガス)の作
用極表面41aでの電気化学反応により当該溶存ガスが
消費される。Rは、作用極表面41aで消費される当該
溶存ガス(O2 ガス)の領域を示し、Sは、隔膜42を
透過後に、作用極41の周囲を覆うように同軸に配置さ
れたガード極45の表面45aで消費される溶存ガス
(O2 ガス)の領域を示している。
2. Description of the Related Art FIG. 4 shows a method of measuring the concentration when a conventional sensor for analyzing dissolved gas of a diaphragm type is used for measuring dissolved oxygen in water. In FIG. 4, a gap (electrolyte phase) 43 of several tens to several hundreds microns is formed between the working electrode 41 and the diaphragm 42, and the electrolyte A is supplied to the electrolyte phase 43 from around the working electrode 41. When an external voltage is applied between the working electrode 41 and the counter electrode (not shown), the electrolyte phase 43 is diffused in a state where the gas to be measured (O 2 gas) which has passed through the diaphragm 42 is dissolved, and is diffused to the working electrode surface 41a. The dissolved gas reaches the working electrode surface 41a of the dissolved gas (O 2 gas) and is consumed by the electrochemical reaction. R indicates a region of the dissolved gas (O 2 gas) consumed on the working electrode surface 41 a, and S indicates a guard electrode 45 coaxially arranged to cover the periphery of the working electrode 41 after passing through the diaphragm 42. 3 shows a region of the dissolved gas (O 2 gas) consumed on the surface 45a.

【0003】[0003]

【発明が解決しようとする課題】ところで、例えば、こ
の溶存ガス領域Sは、いわゆる妨害成分ガス(O2
ス)が溶存している領域であって、この妨害成分ガス
が、溶存ガス領域Sのみならず溶存ガス領域R直上の隔
膜部分42a以外の隔膜42のいたる所から透過して溶
存した状態の下で、電解液Aが電解液相43に移動する
一方、液体44中の測定対象ガスの濃度が大きく変動し
た場合、100%の応答には測定対象ガス(O2 ガス)
の分圧と、電解液中の溶存ガス(O2 ガス)の分圧とが
等しくなるまでに時間を要する。このため、電解液A中
に溶存した前記妨害成分ガスも作用極表面41aで消費
されたり、作用極表面41aで消費されるべき溶存ガス
領域R中の測定対象ガスが作用極41に触れなかったり
する不都合が生じる。特に、極低濃度の測定対象ガスを
測定する場合には、測定値に対する影響度が大きくな
り、その結果として、応答速度の遅れや、分析誤差が生
じるという欠点がある。
For example, the dissolved gas region S is a region in which a so-called interfering component gas (O 2 gas) is dissolved, and the interfering component gas is only the dissolved gas region S. Rather, the electrolyte solution A moves to the electrolyte solution phase 43 in a state in which the electrolyte solution A has permeated and dissolved from all parts of the diaphragm 42 other than the diaphragm portion 42 a immediately above the dissolved gas region R, while the measurement target gas in the liquid 44 When the concentration fluctuates greatly, the gas to be measured (O 2 gas) is required for 100% response.
It takes time for the partial pressure of the gas to become equal to the partial pressure of the dissolved gas (O 2 gas) in the electrolytic solution. Therefore, the interfering component gas dissolved in the electrolytic solution A is also consumed on the working electrode surface 41a, or the measurement target gas in the dissolved gas region R to be consumed on the working electrode surface 41a does not touch the working electrode 41. Inconvenience occurs. In particular, when an extremely low concentration gas to be measured is measured, the degree of influence on the measured value increases, and as a result, there is a disadvantage that a response speed is delayed and an analysis error occurs.

