JPH1084024A - Predicting method of defect development and heat treatment method of semiconductor substrate - Google Patents

Predicting method of defect development and heat treatment method of semiconductor substrate

Info

Publication number
JPH1084024A
JPH1084024A JP8257408A JP25740896A JPH1084024A JP H1084024 A JPH1084024 A JP H1084024A JP 8257408 A JP8257408 A JP 8257408A JP 25740896 A JP25740896 A JP 25740896A JP H1084024 A JPH1084024 A JP H1084024A
Authority
JP
Japan
Prior art keywords
heat treatment
substrate
semiconductor
size
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8257408A
Other languages
Japanese (ja)
Inventor
Koji Sueoka
浩治 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP8257408A priority Critical patent/JPH1084024A/en
Publication of JPH1084024A publication Critical patent/JPH1084024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the occurrence of slip transposition due to an oxygen deposit by a method wherein the occurrence of slip transposition due to an oxygen deposit inside a semiconductor substrate in the heat teatment process in the semiconductor device manufacturing is predicted by measuring the size of the oxygen deposit. SOLUTION: The size of one each of oxygen deposit of a plurality of semiconductor substrates is measured before the heat treatment in the semiconductor manufacturing process so that, if the size exceeds 200nm, the probability of the occurrence of the slip transposition 1 from the oxygen deposit in the other semiconductor substrate is predicted to be affirmative but negative if the size does not exceed 200nm. Through these procedures, the occurrence of the slip transposition due to the oxygen deposit 2 can be avoided almost without fail thereby enabling the yield in the semiconductor manufacturing process to be notably increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は欠陥発生有無の予測
方法及び半導体基板の熱処理方法に関し、より詳細に
は、半導体装置製造の熱処理中にスリップ転位が発生す
るか否かを予測する欠陥発生有無の予測方法、及び半導
体装置製造の熱処理中にスリップ転位を発生させないた
めの半導体基板の熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the presence or absence of a defect and a method for heat-treating a semiconductor substrate, and more particularly, to a method for predicting whether or not a slip dislocation is generated during a heat treatment for manufacturing a semiconductor device. And a heat treatment method for a semiconductor substrate so as not to generate slip dislocation during heat treatment for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】LSI等の集積回路形成用基板として用
いられる半導体基板の大部分は、石英るつぼ内に充填さ
れたSi溶融液を回転させながら引き上げるチョクラル
スキー法(CZ法)、と呼ばれる引き上げ方法により育
成されたSi単結晶から製造されている。
2. Description of the Related Art Most of semiconductor substrates used as substrates for forming integrated circuits such as LSIs are pulled up by a Czochralski method (CZ method) in which a Si melt filled in a quartz crucible is pulled up while rotating. It is manufactured from a Si single crystal grown by the method.

【0003】Si単結晶をCZ法で育成すると、石英る
つぼ自身がSi溶融液に溶解して酸素を溶出し、この酸
素は固液界面からSi単結晶中に(5−20)×1017
個/cm3 の濃度で取り込まれる。この酸素は、100
0℃程度の熱処理においてSi半導体基板(以下、単に
半導体基板と記す)内にSiO2 (以下、酸素析出物と
記す)として析出する。酸素析出物は汚染重金属のゲッ
タリング作用を有するため、その存在は高品質の半導体
基板に不可欠となっている(岸野 正剛、「超LSI材
料.プロセスの基礎」(1987)p.83)。それ
故、半導体基板には、基板メーカで出荷前に熱処理が施
され、内部に酸素析出物が既に形成されている状態のも
のが高品質基板として出荷されている。
When a Si single crystal is grown by the CZ method, the quartz crucible itself dissolves in the Si melt and elutes oxygen, and this oxygen is introduced from the solid-liquid interface into the Si single crystal by (5-20) × 10 17
It is taken in at a concentration of particles / cm 3 . This oxygen is 100
In a heat treatment at about 0 ° C., Si is precipitated as SiO 2 (hereinafter, referred to as oxygen precipitate) in a Si semiconductor substrate (hereinafter, simply referred to as a semiconductor substrate). Oxygen precipitates have a gettering effect on contaminant heavy metals, and their presence is essential for high-quality semiconductor substrates (Masato Kishino, “Basics of Ultra LSI Materials and Processes” (1987), p. 83). Therefore, a semiconductor substrate is subjected to a heat treatment before shipment by a substrate maker, and a substrate in which an oxygen precipitate has already been formed is shipped as a high quality substrate.

