JPH1085611A - Production of honeycomb carrier made of boria-silica-alumina composition - Google Patents

Production of honeycomb carrier made of boria-silica-alumina composition

Info

Publication number
JPH1085611A
JPH1085611A JP8248174A JP24817496A JPH1085611A JP H1085611 A JPH1085611 A JP H1085611A JP 8248174 A JP8248174 A JP 8248174A JP 24817496 A JP24817496 A JP 24817496A JP H1085611 A JPH1085611 A JP H1085611A
Authority
JP
Japan
Prior art keywords
silica
boria
honeycomb structure
bsa
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8248174A
Other languages
Japanese (ja)
Inventor
Toshio Yamaguchi
敏男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8248174A priority Critical patent/JPH1085611A/en
Publication of JPH1085611A publication Critical patent/JPH1085611A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To directly produce a honeycomb structure with boriasilica-alumina (BSA) as a multiple oxide having a large specific surface area and excellent in heat resistance. SOLUTION: Powdery BSA hydrate is mixed with powdery BSA, a molding aid is added to the resultant powdery mixture and they are molded into a honeycomb structure, dried and fired. For example, powdery BSA hydrate consisting of 3-10wt.% B2 O3 , 4-19wt.% SiO2 . and the balance Al1 O3 , is mixed with powdery BSA obtd. by molding powdery BSA hydrate, drying and firing the resultant molded body and crushing it, a mineral acid, an org. binder and water are added to the resultant mixture and they are kneaded, extruded into a honeycomb structure, dried and fired. The porous structure can be regulated by varying the mixing ratio between the powders and the objective honeycomb structure having high practicality is obtd. by using 20-80% powdery BSA.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は触媒担体として優れ
た性質を持つボリア−シリカ−アルミナ組成物より成る
ハニカム構造担体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a honeycomb structure carrier comprising a boria-silica-alumina composition having excellent properties as a catalyst carrier.

【0002】[0002]

【従来の技術】ハニカム構造体の触媒担体(ハニカム構
造担体)は、多数の平行した流通路を有するため、流体
を流す場合圧力損失が小さいうえに単位体積当たりの見
掛表面積が大きい特性がある。この点からハニカム構造
担体は化学工業、石油化学用等の廃ガス処理用触媒担
体、燃焼用触媒担体等として広く用いられている。
2. Description of the Related Art A catalyst carrier having a honeycomb structure (honeycomb structure carrier) has a large number of parallel flow passages, so that when a fluid flows, it has a small pressure loss and a large apparent surface area per unit volume. . From this point, the honeycomb structure carrier is widely used as a catalyst carrier for treating waste gas, a catalyst carrier for combustion, and the like for chemical industry, petrochemical and the like.

【0003】これらのハニカム構造担体は、ムライト、
コージェライト、α−アルミナ等よりなるセラミック材
料をハニカム型に成型し、乾燥・焼成して得られた基体
表面にγ−Al23、SiO2等をコーティングして得
ている。この際、触媒の性能は担体の細孔特性と密接な
関係があることから反応の種類、反応条件に適合した細
孔特性を有する担体を得ることが重要である。
[0003] These honeycomb structured carriers include mullite,
A ceramic material made of cordierite, α-alumina or the like is formed into a honeycomb shape, and the substrate surface obtained by drying and firing is coated with γ-Al 2 O 3 , SiO 2 or the like. At this time, since the performance of the catalyst is closely related to the pore characteristics of the carrier, it is important to obtain a carrier having pore characteristics suitable for the type of reaction and reaction conditions.

【0004】しかし、コーティング方式により細孔特性
を制御するのは難しく、コーティング量にも制限を生じ
る。また、用途によっては担体の耐熱性についても要求
される。しかし、耐熱性に優れ、かつ細孔特性の優れた
ハニカム構造体を得る方法については未だ十分な開示は
なされていない。
However, it is difficult to control the pore characteristics by the coating method, and the amount of coating is limited. In addition, the heat resistance of the carrier is required depending on the use. However, a method for obtaining a honeycomb structure having excellent heat resistance and excellent pore characteristics has not yet been sufficiently disclosed.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは耐熱性材
料として高比表面積を有し、且つ耐熱性に優れたボリア
−シリカ−アルミナ(以下「BSA」と示す。)複合酸
化物を見出してすでに提案している(特公平7−114
958号)。このBSA複合酸化物を用いて直接ハニカ
ム構造体を作ることができれば、細孔特性と耐熱性に優
れたものができると思われる。
The present inventors have found a boria-silica-alumina (hereinafter referred to as "BSA") composite oxide having a high specific surface area and excellent heat resistance as a heat-resistant material. Has already been proposed.
958). If a honeycomb structure can be directly produced using this BSA composite oxide, it is considered that a product having excellent pore characteristics and heat resistance can be obtained.