【0004】この発明は、上述の事柄に留意してなされ
たもので、その目的は、液体中の測定対象ガスの濃度に
かかわりなく電解液中に溶存している妨害成分ガスの影
響を確実に除去できるポーラログラフ式溶存ガス分析用
センサを提供することにある。
The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to surely prevent the influence of the interfering component gas dissolved in the electrolytic solution regardless of the concentration of the gas to be measured in the liquid. An object of the present invention is to provide a polarographic dissolved gas analysis sensor that can be removed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、外表面に接触する液体中の測定対象ガ
スを透過させ、内表面に接触する電解液を透過させない
隔膜と、この隔膜により前記液体から隔離される電解液
相を形成するよう前記内表面に近接して設けられた作用
極とを有し、前記隔膜を透過した後、前記電解液相を拡
散して作用極表面へ到達する測定対象ガスの前記作用極
表面での電気化学反応により液体中の測定対象ガスの濃
度を測定するポーラログラフ式溶存ガス分析用センサに
おいて、前記電解液相に作用極を通して連通するよう形
成された電解液流路と、この電解液流路以外から前記電
解液相に電解液が出入りするのをシールするシール手段
とを設け、更に、前記電解液流路中で、作用極の手前
に、電解液中に溶存している妨害成分を消費する補助極
を設置してある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a diaphragm which transmits a gas to be measured in a liquid which comes into contact with an outer surface and does not transmit an electrolytic solution which comes into contact with an inner surface; A working electrode provided in close proximity to the inner surface to form an electrolyte solution phase separated from the liquid, and after passing through the diaphragm, diffuse the electrolyte solution phase to the working electrode surface In a polarographic dissolved gas analysis sensor for measuring the concentration of a gas to be measured in a liquid by an electrochemical reaction of the gas to be measured on the surface of the working electrode by an electrochemical reaction, the sensor is formed so as to communicate with the electrolytic solution phase through a working electrode. An electrolytic solution flow path, and a sealing means for sealing the flow of the electrolytic solution into and out of the electrolytic solution phase from other than the electrolytic solution flow path, and further, in the electrolytic solution flow path, before the working electrode, Dissolved in the liquid An auxiliary electrode which consume interfering components are are installed.

【0006】この発明では、隔膜、作用極およびシール
手段で挟まれた領域を電解液相とし、妨害成分ガスが溶
存した状態にある電解液の流路を一方向に制限し、か
つ、この電解液の流路において、前記電解液が作用極へ
供給される手前に設置した補助極で前記妨害成分ガスを
消費するように構成したので、作用極へ到達する溶存成
分ガスを、隔膜を透過した液体中の測定対象ガスのみに
制限することになり、液体中の測定対象ガスの濃度にか
かわりなく前記妨害成分ガスの影響を確実に除去でき
る。
In the present invention, the region sandwiched between the diaphragm, the working electrode and the sealing means is used as the electrolyte phase, the flow path of the electrolyte in which the interfering component gas is dissolved is restricted in one direction, In the liquid flow path, since the disturbing component gas is configured to be consumed by the auxiliary electrode installed before the electrolytic solution is supplied to the working electrode, the dissolved component gas reaching the working electrode is transmitted through the diaphragm. Since the measurement is limited to the gas to be measured in the liquid, the influence of the interfering component gas can be reliably removed regardless of the concentration of the gas to be measured in the liquid.

【0007】[0007]

【発明の実施の形態】以下、この発明の実施形態を、図
面に基づいて説明する。図1(A)は、電解液6を注入
してあるこの発明のポーラログラフ式溶存ガス分析用セ
ンサ(以下、センサという)Tの一実施形態を示す。な
お、この実施形態では、センサTとして水中の溶存酸素
測定に使用する溶存酸素計(DO計)を採用した場合を
示し、図1(B)は、作用極7の表面(平坦面)7aを
示し、図2は、センサTの要部を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A shows an embodiment of a polarographic dissolved gas analysis sensor (hereinafter, referred to as a sensor) T of the present invention into which an electrolytic solution 6 is injected. In this embodiment, a case is shown in which a dissolved oxygen meter (DO meter) used for measuring dissolved oxygen in water is used as the sensor T. FIG. 1B shows the surface (flat surface) 7a of the working electrode 7. FIG. 2 shows a main part of the sensor T.