【0004】半導体基板(以下、単に基板と記す)にL
SI製造の熱処理を施す際、通常、基板内には温度分布
が生じる。特に、炉への搬入時には基板の外周部の温度
は中心部の温度よりも高くなっている。このため、基板
の外周部は中心部に対して膨張し、外周部には熱圧縮応
力が働くことになる。一方、炉からの搬出時には、基板
の中心部の温度は外周部の温度よりも高くなっている。
このため、基板の中心部は外周部に対して膨張し、中心
部には熱圧縮応力が働くことになる。酸素析出物を含有
する基板に熱圧縮応力が負荷されると、酸素析出物から
スリップ転位が発生する場合がある( Jpn.J.Appl.Phy
s.,27〔12〕(1988) H.Shimizu, T.Aoshima, p.2315
)。
[0004] A semiconductor substrate (hereinafter simply referred to as a substrate) has L
When performing heat treatment for SI manufacturing, a temperature distribution usually occurs in the substrate. In particular, when the substrate is carried into the furnace, the temperature of the outer peripheral portion of the substrate is higher than the temperature of the central portion. For this reason, the outer peripheral portion of the substrate expands with respect to the central portion, and thermal compression stress acts on the outer peripheral portion. On the other hand, at the time of unloading from the furnace, the temperature at the center of the substrate is higher than the temperature at the outer periphery.
For this reason, the central portion of the substrate expands with respect to the outer peripheral portion, and a thermal compressive stress acts on the central portion. When thermal compressive stress is applied to a substrate containing oxygen precipitates, slip dislocations may be generated from the oxygen precipitates (Jpn.J.Appl.Phy.
s., 27 (12) (1988) H. Shimizu, T. Aoshima, p. 2315
).

【0005】図1に、酸素析出物から発生したスリップ
転位を含む直径150mmの基板のX線トポグラフ像を
示す。写真中で白いコントラストを呈している線状の欠
陥がスリップ転位である。このスリップ転位は図2に示
すようにループ形状をしており、Siの{111}面上
を運動して広がる。直径150mm以上の基板表面の面
方位は一般的に{100}面が使用されているため、ス
リップ転位1は基板の表面あるいは裏面に向かって運動
することになる。このうち、基板の表面に向かって運動
したスリップ転位1は基板の表面を貫通することがあ
る。このようなスリップ転位1が素子形成領域にあらわ
れるとリーク電流発生の原因になると考えられており、
LSIにとって有害となる。以上の点から、実際のLS
I製造の熱処理では、酸素析出物2によるスリップ転位
1の発生が起こらない程度に熱圧縮応力を制御してい
る。すなわち、(1)炉への搬入、搬出速度の制御、
(2)基板間隔の制御、等がなされている。
FIG. 1 shows an X-ray topographic image of a substrate having a diameter of 150 mm including slip dislocations generated from oxygen precipitates. A linear defect having a white contrast in the photograph is a slip dislocation. The slip dislocation has a loop shape as shown in FIG. 2 and spreads by moving on the {111} plane of Si. Since the plane orientation of the surface of the substrate having a diameter of 150 mm or more is generally {100}, the slip dislocation 1 moves toward the front surface or the rear surface of the substrate. Of these, the slip dislocation 1 that has moved toward the surface of the substrate may penetrate the surface of the substrate. It is considered that such a slip dislocation 1 appears in the element formation region and causes a leak current,
Harmful for LSI. From the above points, the actual LS
In the heat treatment for manufacturing I, the thermal compression stress is controlled to such an extent that the generation of slip dislocations 1 by the oxygen precipitates 2 does not occur. That is, (1) control of the loading speed and unloading speed to the furnace,
(2) Control of the distance between the substrates is performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、実際の
LSI製造の熱処理においては、炉中の温度分布の時間
変動や、その他の詳細不明の原因により熱圧縮応力が増
大して、基板内部の酸素析出物からスリップ転位が発生
し、このスリップ転位が基板の表面を貫通するという課
題があった。
However, in the actual heat treatment for LSI manufacturing, the thermal compression stress increases due to the time variation of the temperature distribution in the furnace and other unknown factors, resulting in oxygen precipitation inside the substrate. There is a problem that slip dislocations are generated from the object and the slip dislocations penetrate the surface of the substrate.