【0006】すなわち、本発明はBSA複合酸化物で直
接ハニカム構造体を作る方法の提供を課題とする。
That is, an object of the present invention is to provide a method for directly forming a honeycomb structure using a BSA composite oxide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、BSA水和物粉末とBSA複合酸化物粉末
とを配合比率を変えて混合し、得た混合粉末に成型助剤
を加えハニカム構造体に成形し、乾燥して焼成するもの
であり、具体的には、3〜10重量%のB23と4〜1
9重量%のSiO2と残部がAl23からなるBSA水
和物粉末と、該BSA水和物粉末を成型し、乾燥・焼成
し、次いで破砕して得たBSA複合酸化物粉末とを混合
し、この混合物に鉱酸と有機質結合剤と水とを添加して
混練し、ハニカム型構造体に押出し成型し、乾燥後焼成
するものである。
According to the method of the present invention for solving the above-mentioned problems, a BSA hydrate powder and a BSA composite oxide powder are mixed at different mixing ratios, and a molding aid is added to the obtained mixed powder. In addition, it is formed into a honeycomb structure, dried and fired. Specifically, 3 to 10% by weight of B 2 O 3 and 4 to 1
BSA hydrate powder composed of 9% by weight of SiO 2 and the balance being Al 2 O 3 , and a BSA composite oxide powder obtained by molding, drying, calcining and then crushing the BSA hydrate powder The mixture is mixed, a mineral acid, an organic binder, and water are added to the mixture, kneaded, extruded into a honeycomb structure, dried, and fired.

【0008】本発明の方法ではBSA水和物粉末と、B
SA複合酸化物粉体との混合比を選択することにより細
孔構造を調節することが可能であり、通常BSA複合酸
化物粉末の割合を20〜80%とすることで実用性の高
いハニカム構造体を得ることが可能である。
In the method of the present invention, BSA hydrate powder and B
The pore structure can be adjusted by selecting the mixing ratio with the SA composite oxide powder. Usually, by setting the proportion of the BSA composite oxide powder to 20 to 80%, a highly practical honeycomb structure can be obtained. It is possible to get a body.

【0009】また、本発明で用いる鉱酸には硝酸が推奨
され、有機質結合材は、ポリビニールアルコール、メチ
ルセルロース、カルボキシメチルセルロース、デキスト
リン等であり、その添加量は5〜20重量%の範囲とす
るのが望ましい。
Further, nitric acid is recommended as the mineral acid used in the present invention, and the organic binder is polyvinyl alcohol, methylcellulose, carboxymethylcellulose, dextrin or the like, and the added amount is in the range of 5 to 20% by weight. It is desirable.

【0010】さらに、成型体の乾燥は、温度70〜90
℃、湿度80〜95%の範囲で行い、焼成は600〜1
400℃とすることが好ましい。
[0010] Further, drying of the molded body is performed at a temperature of 70 to 90.
C., humidity: 80-95%, firing: 600-1
Preferably, the temperature is 400 ° C.

【0011】[0011]

【発明の実施の形態】本発明のBSA組成物を製造する
方法としては、例えば硫酸アルミニウム水溶液とアルミ
ン酸ナトリウム水溶液との加水分解により生成するアル
ミナ水和物スラリーに、SiO2として5〜20重量%
の範囲になるように珪酸ナトリウム水溶液を添加してア
ルミナ−シリカ水和物を得る。次いでスラリーを濾過・
洗浄してアルミナ−シリカ水和物ケーキを得、これに、
23として3〜10重量%の範囲になるようにオルト
ほう酸及び/またはオルトほう酸水溶液を添加して充分
混合する。こうして得られたスラリーを噴霧乾燥しBS
A水和物粉末を得る。
As a method for producing a BSA compositions DETAILED DESCRIPTION OF THE INVENTION The present invention is, for example alumina hydrate slurry by hydrolysis of an aqueous solution of aluminum sulfate and sodium aluminate aqueous solution, 5 to 20 weight as SiO 2 %
An aqueous solution of sodium silicate is added to obtain an alumina-silica hydrate so as to fall within the range described above. Then filter the slurry
Washing to obtain an alumina-silica hydrate cake, which comprises
B 2 O 3 as the addition of ortho boric acid and / or ortho boric acid aqueous solution to be in the range of 3-10 wt% mixed well. The slurry thus obtained is spray-dried, and BS
A hydrate powder is obtained.

【0012】次にこのBSA水和物粉末に水と硝酸を加
えニーダー中で可塑化し、所望の形状のダイスを有する
成型機により押出し成型する。得られた成型体を80〜
120℃で乾燥し、次いで500℃〜1000℃で焼成
する。得られた焼成物を粉砕し、平均粒径が5〜20μ
の範囲のBSA複合酸化物粉末を得る。
Next, water and nitric acid are added to the BSA hydrate powder, plasticized in a kneader, and extruded by a molding machine having a die having a desired shape. 80-
Dry at 120 ° C and then bake at 500 ° C to 1000 ° C. The obtained fired product is pulverized, and the average particle size is 5 to 20 μm.
Is obtained.