【0008】図1(A),(B)、図2において、1は
センサTのボディーで、例えば、筒状の外ボディー2と
筒状の内ボディー3で構成される。4は隔膜で、外ボデ
ィー2の上方開口Kを覆うよう外ボディー2上端に取り
付けられている。そして、使用時には、隔膜4の外表面
aにサンプル液としての水5が接触し、隔膜4の内表面
bに電解液6が接触するようセンサTが設置される。こ
の隔膜4には、テフロン、高圧法ポリエチレン、シリコ
ンゴム等の電解液6を透過させない酸素透過性薄膜が用
いられる。
1 (A), 1 (B) and 2, reference numeral 1 denotes a body of a sensor T, which comprises, for example, a cylindrical outer body 2 and a cylindrical inner body 3. Reference numeral 4 denotes a diaphragm, which is attached to the upper end of the outer body 2 so as to cover the upper opening K of the outer body 2. At the time of use, the sensor T is installed so that water 5 as a sample liquid contacts the outer surface a of the diaphragm 4 and the electrolytic solution 6 contacts the inner surface b of the diaphragm 4. As the diaphragm 4, an oxygen-permeable thin film, such as Teflon, high-pressure polyethylene, or silicone rubber, which does not allow the passage of the electrolytic solution 6 is used.

【0009】7は、内ボディー3の上先端部3aにおけ
る内壁cに取り付けられたAgからなる作用極である。
この作用極7は、隔膜4の内表面bに近接して設けられ
ており、作用極7の下方には、Agからなる補助極8が
内壁cに取り付けられている。20および21は、それ
ぞれ、作用極7のリード線および補助極8のリード線で
あり、両リード線20,21共、内ボディー3内を通っ
て図示しない基板に接続されている。9は、両者7,8
を絶縁するスペーサで、数十ミクロンの厚みDを有し、
このスペーサ9によって両者7,8が平行の状態に保た
れている。また、12は、内ボディー3の大径部13の
外壁に取り付けられたPbよりなる対極である。この対
極12のリード線22も前記基板に接続され、測定時に
は、作用極7と対極12間、補助極8と対極12間にそ
れぞれ所定の外部電圧が印加される。
Reference numeral 7 denotes a working electrode made of Ag attached to the inner wall c at the upper end 3a of the inner body 3.
The working electrode 7 is provided near the inner surface b of the diaphragm 4, and an auxiliary electrode 8 made of Ag is attached to the inner wall c below the working electrode 7. Reference numerals 20 and 21 denote a lead wire of the working electrode 7 and a lead wire of the auxiliary electrode 8, respectively, and both of the lead wires 20 and 21 pass through the inside of the inner body 3 and are connected to a substrate (not shown). 9 means both 7,8
With a thickness D of several tens of microns,
The spacers 9 keep the two 7, 8 in parallel. Reference numeral 12 denotes a counter electrode made of Pb attached to the outer wall of the large diameter portion 13 of the inner body 3. The lead wire 22 of the counter electrode 12 is also connected to the substrate, and a predetermined external voltage is applied between the working electrode 7 and the counter electrode 12 and between the auxiliary electrode 8 and the counter electrode 12 at the time of measurement.

【0010】10は、隔膜4の内表面bに当接している
環状突起で、内ボディー3の先端部3aから隔膜側へ突
出して形成されている。この環状突起10は、後述する
電解液相11に、電解液流路(後述する)14以外から
電解液6が出入りするのを防ぐためのシール手段として
機能する。
Reference numeral 10 denotes an annular projection which is in contact with the inner surface b of the diaphragm 4 and is formed to protrude from the tip 3a of the inner body 3 toward the diaphragm. The annular projection 10 functions as a sealing means for preventing the electrolyte 6 from flowing into and out of the electrolyte phase 11 to be described later from other than the electrolyte flow path (described later) 14.