【0007】本発明は、上記課題に鑑みなされたもので
あり、半導体装置製造の熱処理中に、該基板内部に存在
する酸素析出物からスリップ転位が発生する可能性があ
るか否かを酸素析出物のサイズを測定することで予測す
る方法を提供すること、及び酸素析出物によるスリップ
転位の発生を阻止する半導体基板の熱処理方法を提供す
ることを目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to determine whether or not slip dislocation may be generated from oxygen precipitates present inside a substrate during heat treatment for manufacturing a semiconductor device. It is an object of the present invention to provide a method for predicting by measuring the size of an object, and to provide a heat treatment method for a semiconductor substrate that prevents the occurrence of slip dislocation due to oxygen precipitates.

【0008】[0008]

【課題を解決するための手段及びその効果】上記目的を
達成するために本発明に係る欠陥発生有無の予測方法
は、半導体装置製造の熱処理中に、該半導体基板内部に
存在する酸素析出物からスリップ転位が発生する可能性
があるか否かを、前記酸素析出物のサイズを測定するこ
とで予測することを特徴としている。
In order to achieve the above object, a method for predicting the presence or absence of a defect according to the present invention provides a method for predicting the presence or absence of a defect according to the present invention. It is characterized in that whether or not there is a possibility of occurrence of slip dislocation is predicted by measuring the size of the oxygen precipitate.

【0009】上記欠陥発生有無の予測方法(1)によれ
ば、基板内部に存在する酸素析出物のサイズから、通常
の半導体装置製造の熱処理中にスリップ転位が発生する
か否かを、かなり高い確率で予測することができる。こ
の予測をもとに前記熱処理条件を検討すれば、酸素析出
物からのスリップ転位の発生をほとんどなくすことが可
能となる。
According to the method (1) for predicting the presence or absence of defects, the size of oxygen precipitates present inside the substrate can be used to determine whether or not slip dislocations occur during the heat treatment in normal semiconductor device manufacturing. Can be predicted by probability. By examining the heat treatment conditions based on this prediction, it is possible to almost eliminate the occurrence of slip dislocations from oxygen precipitates.

【0010】また、本発明に係る欠陥発生有無の予測方
法(2)は、半導体装置製造の熱処理前に複数の半導体
基板のうちの1枚の酸素析出物のサイズを測定し、その
サイズが200nm以上であれば他の半導体基板中の酸
素析出物からスリップ転位が発生する可能性があり、そ
のサイズが200nm未満であれば他の半導体基板中の
酸素析出物からスリップ転位が発生しないと予測するこ
とを特徴としている。
In the method (2) for predicting the occurrence of defects according to the present invention, the size of an oxygen precipitate of one of a plurality of semiconductor substrates is measured before heat treatment for manufacturing a semiconductor device, and the size is determined to be 200 nm. If this is the case, slip dislocations may be generated from oxygen precipitates in other semiconductor substrates. If the size is less than 200 nm, slip dislocations are predicted not to be generated from oxygen precipitates in other semiconductor substrates. It is characterized by:

【0011】上記欠陥発生有無の予測方法(2)によれ
ば、同じような酸素析出物のサイズの基板であれば、多
数の基板のうち、サンプル的に1枚の基板の酸素析出物
のサイズを測定しておくことにより、スリップ転位発生
の予測を効率的に行うことができる。この際の酸素析出
物のサイズのしきい値を200nmとすることにより、
スリップ転位の発生をほぼ確実に予測することができ
る。
According to the method (2) for predicting the presence / absence of defects, if the substrates have the same size of oxygen precipitates, the size of the oxygen precipitates of one substrate is sampled among a large number of substrates. Is measured, the occurrence of slip dislocation can be predicted efficiently. By setting the threshold value of the size of the oxygen precipitate at this time to 200 nm,
The occurrence of slip dislocation can be predicted almost certainly.