【0013】さて、本発明のボリア−シリカ−アルミナ
組成物においてB23を3〜10重量%、SiO2を4
〜19重量%の範囲とするのはB23が3重量%未満及
び10重量%以上、SiO2を4重量%未満及び19重
量%以上の組成物では耐熱性が低下し、ひいては比表面
積が著しく減少するからである。
In the boria-silica-alumina composition of the present invention, 3 to 10% by weight of B 2 O 3 and 4 to 4% of SiO 2
-19 to the weight percent range of B 2 O 3 is less than 3 wt% and 10 wt% or more, the heat resistance is reduced in the SiO 2 4 less wt% and 19 wt% or more of the composition, and thus the specific surface area Is significantly reduced.

【0014】本発明のBSA複合酸化物粉末は、BSA
水和物粉末を成型し、乾燥して500〜1000℃好ま
しくは500〜800℃で通常2時間焼成する。焼成温
度が500℃以下では酸化物状態にならず、また100
0℃以上で焼成すると焼結がおこり、次の工程で行う破
砕がしずらいからである。
[0014] The BSA composite oxide powder of the present invention comprises BSA
The hydrate powder is molded, dried and calcined at 500 to 1000 ° C, preferably 500 to 800 ° C, usually for 2 hours. When the sintering temperature is 500 ° C. or less, it does not become an oxide,
This is because sintering occurs when firing at 0 ° C. or higher, and it is difficult to perform crushing in the next step.

【0015】次に得られた焼成物は平均粒径が5〜20
μの範囲になるように破砕するのが望ましい。平均粒径
が5μ以下でも良いが破砕工程において長時間要し、平
均粒径が20μ以上にすると好ましいハニカム構造担体
が得られない。
Next, the obtained fired product has an average particle size of 5 to 20.
It is desirable to crush to a range of μ. The average particle size may be 5 μm or less, but it takes a long time in the crushing step, and if the average particle size is 20 μm or more, a preferable honeycomb structured carrier cannot be obtained.

【0016】本発明においてBSA水和物粉末とBSA
複合酸化物粉末の混合比率を20〜80重量%の範囲と
するのは、BSA水和物粉末に加える複合酸化物粉末の
混合比率を20重量%未満にするとハニカム構造体にク
ラックの発生が起こり好ましいハニカム構造担体が得ら
れない。また混合比率を80重量%以上加えても良いが
細孔特性の制御に対する効果が得られにくいからであ
る。
In the present invention, BSA hydrate powder and BSA
The reason why the mixing ratio of the composite oxide powder is in the range of 20 to 80% by weight is that if the mixing ratio of the composite oxide powder added to the BSA hydrate powder is less than 20% by weight, cracks occur in the honeycomb structure. Preferred honeycomb structure carriers cannot be obtained. Although the mixing ratio may be 80% by weight or more, it is difficult to obtain the effect of controlling the pore characteristics.

【0017】以上説明した手順で得たBSA水和物粉末
とBSA複合酸化物粉末とは所望の比率で混合された
後、有機バインダーと水と硝酸とが添加され、充分混練
し可塑化される。その後、真空押出し成型機を用いて所
望の形状のハニカム金型を通して押出し、貫通孔を有す
るハニカム構造体に成型される。次いでこの成型体を温
度70〜90℃、湿度80〜95%の範囲で恒温恒湿乾
燥させ、600〜1400℃の範囲で焼成して、ハニカ
ム構造担体とする。
After the BSA hydrate powder and the BSA composite oxide powder obtained by the above-described procedure are mixed in a desired ratio, an organic binder, water and nitric acid are added, and they are sufficiently kneaded and plasticized. . Thereafter, the material is extruded through a honeycomb mold having a desired shape using a vacuum extruder, and is formed into a honeycomb structure having a through hole. Next, the molded body is dried at a constant temperature and a constant humidity at a temperature of 70 to 90 ° C and a humidity of 80 to 95%, and fired at a temperature of 600 to 1400 ° C to obtain a honeycomb structured carrier.