【0011】11は電解液相で、前記環状突起10、隔
膜4および作用極7で挟まれている。この電解液相11
の厚みdは、作用極表面(平坦面)7aおよび隔膜4の
内表面b間の長さに相当し、数十から数百ミクロンであ
る。この厚みdは前記環状突起10によって制御され
る。そして、作用極7と対極12間に外部電圧を印加す
ることにより、電解液相11直上の隔膜部分4aを透過
した測定対象ガス(O2ガス)が電解液相11を拡散
し、この溶存ガス(O2 ガス)が作用極表面7aへ到達
して、溶存ガス(O2 ガス)の作用極表面7aでの電気
化学反応により液体5中の測定対象ガス(O2 ガス)の
溶存酸素濃度(分圧)に比例した拡散電流を測定するこ
とで濃度が求まる。
Reference numeral 11 denotes an electrolyte phase, which is sandwiched between the annular projection 10, the diaphragm 4, and the working electrode 7. This electrolyte phase 11
Corresponds to the length between the working electrode surface (flat surface) 7a and the inner surface b of the diaphragm 4, and is several tens to several hundreds of microns. This thickness d is controlled by the annular projection 10. When an external voltage is applied between the working electrode 7 and the counter electrode 12, the gas to be measured (O 2 gas) that has passed through the diaphragm portion 4a immediately above the electrolyte phase 11 diffuses through the electrolyte phase 11, and the dissolved gas (O 2 gas) reaches the working electrode surface 7a, and the dissolved oxygen concentration of the measurement target gas (O 2 gas) in the liquid 5 by the electrochemical reaction of the dissolved gas (O 2 gas) on the working electrode surface 7a ( The concentration can be determined by measuring the diffusion current in proportion to the (partial pressure).

【0012】更に、作用極7は、平面視格子状に形成さ
れた複数の電解液通路pを有するとともに、補助極8も
作用極7と同様の平面視格子状に形成された複数の電解
液通路qを有する。
Further, the working electrode 7 has a plurality of electrolyte passages p formed in a lattice shape in plan view, and the auxiliary electrode 8 has a plurality of electrolyte solutions formed in a grid shape in plan view similar to the working electrode 7. It has a passage q.

【0013】また、スペーサ9は、電解液6が通過可能
な大きさの複数のスリット(図示せず)を有する薄膜
(例えば、テフロン薄膜)からなり、作用極裏面7bと
補助極裏面8a間に挟まれている。
The spacer 9 is formed of a thin film (for example, a Teflon thin film) having a plurality of slits (not shown) of a size through which the electrolyte 6 can pass, and is provided between the working electrode back surface 7b and the auxiliary electrode back surface 8a. It is sandwiched.

【0014】14は電解液流路で、下方側から順に、内
ボディー3に形成された電解液出入り口15、補助極
8、スペーサ9および作用極7を通して電解液相11に
連通するよう形成されている。すなわち、電解液流路1
4は、補助極8の通路q、スペーサ9のスリットおよび
作用極7の通路pを含む。
Reference numeral 14 denotes an electrolyte solution flow path which is formed so as to communicate with the electrolyte solution phase 11 through the electrolyte solution inlet / outlet 15, the auxiliary electrode 8, the spacer 9, and the working electrode 7 formed in the inner body 3 in order from the lower side. I have. That is, the electrolyte flow path 1
4 includes a passage q of the auxiliary electrode 8, a slit of the spacer 9, and a passage p of the working electrode 7.

【0015】そして、補助極8と対極12間に所定の外
部電圧を印加することにより、作用極7と同様の作用に
よって、出入り口15を通った電解液6中に溶存してい
る妨害成分ガス(O2 ガス)を、補助極8で消費する。
Then, by applying a predetermined external voltage between the auxiliary electrode 8 and the counter electrode 12, by the same operation as the working electrode 7, the interfering component gas (dissolved in the electrolytic solution 6 passing through the entrance 15) O 2 gas) is consumed by the auxiliary electrode 8.

【0016】なお、前記シール手段を、内ボディー3の
先端部3aの上面nに形成された環状溝Nに嵌挿される
リング33(図3参照)で構成してもよい。この場合、
リング33によって隔膜4を上面n側に押圧する状態と
なり、電解液相11をシールすることができる。
Incidentally, the sealing means may be constituted by a ring 33 (see FIG. 3) inserted into an annular groove N formed on the upper surface n of the distal end portion 3a of the inner body 3. in this case,
The diaphragm 33 is pressed by the ring 33 toward the upper surface n, and the electrolyte phase 11 can be sealed.

【0017】而して、作用極7と対極12間、補助極8
と対極12間にそれぞれ所定の外部電圧が印加された状
態で測定が開始される。
Thus, between the working electrode 7 and the counter electrode 12, the auxiliary electrode 8
The measurement is started in a state where a predetermined external voltage is applied between the counter electrode 12 and the counter electrode 12, respectively.