【0012】また、本発明に係る半導体基板の熱処理方
法は、欠陥発生有無の予測方法(1)又は(2)によ
り、半導体装置製造の熱処理中にスリップ転位が発生す
る可能性があると予測された場合には、半導体基板の炉
への搬入、搬出速度を通常の条件よりは低くし、及び/
又は半導体基板同士の間隔を通常の条件よりは広く設定
することにより、酸素析出物によるスリップ転位の発生
を阻止することを特徴としている。
Further, in the method of heat treating a semiconductor substrate according to the present invention, it is predicted that slip dislocation may be generated during the heat treatment in the manufacture of a semiconductor device by the method (1) or (2) for predicting the presence or absence of a defect. The speed of loading and unloading semiconductor substrates into and out of the furnace is lower than normal conditions, and / or
Alternatively, the generation of slip dislocation due to oxygen precipitates is prevented by setting the interval between the semiconductor substrates to be wider than normal conditions.

【0013】上記半導体基板の熱処理方法によれば、上
記欠陥発生有無の予測方法(1)又は(2)を有効に利
用して半導体装置製造時の熱処理中に、酸素析出物によ
るスリップ転位の発生をほぼ確実に阻止することができ
る。従って半導体装置製造の歩留まりを大幅に向上させ
ることができる。
According to the heat treatment method for a semiconductor substrate, the generation of slip dislocation due to oxygen precipitates during the heat treatment at the time of manufacturing a semiconductor device by effectively utilizing the method (1) or (2) for predicting the occurrence of defects. Can be almost certainly prevented. Therefore, the yield of semiconductor device manufacturing can be greatly improved.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る欠陥発生有無
の予測方法及び半導体基板の熱処理方法の実施の形態を
説明する。本発明者は、熱応力下でスリップ転位源とな
りうる酸素析出物のサイズを以下の方法で調査した。ま
ず、熱処理により70nm、230nm、330nm、
400nm、490nmの板状の酸素析出物を別々に含
む直径150mmの基板を5枚用意した。次に、すべて
の基板に同時に熱応力を負荷し、TEM(Transmission
electron microscopy)法により酸素析出物のサイズを
測定し、スリップ転位発生の有無を調査した。ここで熱
応力は、3.3mmの間隔で基板を設置した石英ボート
を、1000℃に維持した横型熱処理炉中に1分あたり
15cmの速度で搬入、搬出することで負荷した。通常
のLSI製造の熱処理条件は約3.5mmの間隔で基板
を設置し、約5cm/minの速度で、800℃程度に
維持された炉へ搬入あるいは炉から搬出するものであ
り、上記条件は通常負荷される熱応力より十分に大きな
熱応力がかかるものである。その結果、230nm以上
の板状の酸素析出物からはスリップ転位が発生する可能
性が高いのに対し、230nm未満の板状の酸素析出物
からはスリップ転位が発生する可能性が低いことを見い
だした。本発明者はさらに、100nm、130nm、
180nm、200nm、220nmの多面体の酸素析
出物を別々に含む直径150mmの基板を5枚用意して
同様の方法で酸素析出物によるスリップ転位発生の有無
を調査した。その結果、200nm以上の多面体の酸素
析出物からはスリップ転位発生の可能性が高いのに対
し、200nm未満の多面体の酸素析出物からはスリッ
プ転位発生の可能性が低いことを見いだした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for predicting the occurrence of defects and a method for heat treating a semiconductor substrate according to the present invention will be described below. The present inventors have investigated the size of oxygen precipitates that can serve as slip dislocation sources under thermal stress by the following method. First, by heat treatment, 70 nm, 230 nm, 330 nm,
Five substrates each having a diameter of 150 mm and separately containing 400 nm and 490 nm plate-like oxygen precipitates were prepared. Next, thermal stress is simultaneously applied to all the substrates, and TEM (Transmission)
The size of the oxygen precipitate was measured by electron microscopy) to investigate the occurrence of slip dislocation. Here, thermal stress was applied by loading and unloading a quartz boat on which substrates were installed at 3.3 mm intervals into a horizontal heat treatment furnace maintained at 1000 ° C. at a rate of 15 cm per minute. The heat treatment conditions for normal LSI manufacturing are such that substrates are placed at intervals of about 3.5 mm, and are carried into or out of a furnace maintained at about 800 ° C. at a speed of about 5 cm / min. Thermal stress that is sufficiently larger than the thermal stress normally applied is applied. As a result, it has been found that slip dislocations are likely to occur from plate-like oxygen precipitates of 230 nm or more, whereas slip dislocations are unlikely to occur from plate-like oxygen precipitates of less than 230 nm. Was. The inventor has further proposed 100 nm, 130 nm,
Five substrates each having a diameter of 150 mm and separately containing polyhedral oxygen precipitates of 180 nm, 200 nm, and 220 nm were prepared, and the presence or absence of occurrence of slip dislocation due to the oxygen precipitates was examined in the same manner. As a result, it has been found that a polyhedral oxygen precipitate having a diameter of 200 nm or more has a high possibility of generating slip dislocations, whereas a polyhedral oxygen precipitate having a diameter of less than 200 nm has a low possibility of generating a slip dislocation.