【0018】本発明のハニカム構造体を成型する際に添
加する有機バインダーの成分としては、ポリビニールア
ルコール,メチルセルロース,カルボキシメチルセルロ
ース,デキストリン等であり、添加量は5〜20重量%
の範囲とするのが望ましい。添加量が5重量%以下では
可塑性が不充分で好ましいハニカム構造体を得ることが
できず、20重量%以上添加しても良いが、ハニカム構
造体を乾燥後焼成する際に有機バインダーは燃焼により
炭素化し、次いで燃焼分解するがその際部分的に異常な
高温となり、ハニカム構造体を崩壊することもあるので
好ましくない。また、硝酸を添加するのはボリア−シリ
カ−アルミナ水和物粉体及び/又はボリア−シリカ−ア
ルミナ酸化物粉体の粒子の一部を解膠させ粒子の充填状
態を増し、ハニカム構造体の保強性を増すためである。
The components of the organic binder to be added when the honeycomb structure of the present invention is molded include polyvinyl alcohol, methylcellulose, carboxymethylcellulose, dextrin and the like.
It is desirable to be within the range. When the addition amount is 5% by weight or less, a preferable honeycomb structure cannot be obtained due to insufficient plasticity, and may be added in an amount of 20% by weight or more. However, when the honeycomb structure is dried and then fired, the organic binder is burned. It is carbonized and then decomposed by combustion. At that time, however, the temperature becomes partially abnormally high, and the honeycomb structure may be broken, which is not preferable. Also, the addition of nitric acid increases the packing state of the particles by pulverizing some of the particles of the boria-silica-alumina hydrate powder and / or the boria-silica-alumina oxide powder, thereby improving the honeycomb structure. This is to increase cohesion.

【0019】成型したハニカム構造体を温度70〜90
℃、湿度80〜95%の条件で恒温恒湿乾燥するのは8
0%以下の低湿度条件ではハニカム構造体の一部にクラ
ックが生じ、好ましいハニカム構造体が得られないから
である。
The formed honeycomb structure is heated to a temperature of 70 to 90.
It is 8 to dry at a constant temperature and a constant humidity of 80 to 95%.
This is because cracks occur in a part of the honeycomb structure under a low humidity condition of 0% or less, and a preferable honeycomb structure cannot be obtained.

【0020】ハニカム構造体の焼成温度を600〜14
00℃の範囲にするのは600℃以下の温度では有機バ
インダーが分解せずに炭素分として残存してしまい、1
400℃以上の温度では比表面積値が小さくなり触媒担
体としての特性が失われる。
The firing temperature of the honeycomb structure is set to 600 to 14
When the temperature is set to the range of 00 ° C., at a temperature of 600 ° C. or less, the organic binder does not decompose and remains as a carbon content,
At a temperature of 400 ° C. or higher, the specific surface area decreases, and the properties as a catalyst carrier are lost.

【0021】本発明の製造方法で細孔特性が制御できる
理由としては酸化物粉体粒子間に物理的な力で解膠する
水和物粉体の粒子の充填状態が異なるためではないかと
推定される。
It is presumed that the reason why the pore characteristics can be controlled by the production method of the present invention is that the packing state of the hydrate powder, which is peptized by physical force, differs between the oxide powder particles. Is done.

【0022】[0022]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0023】(実施例1)内容100リットルの攪拌機付き
ステンレス反応槽に水49.5リットルを入れ、これにAl
23として774gを含む硫酸アルミニウム水溶液95
40gを加え、70℃まで加温し、保持し、攪拌しつつ
Al23として1275gを含むアルミン酸ナトリウム
水溶液を滴下してpH9.0のアルミナ水和物スラリー
を得た。
Example 1 49.5 liters of water was placed in a 100 liter stainless steel reaction vessel equipped with a stirrer, and Al was added thereto.
Aluminum sulfate aqueous solution 95 containing 774 g as 2 O 3
After adding 40 g, the mixture was heated to 70 ° C., maintained, and stirred, and an aqueous solution of sodium aluminate containing 1275 g as Al 2 O 3 was added dropwise to obtain an alumina hydrate slurry having a pH of 9.0.

【0024】次いで、このスラリーに濃度30%の硝酸
55gを加えてpHを5.4とし、次いで、攪拌しつ
つ、SiO2として252gを含む珪酸ナトリウム水溶
液1800gを滴下してpH8.5のアルミナーシリカ
水和物を得、濾過し、洗浄してアルミナ−シリカ水和物
ケーキを得た。
Next, 55 g of 30% concentration nitric acid was added to the slurry to adjust the pH to 5.4. Then, while stirring, 1800 g of an aqueous sodium silicate solution containing 252 g of SiO 2 was added dropwise to the slurry to adjust the pH of the alumina to 8.5. A silica hydrate was obtained, filtered and washed to obtain an alumina-silica hydrate cake.