【0018】この実施形態では、上述したことから、電
解液相11には、妨害成分ガス(溶存O2 ガス)が含ま
れていない電解液6が供給される。
In this embodiment, as described above, the electrolytic solution phase 11 is supplied with the electrolytic solution 6 containing no interfering component gas (dissolved O 2 gas).

【0019】つまり、電解液6は、出入り口15から補
助極8の通路qを通り抜ける。この場合、出入り口15
を通過する電解液6には、電解液相11直上の隔膜部分
4a以外の隔膜部分4bのいたる所から透過してきた妨
害成分ガス(溶存O2 ガス)が含まれているが、補助極
8の前面(平坦面)8bに前記溶存O2 ガスが接触する
ことで、作用極7と同様の電気化学反応が起こって、電
解液6が電解液通路qを通過する間に、前記溶存O2
スが消費される。
That is, the electrolytic solution 6 passes through the passage q of the auxiliary electrode 8 from the entrance 15. In this case, the entrance 15
The electrolyte 6 passing through contains the disturbing component gas (dissolved O 2 gas) that has permeated from all parts of the diaphragm part 4 b other than the diaphragm part 4 a immediately above the electrolyte phase 11, When the dissolved O 2 gas comes into contact with the front surface (flat surface) 8b, an electrochemical reaction similar to that of the working electrode 7 occurs, and while the electrolytic solution 6 passes through the electrolytic solution passage q, the dissolved O 2 gas Is consumed.

【0020】したがって、隔膜4を透過したO2 ガスが
溶存した状態で電解液相11を拡散して作用極表面7a
へ到達し、この溶存ガス(O2 ガス)の作用極表面7a
での電気化学反応により当該溶存ガスが消費され、妨害
成分ガスの影響を受けない正確なO2 ガスの濃度を測定
できる。
Therefore, in a state where the O 2 gas permeating the diaphragm 4 is dissolved, the electrolyte phase 11 is diffused and the working electrode surface 7 a
And the working electrode surface 7a of this dissolved gas (O 2 gas)
The dissolved gas is consumed by the electrochemical reaction in step ( 2) , and the concentration of the O 2 gas can be accurately measured without being affected by the interfering component gas.

【0021】このように、作用極7へ到達する電解液6
の流路14を一方向に制限し、その流路14内で、か
つ、作用極7の手前に電解液6に含まれる妨害成分ガス
(溶存O2 ガス)を消費する補助極8を設けたので、こ
れにより、作用極7へ到達する溶存O2 ガスを、隔膜4
を透過した、サンプル液5中のO2 ガスのみに制限する
ことになり、その結果、測定精度および応答速度を向上
できる。
Thus, the electrolyte 6 reaching the working electrode 7
Channel 14 is limited in one direction, and an auxiliary electrode 8 for consuming the interfering component gas (dissolved O 2 gas) contained in the electrolytic solution 6 is provided in the channel 14 and before the working electrode 7. As a result, the dissolved O 2 gas reaching the working electrode 7
Is limited to only the O 2 gas in the sample liquid 5 that has passed through, and as a result, measurement accuracy and response speed can be improved.

【0022】[0022]

【発明の効果】以上説明したようにこの発明において
は、隔膜、作用極およびシール手段で挟まれた領域を電
解液相とし、妨害成分ガスが溶存した状態にある電解液
の流路を一方向に制限し、かつ、この電解液の流路にお
いて、前記電解液が作用極へ供給される手前に設置した
補助極で前記妨害成分ガスを消費するように構成したの
で、作用極へ到達する溶存成分ガスを、隔膜を透過した
液体中の測定対象ガスのみに制限することになり、液体
中の測定対象ガスの濃度にかかわりなく前記妨害成分ガ
スの影響を確実に除去できる。その結果、極低濃度サン
プル測定時の応答速度が改善され、短時間での高精度の
測定が可能になる。
As described above, in the present invention, the region sandwiched by the diaphragm, the working electrode and the sealing means is used as the electrolyte phase, and the flow path of the electrolyte in which the interfering component gas is dissolved is unidirectional. And, in the flow path of the electrolytic solution, the auxiliary component disposed before the electrolytic solution is supplied to the working electrode is configured to consume the disturbing component gas. Since the component gas is restricted to only the gas to be measured in the liquid that has passed through the diaphragm, the influence of the interfering component gas can be reliably removed regardless of the concentration of the gas to be measured in the liquid. As a result, the response speed at the time of measuring an extremely low concentration sample is improved, and highly accurate measurement can be performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は、この発明の一実施形態によるポーラ
ログラフ式溶存ガス分析用センサを示す全体構成説明
図、(B)は、上記実施形態における作用極の形状を示
す図である。
FIG. 1A is an explanatory view of the overall configuration of a polarographic dissolved gas analysis sensor according to an embodiment of the present invention, and FIG. 1B is a diagram showing the shape of a working electrode in the embodiment.