【0015】以上の結果から、酸素析出物の形態が板状
であるか、多面体であるかによらず、そのサイズが20
0nm以上であれば酸素析出物からスリップ転位が発生
する可能性があり、そのサイズが200nm未満であれ
ば酸素析出物からスリップ転位が発生する可能性が低い
ことがわかった。
From the above results, regardless of whether the oxygen precipitate is plate-like or polyhedral, its size is 20 μm.
If it is 0 nm or more, slip dislocations may be generated from oxygen precipitates. If the size is less than 200 nm, slip dislocations from oxygen precipitates are less likely to be generated.

【0016】上記の知見を基に、本発明者は、同時にL
SI製造の熱処理を施される、ほぼ同一サイズの酸素析
出物を含む直径150mm以上の多数の基板のうちの1
枚の酸素析出物のサイズをLSI製造熱処理前に測定し
ておき、そのサイズが200nm以上であれば他の基板
中の酸素析出物からスリップ転位が発生する可能性があ
り、そのサイズが200nm未満であれば他の基板中の
酸素析出物からスリップ転位が発生しないと予測する欠
陥発生有無の予測方法を発明した。
Based on the above findings, the present inventor
One of a large number of substrates having a diameter of 150 mm or more and containing oxygen precipitates of almost the same size, which is subjected to heat treatment for manufacturing an SI.
The size of one oxygen precipitate is measured before the heat treatment for LSI manufacturing, and if the size is 200 nm or more, slip dislocation may occur from oxygen precipitates in another substrate, and the size is less than 200 nm. Then, a method for predicting the presence or absence of defects has been invented, which predicts that slip dislocations will not occur from oxygen precipitates in other substrates.

【0017】かかる予測方法により、LSI製造の熱処
理中にスリップ転位が発生しないと予測された場合は、
炉中の温度分布の時間変動や、その他の詳細不明の原因
により熱圧縮応力が増大しても酸素析出物からスリップ
転位が発生することがなく、歩留まり良くLSIを製造
できる。一方、上記予測方法により、通常のLSI製造
の熱処理条件ではスリップ転位が発生する可能性がある
と予測された場合は、炉への搬入、搬出速度を通常より
低めに、例えば1〜3cm/min程度に、あるいは基
板間隔を通常より広めに、例えば4〜6mmに設定する
ことにより酸素析出物によるスリップ転位発生を回避す
ることが可能となる。従ってLSI製造の歩留まりを格
段に向上させることができる。
If it is predicted that no slip dislocation will occur during the heat treatment of LSI manufacturing by such a prediction method,
Even if the thermal compression stress increases due to the time variation of the temperature distribution in the furnace or other unknown factors, slip dislocations do not occur from oxygen precipitates, and an LSI can be manufactured with a high yield. On the other hand, when the prediction method predicts that slip dislocation may occur under normal heat treatment conditions for LSI manufacturing, the speed of loading and unloading to the furnace is set lower than normal, for example, 1 to 3 cm / min. The slip dislocation due to oxygen precipitates can be avoided by setting the distance to the extent or the substrate interval wider than usual, for example, 4 to 6 mm. Therefore, the yield of LSI manufacturing can be remarkably improved.