【0025】このアルミナ−シリカ水和物ケーキ135
20g(アルミナ−シリカとして2028g)に、試薬
特級のオルトほう酸188.8g(B23として10
6.8g)を水10リットルに溶解したオルトほう酸溶液を
加え、撹拌混合し、次いで水10.5リットルを更に加え撹
拌混合して得たスラリーをホモジナイズ処理を行った
後、噴霧乾燥してボリア−シリカ−アルミナ水和物粉体
a(酸化物換算でB235.0%、SiO2 10.5
%、Al23 84.6%)を得た。
This alumina-silica hydrate cake 135
In 20 g (2028 g as alumina-silica), 188.8 g of reagent-grade orthoboric acid (10 as B 2 O 3)
Orthoboric acid solution obtained by dissolving 6.8 g) in 10 liters of water was added, and the mixture was stirred and mixed. Then, 10.5 liters of water was further added, and the mixture was stirred and homogenized. - silica - B 2 O 3 5.0% alumina hydrate powder a (in terms of oxide, SiO 2 10.5
% To obtain a Al 2 O 3 84.6%).

【0026】次に前記ボリア−シリカ−アルミナ水和物
粉体1000gに水820リットルと濃度30%の硝酸40
リットルとを加えニーダー中で練り込み可塑化し、直径5.
0mmのダイスを有する押出し成型機にて成型し、乾燥
し、電気炉で600℃で2時間焼成した。後粉砕し平均
粒径8μのボリア−シリカ−アルミナ複合酸化物粉体b
を得た。次いで前記水和物粉体a500gと複合酸化物
粉体b500gにセランダー(ユケン工業株式会社製有
機成型助剤)160gと濃度30%の硝酸80リットルと水
1030リットルとを加え充分可塑化するまで混練した後、
壁厚0.4mm、壁間距離2.0mm、セル形状正方形
のハニカム金型を通しハニカム構造体に成型し、温度8
5℃、湿度90%の条件で48時間乾燥した後800℃
で3時間焼成し、ハニカム構造担体Aを得た。このハニ
カム構造担体Aの原料組成等を表1に、細孔特性を表2
に示した。
Next, 820 liters of water and 40% nitric acid 40 were added to 1000 g of the above boria-silica-alumina hydrate powder.
Liters and kneading in a kneader, plasticizing, diameter 5.
It was molded with an extruder having a 0 mm die, dried, and fired in an electric furnace at 600 ° C. for 2 hours. After grinding, boria-silica-alumina composite oxide powder b having an average particle size of 8 μm
I got Next, to 500 g of the hydrate powder a and 500 g of the composite oxide powder b, 160 g of Serander (organic molding aid manufactured by Yuken Industries Co., Ltd.), 80 liters of 30% nitric acid and 1030 liters of water were added and kneaded until plasticization was sufficient. After doing
A honeycomb structure having a wall thickness of 0.4 mm, a wall-to-wall distance of 2.0 mm, and a square cell shape was formed into a honeycomb structure at a temperature of 8 mm.
800 ° C after drying for 48 hours at 5 ° C and 90% humidity
For 3 hours to obtain a honeycomb structure carrier A. Table 1 shows the raw material composition and the like of the honeycomb structured carrier A, and Table 2 shows the pore characteristics.
It was shown to.

【0027】(実施例2,3)実施例1に示す方法とほ
ぼ同様の製造方法で得たボリア−シリカ−アルミナ水和
物粉体aと酸化物粉体bの配合比率をそれぞれ80%−
20%,20%−80%と変化させたこと以外ハニカム
構造担体Aとほぼ同様の方法でハニカム構造担体B,C
を得た。得られたハニカム構造担体B(実施例2),C
(実施例3)の原料組成等を表1に、細孔特性を表2に
示した。表2よりボリア−シリカ−アルミナ水和物粉体
と酸化物粉体の配合比率を変えることで、細孔分布の制
御が可能であることが明らかである。
(Examples 2 and 3) The mixing ratio of the boria-silica-alumina hydrate powder a and the oxide powder b obtained by the substantially same production method as in Example 1 was 80%.
Honeycomb structure carriers B and C are formed in substantially the same manner as the honeycomb structure carrier A except that they are changed to 20%, 20% -80%.
I got The obtained honeycomb structure carrier B (Example 2), C
Table 1 shows the raw material composition of Example 3 and Table 2 shows the pore characteristics. From Table 2, it is clear that the pore distribution can be controlled by changing the mixing ratio of the boria-silica-alumina hydrate powder and the oxide powder.