【図2】上記実施形態における要部構成説明図である。FIG. 2 is an explanatory diagram of a main part configuration in the embodiment.

【図3】上記実施形態で用いるシール手段の変形例を示
す要部構成説明図である。
FIG. 3 is an explanatory diagram of a main part configuration showing a modification of the sealing means used in the embodiment.

【図4】従来例のポーラログラフ式溶存ガス分析用セン
サを示す要部構成説明図である。
FIG. 4 is an explanatory diagram of a main part configuration showing a conventional polarographic dissolved gas analysis sensor.

【符号の説明】[Explanation of symbols]

4…隔膜、5…サンプル液、6…電解液、7…作用極、
7a…作用極表面、8…補助極、10…環状突起(シー
ル手段)、11…電解液相、a…隔膜の外表面、b…隔
膜の内表面。
4 ... diaphragm, 5 ... sample solution, 6 ... electrolyte solution, 7 ... working electrode,
7a: working electrode surface, 8: auxiliary electrode, 10: annular projection (sealing means), 11: electrolytic solution phase, a: outer surface of diaphragm, b: inner surface of diaphragm.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 外表面に接触する液体中の測定対象ガス
を透過させ、内表面に接触する電解液を透過させない隔
膜と、この隔膜により前記液体から隔離される電解液相
を形成するよう前記内表面に近接して設けられた作用極
とを有し、前記隔膜を透過した後、前記電解液相を拡散
して作用極表面へ到達する測定対象ガスの前記作用極表
面での電気化学反応により液体中の測定対象ガスの濃度
を測定するポーラログラフ式溶存ガス分析用センサにお
いて、前記電解液相に作用極を通して連通するよう形成
された電解液流路と、この電解液流路以外から前記電解
液相に電解液が出入りするのをシールするシール手段と
を設け、更に、前記電解液流路中で、作用極の手前に、
電解液中に溶存している妨害成分を消費する補助極を設
置してあることを特徴とするポーラログラフ式溶存ガス
分析用センサ。
1. A diaphragm that transmits a gas to be measured in a liquid that contacts an outer surface and does not transmit an electrolyte that contacts an inner surface, and forms an electrolyte phase that is isolated from the liquid by the diaphragm. A working electrode provided in the vicinity of the inner surface, the electrochemical reaction of the gas to be measured reaching the working electrode surface by diffusing the electrolytic solution phase after passing through the diaphragm, at the working electrode surface In a polarographic dissolved gas analysis sensor for measuring the concentration of a gas to be measured in a liquid, an electrolytic solution flow path formed to communicate with the electrolytic solution phase through a working electrode, and the electrolytic solution from other than this electrolytic solution flow path A sealing means for sealing the entry and exit of the electrolyte into and out of the liquid phase, and further in the electrolyte passage, before the working electrode,
A polarographic sensor for dissolved gas analysis, comprising an auxiliary electrode for consuming an interfering component dissolved in an electrolytic solution.
【請求項2】 前記電解液流路は、前記補助極および前
記作用極にそれぞれ平面視格子状に形成された複数の通
路を含む請求項1に記載のポーラログラフ式溶存ガス分
析用センサ。
2. The polarographic dissolved gas analysis sensor according to claim 1, wherein the electrolyte solution flow path includes a plurality of passages formed in the auxiliary electrode and the working electrode in a lattice shape in plan view.
【請求項3】 前記シール手段が、先端部に前記作用極
が取り付けられたボディーに隔膜側へ突出して形成され
た環状突起で構成されている請求項1または請求項2に
記載のポーラログラフ式溶存ガス分析用センサ。
3. The polarographic dissolution according to claim 1, wherein the sealing means is formed by an annular projection formed on the body having the working electrode attached to the distal end thereof and projecting toward the diaphragm. Gas analysis sensor.
【請求項4】 前記シール手段が、先端部に前記作用極
が取り付けられたボディーを前記隔膜を介して押圧する
状態で、前記電解液相を前記隔膜と作用極とで挟むリン
グで構成されている請求項1または請求項2に記載のポ
ーラログラフ式溶存ガス分析用センサ。
4. The sealing means is constituted by a ring which sandwiches the electrolyte phase between the diaphragm and the working electrode in a state in which the body having the working electrode attached to the tip thereof is pressed through the diaphragm. 3. The polarographic sensor for dissolved gas analysis according to claim 1 or claim 2.
【請求項5】 前記作用極および補助極は、両者を絶縁
するスペーサによって平行の状態で前記ボディーに保持
されている請求項1ないし請求項4のいずれかに記載の
ポーラログラフ式溶存ガス分析用センサ。
5. The polarographic dissolved gas analysis sensor according to claim 1, wherein the working electrode and the auxiliary electrode are held by the body in a parallel state by a spacer that insulates the working electrode and the auxiliary electrode. .
【請求項6】 前記スペーサは、電解液が通過可能な大
きさの複数のスリットを有する所定厚のテフロン薄膜か
らなり、前記作用極および補助極間に挟まれている請求
項5に記載のポーラログラフ式溶存ガス分析用センサ。
6. The polarographic apparatus according to claim 5, wherein the spacer is formed of a Teflon thin film having a predetermined thickness and having a plurality of slits through which an electrolyte can pass, and is sandwiched between the working electrode and the auxiliary electrode. Type dissolved gas analysis sensor.
JP8263655A 1996-09-12 1996-09-12 Sensor for analyzing polarograph type dissolved gas Pending JPH1090217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8263655A JPH1090217A (en) 1996-09-12 1996-09-12 Sensor for analyzing polarograph type dissolved gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8263655A JPH1090217A (en) 1996-09-12 1996-09-12 Sensor for analyzing polarograph type dissolved gas