【0028】(実施例4,5)Al23 /SiO2 とし
て80/20重量%、95/5重量%となるようにアル
ミナ水和物スラリーに添加する珪酸ナトリウム水溶液の
添加量を変化させたこと以外実施例1のボリア−シリカ
−アルミナ水和物粉体a及び酸化物粉体bを得る製造方
法を用いて酸化物換算でB23 5.0%、SiO2
9.0%、Al23 76.0%の水和物粉体cと平均
粒径8μの酸化物粉体d及び酸化物換算でB23 5.
0%、SiO2 4.8%、Al23 90.2%の水和
物粉体eと平均粒径8μの酸化物粉体fを得た。
(Examples 4 and 5) The amount of the sodium silicate aqueous solution added to the alumina hydrate slurry was changed so that the Al 2 O 3 / SiO 2 became 80/20% by weight and 95/5% by weight. boria in example 1 except that the - silica - B 2 O 3 5.0% in terms of oxide with a manufacturing method for obtaining the alumina hydrate powder a and oxide powder b, SiO 2 1
A hydrate powder c of 9.0% and 76.0% of Al 2 O 3, an oxide powder d having an average particle diameter of 8 μm, and B 2 O 3 in terms of an oxide.
A hydrate powder e of 0%, 4.8% of SiO 2 and 90.2% of Al 2 O 3 and an oxide powder f having an average particle size of 8 μ were obtained.

【0029】得られた水和物粉体cと酸化物粉体d及び
水和物粉体eと酸化物粉体fを用い実施例1のハニカム
構造担体Aとほぼ同様の方法でハニカム構造担体D,E
を得た。得られたハニカム構造担体D(実施例4),E
(実施例5)の原料組成等を表1に示し、細孔特性を表
2に示した。
Using the obtained hydrate powder c and oxide powder d and hydrate powder e and oxide powder f, the honeycomb structure carrier was obtained in substantially the same manner as the honeycomb structure carrier A of Example 1. D, E
I got The obtained honeycomb structure carrier D (Example 4), E
Table 1 shows the raw material composition and the like of (Example 5), and Table 2 shows the pore characteristics.

【0030】(実施例6,7)実施例4に示す方法とほ
ぼ同様の製造方法で得たボリア−シリカ−アルミナ水和
物粉体cと酸化物粉体d及び水和物粉体eと酸化物粉体
fの配合比率を80%−20%と変化させたこと以外ハ
ニカム構造担体Aとほぼ同様の方法でハニカム構造担体
F,Gを得た。得られたハニカム構造担体F,Gの原料
組成等を表1に示し、細孔特性を表2に示した。表2よ
りボリア−シリカ−アルミナの組成を変えてもボリア−
シリカ−アルミナ水和物粉体と酸化物粉体の配合比率を
変えることで、細孔分布の制御が可能であることが明ら
かである。
(Examples 6 and 7) Boria-silica-alumina hydrate powder c, oxide powder d and hydrate powder e obtained by a production method substantially similar to that shown in Example 4 Honeycomb-structured carriers F and G were obtained in substantially the same manner as the honeycomb-structured carrier A except that the mixing ratio of the oxide powder f was changed to 80% to 20%. Table 1 shows the raw material composition and the like of the obtained honeycomb structured carriers F and G, and Table 2 shows the pore characteristics. Table 2 shows that even if the composition of boria-silica-alumina was changed, boria-
It is clear that the pore distribution can be controlled by changing the mixing ratio of the silica-alumina hydrate powder and the oxide powder.

【0031】(実施例8,9,10)実施例1,2,3
で得た乾燥ハニカム構造体を1000℃の温度で3時間
焼成してハニカム構造担体H(実施例8),I(実施例
9),J(実施例10)を得た。得られたハニカム構造
担体H,I,Jの原料組成等を表1に示し、細孔特性を
表2に示した。表2より焼成温度を変えることでもミク
ロ細孔の細孔特性を変化させることは可能であるが、メ
ソ細孔,マクロ細孔の制御ができないことが明らかであ
る。
Embodiments 8, 9, and 10 Embodiments 1, 2, and 3
The dried honeycomb structure obtained in the above was fired at a temperature of 1000 ° C. for 3 hours to obtain honeycomb structure carriers H (Example 8), I (Example 9), and J (Example 10). Table 1 shows the raw material composition of the obtained honeycomb structured carriers H, I, and J, and Table 2 shows the pore characteristics. It is clear from Table 2 that the pore characteristics of the micropores can be changed by changing the firing temperature, but the mesopores and macropores cannot be controlled.

【0032】(比較例1)実施例1に示す方法とほぼ同
様の製造方法で得たボリア−シリカ−アルミナ酸化物粉
体だけを用いたこと以外実施例1のハニカム構造担体A
とほぼ同様の方法でハニカム構造担体Kを得た。得られ
たハニカム構造担体Kの原料組成等を表1に、細孔特性
を表2に示した。ハニカム構造担体Kはボリア−シリカ
−アルミナ酸化物粉体100%のものであるが、ボリア
−シリカ−アルミナの水和物粉体20%−酸化物粉体8
0%の配合比率で得たハニカム構造担体Cとほぼ同等の
細孔特性を有しており、100%にした意義はみられな
いことがわかった。この結果、酸化物粉体80%を越え
ると細孔特性は一定となってしまい。調整できないこと
がわかる。
(Comparative Example 1) The honeycomb structure carrier A of Example 1 except that only a boria-silica-alumina oxide powder obtained by a production method substantially similar to that shown in Example 1 was used.
A honeycomb structure carrier K was obtained in substantially the same manner as described above. Table 1 shows the raw material composition and the like of the obtained honeycomb structure carrier K, and Table 2 shows the pore characteristics. The honeycomb structure carrier K is made of 100% boria-silica-alumina oxide powder, but 20% boria-silica-alumina hydrate powder-oxide powder 8
It has almost the same pore characteristics as the honeycomb structure carrier C obtained at a blending ratio of 0%, and it was found that there is no significance in setting it to 100%. As a result, if the oxide powder exceeds 80%, the pore characteristics become constant. It turns out that it cannot be adjusted.

【0033】(比較例2)実施例1に示す方法とほぼ同
様の製造方法で得たボリア−シリカ−アルミナ水和物粉
体とボリア−シリカ−アルミナ酸化物粉体との比率を1
5%−85%としたこと以外実施例1のハニカム構造担
体Aとほぼ同様の方法でハニカム構造担体Kを得た。得
られたハニカム構造体にはクラックが発生しており、好
ましいハニカム構造担体が得られなかった。
(Comparative Example 2) The ratio of boria-silica-alumina hydrate powder and boria-silica-alumina oxide powder obtained by a production method substantially similar to that shown in Example 1 was 1
A honeycomb structure carrier K was obtained in substantially the same manner as the honeycomb structure carrier A of Example 1 except that the content was 5% to 85%. Cracks occurred in the obtained honeycomb structure, and a preferable honeycomb structure carrier was not obtained.

【0034】 表2に示すハニカム構造担体の細孔特性は水銀圧入法に
より求め、比表面積は窒素ガス吸着によるBET法によ
り求めた。
[0034] The pore characteristics of the honeycomb structured carrier shown in Table 2 were determined by a mercury intrusion method, and the specific surface area was determined by a BET method using nitrogen gas adsorption.

【0035】[0035]

【発明の効果】本発明によれば特定組成範囲のボリア−
シリカ−アルミナ水和物粉体と酸化物粉体との配合比率
を変え、これに有機バインダー等を添加して成型・焼成
して得たハニカム構造担体は細孔特性の制御が可能であ
り、触媒反応に合った細孔特性を有するハニカム構造担
体を選定することができる。
According to the present invention, boron having a specific composition range is obtained.
The honeycomb structure carrier obtained by changing the mixing ratio of the silica-alumina hydrate powder and the oxide powder, adding an organic binder or the like thereto, and molding and firing can control the pore characteristics, A honeycomb structure carrier having pore characteristics suitable for the catalytic reaction can be selected.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ボリア−シリカ−アルミナ水和物粉末とボ
リア−シリカ−アルミナ複合酸化物粉末とを配合比率を
変えて混合し、得た混合粉末に成型助剤を加えハニカム
構造体に成形し、乾燥して焼成することによりハニカム
構造担体を製造する方法において、3〜10重量%のB
23と4〜19重量%のSiO2と残部がAl23から
なるボリア−シリカ−アルミナ水和物粉末と、該ボリア
−シリカ−アルミナ水和物粉末を成型し、乾燥・焼成
し、次いで破砕して得たボリア−シリカ−アルミナ複合
酸化物粉末とを混合し、この混合物に鉱酸と有機質結合
剤と水とを添加して混練し、ハニカム構造体に押出し成
型し、乾燥後焼成することを特徴とするボリア−シリカ
−アルミナ組成物よりなるハニカム構造担体の製造方
法。
1. A mixture of a boria-silica-alumina hydrate powder and a boria-silica-alumina composite oxide powder at different mixing ratios, and a molding aid is added to the obtained mixed powder to form a honeycomb structure. And a method for producing a honeycomb structured carrier by drying and firing, wherein 3 to 10% by weight of B
A boria-silica-alumina hydrate powder composed of 2 O 3 , 4 to 19% by weight of SiO 2 and the balance being Al 2 O 3 , and the boria-silica-alumina hydrate powder are molded, dried and fired. Then, a boria-silica-alumina composite oxide powder obtained by crushing is mixed, and a mineral acid, an organic binder and water are added to the mixture, kneaded, extruded into a honeycomb structure, and dried. A method for producing a honeycomb structured carrier comprising a boria-silica-alumina composition, characterized by firing.
【請求項2】ボリア−シリカ−アルミナ水和物粉末とボ
リア−シリカ−アルミナ複合酸化物粉末とを配合するに
際しボリア−シリカ−アルミナ複合酸化物粉末の割合を
20〜80%とする請求項1記載の方法。
2. The method according to claim 1, wherein the mixing ratio of the boria-silica-alumina hydrate powder and the boria-silica-alumina composite oxide powder is 20 to 80%. The described method.
【請求項3】鉱酸として硝酸を用い、有機質結合材とし
てポリビニールアルコール、メチルセルロース、カルボ
キシメチルセルロース、デキストリン等の少なくとも1
種を用い、有機結合材の添加量を5〜20重量%の範囲
とする請求項1または2記載の方法。
3. Use of nitric acid as a mineral acid and at least one of polyvinyl alcohol, methylcellulose, carboxymethylcellulose and dextrin as an organic binder.
3. The method according to claim 1, wherein the amount of the organic binder is in the range of 5 to 20% by weight using a seed.
【請求項4】成型体の乾燥は、温度70〜90℃、湿度
80〜95%の範囲で行い、焼成を600〜1400℃
で行う請求項1〜3記載のいずれかの方法。
4. The molding is dried at a temperature of 70 to 90.degree. C. and a humidity of 80 to 95%, and calcined at a temperature of 600 to 1400.degree.
The method according to any one of claims 1 to 3, wherein the method is performed.
JP8248174A 1996-09-19 1996-09-19 Production of honeycomb carrier made of boria-silica-alumina composition Pending JPH1085611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8248174A JPH1085611A (en) 1996-09-19 1996-09-19 Production of honeycomb carrier made of boria-silica-alumina composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8248174A JPH1085611A (en) 1996-09-19 1996-09-19 Production of honeycomb carrier made of boria-silica-alumina composition