Publications (1)

Publication Number Publication Date
JPH1090217A true JPH1090217A (en) 1998-04-10

Family

ID=17392497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8263655A Pending JPH1090217A (en) 1996-09-12 1996-09-12 Sensor for analyzing polarograph type dissolved gas

Country Status (1)

Country Link
JP (1) JPH1090217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164507A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164507A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor

Similar Documents

Publication Publication Date Title
US4759828A (en) Glucose electrode and method of determining glucose
CA1191898A (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
US3498899A (en) Electrochemical electrode assembly
JP2995088B2 (en) Test fluid head for chemical and ion sensors.
US3445369A (en) Electrolytic sensor with improved membrane support
US7013707B2 (en) Method and apparatus for enhanced detection of a specie using a gas chromatograph
US3718567A (en) Electrode assembly
JPH0731154B2 (en) Device for measuring the concentration of a substance in a solution
NL8105083A (en) DEVICE FOR MONITORING THE PARTIAL PRESSURE OF GASES.
US5085760A (en) Electrochemical gas sensors
JPH1090217A (en) Sensor for analyzing polarograph type dissolved gas
US3357908A (en) Electrolytic sensor with water diffusion compensation
EP0068025A1 (en) Reference electrode
US3296098A (en) Method and apparatus for gas analysis
JP2000511640A (en) Polarographic sensor
US3188854A (en) Gas sampling means
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP4216846B2 (en) Electrodes for electrochemical measurements and electrochemical measurement methods
JPH068796B2 (en) Ion concentration measurement method
JPH11295261A (en) Ion selective electrode and manufacture thereof
JPH075150A (en) Solid electrolytic sensor device
JPH0599888A (en) Measuring apparatus for ozone concentration
GB2074323A (en) Apparatus for Detecting Hydrogen Cyanide Gas
JPH06109695A (en) Zirconia gas analyzer
TW202223382A (en) Membrane-type sensor and analyzing apparatus including the same