Publications (1)

Publication Number Publication Date
JPH1085611A true JPH1085611A (en) 1998-04-07

Family

ID=17174319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8248174A Pending JPH1085611A (en) 1996-09-19 1996-09-19 Production of honeycomb carrier made of boria-silica-alumina composition

Country Status (1)

Country Link
JP (1) JPH1085611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535229A (en) * 1998-12-28 2002-10-22 コーニング インコーポレイテッド High strength and high surface area alumina ceramic
US6468374B1 (en) * 1999-02-18 2002-10-22 Corning Incorporated Method of making silica glass honeycomb structure from silica soot extrusion
JP2010179267A (en) * 2009-02-07 2010-08-19 Kosei:Kk Support, and method of producing the same
WO2015125206A1 (en) * 2014-02-18 2015-08-27 日産自動車株式会社 Exhaust gas purification catalyst and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535229A (en) * 1998-12-28 2002-10-22 コーニング インコーポレイテッド High strength and high surface area alumina ceramic
US6468374B1 (en) * 1999-02-18 2002-10-22 Corning Incorporated Method of making silica glass honeycomb structure from silica soot extrusion
JP2010179267A (en) * 2009-02-07 2010-08-19 Kosei:Kk Support, and method of producing the same
WO2015125206A1 (en) * 2014-02-18 2015-08-27 日産自動車株式会社 Exhaust gas purification catalyst and production method thereof
JPWO2015125206A1 (en) * 2014-02-18 2017-03-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same

Similar Documents

Publication Publication Date Title
US6048490A (en) Method of producing cordierite bodies utilizing substantially reduced firing times
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
EP0894776B1 (en) Method of producing fast-fired cordierite bodies
EP2234938B1 (en) Zeolite-based honeycomb body
EP1261564B1 (en) Fabrication of ultra-thinwall cordierite structures
KR930005311B1 (en) Preparation of monolithic support structure containing high surface area agglomerates
JP4605621B2 (en) How to make cordierite ceramic honeycomb body
JPS61212331A (en) Preparation of monolithic catalyst carrier having integratedhigh surface area phase
CN113716949A (en) Porous ceramic article and method of making same
CN101336215A (en) Batch composition for the manufacture of a porous cordierite ceramic article and method for making a porous cordierite ceramic article
US6365259B1 (en) High strength/high surface area alumina ceramics
JPH02229773A (en) Phosphate-containing ceramic structure and its manufacture
CN108484149B (en) Preparation method of NaA molecular sieve membrane support
JP2002535229A5 (en)
CN109311761A (en) Aluminum titanate composition, aluminum titanate article and its manufacturing method
CN116104612B (en) Thin-wall narrow-micropore distribution cordierite diesel particulate filter and preparation method thereof
JPH0585814A (en) Production of cordierite honeycomb structure
JPH1085611A (en) Production of honeycomb carrier made of boria-silica-alumina composition
JP2006347793A (en) Method for manufacturing ceramic structure, and ceramic structure
JPH0416572A (en) Production of porous inorganic refractory molding
JPH11342335A (en) Preparation of reforming catalyst for hydrocarbons
WO2022026664A1 (en) Ceramic articles made from ceramic beads with open porosity
JPH0470053B2 (en)
JPH0640955B2 (en) An improved monolithic catalyst support incorporating a mixture of alumina and silica as a high surface area catalyst support material.
JPH0275341A (en) Heat-resistant catalyst carrier molding and catalyst prepared therefrom