【0018】[0018]

【実施例及び比較例】以下、本発明に係る欠陥発生有無
の予測方法及び半導体基板の熱処理方法の実施例及び比
較例を説明する。まず、基板メーカで2種類の熱処理が
施された直径が150mmである基板を1001枚ずつ
別々に用意した。この2種類の基板を(実施例1)と
(実施例2)とする。次に、本発明に係る欠陥発生有無
の予測方法に従って各実施例の基板から1枚づつを抽出
し、基板内部に存在する酸素析出物のサイズをTEM法
により実測した。その結果、(実施例1)の基板中の酸
素析出物のサイズは約100nmであり、(実施例2)
の基板中の酸素析出物のサイズは約250nmであっ
た。この結果から、本発明に係る欠陥発生有無の予測方
法に従って(実施例1)の基板については酸素析出物か
らスリップ転位が発生しないと予測し、(実施例2)の
基板については酸素析出物からスリップ転位が発生する
可能性があると予測した。そして、この結果から、(実
施例1)の基板については通常のLSI製造の熱処理
(炉の温度800℃、搬入、搬出速度5cm/min、
基板間隔3.5mm)を施した。LSI製造の熱処理は
1回につき基板枚数を100枚として10回行った。ま
た、(実施例2)の基板については基板間隔を通常の
1.5倍(5.3mm)としてLSI製造の熱処理を施
した。LSI製造の熱処理は同じく1回につき基板枚数
を100枚として10回行った。
Examples and Comparative Examples Examples and comparative examples of a method for predicting the presence or absence of a defect and a heat treatment method for a semiconductor substrate according to the present invention will be described below. First, 1001 substrates each having a diameter of 150 mm and having been subjected to two types of heat treatment were separately prepared by a substrate maker. These two types of substrates are referred to as (Example 1) and (Example 2). Next, one by one was extracted from the substrate of each example according to the method for predicting the occurrence of defects according to the present invention, and the size of oxygen precipitates present inside the substrate was actually measured by the TEM method. As a result, the size of the oxygen precipitate in the substrate of (Example 1) was about 100 nm, and (Example 2)
The size of the oxygen precipitate in the substrate was about 250 nm. From these results, it is predicted that no slip dislocation is generated from the oxygen precipitate for the substrate of (Example 1) according to the method for predicting the presence or absence of a defect according to the present invention, and that for the substrate of (Example 2), It was predicted that slip dislocation could occur. From these results, it can be seen from the results that the substrate of Example 1 was subjected to the heat treatment (furnace temperature 800 ° C., loading / unloading speed 5 cm / min,
(Substrate spacing 3.5 mm). The heat treatment for LSI production was performed 10 times with 100 substrates each time. Further, the substrate of (Example 2) was subjected to a heat treatment for LSI production with the substrate interval being 1.5 times (5.3 mm) the normal interval. The heat treatment for LSI production was performed 10 times with the number of substrates set to 100 each time.

【0019】一方、比較例として、実施例で用いた基板
と同一の2種類の熱処理が施された直径が150mmで
ある基板を1001枚ずつ別々に用意した。この2種類
の基板のうち、(実施例1)と同一の基板を(比較例
1)とし、(実施例2)と同一の基板を(比較例2)と
した。次に、これらの基板に上記通常のLSI製造の熱
処理を施した。LSI製造の熱処理は1回につき基板枚
数を100枚として10回行った。
On the other hand, as a comparative example, 1001 substrates having a diameter of 150 mm and subjected to the same two kinds of heat treatment as the substrates used in the examples were separately prepared. Of these two types of substrates, the same substrate as (Example 1) was set as (Comparative Example 1), and the same substrate as (Example 2) was set as (Comparative Example 2). Next, these substrates were subjected to the above-described heat treatment for normal LSI manufacturing. The heat treatment for LSI production was performed 10 times with 100 substrates each time.

【0020】LSI製造の熱処理後に(実施例1)、
(実施例2)および(比較例1)、(比較例2)の各基
板において、10回のLSI製造の熱処理のうち酸素析
出物からスリップ転位が発生した回数を調査した。ここ
で、スリップ転位の発生はX線トポグラフ法で調査し
た。結果を下記の表1に示す。
After the heat treatment for LSI manufacture (Example 1),
In each of the substrates of (Example 2), (Comparative Example 1), and (Comparative Example 2), the number of times slip dislocations were generated from oxygen precipitates among the ten heat treatments for LSI production was investigated. Here, the occurrence of slip dislocation was investigated by the X-ray topography method. The results are shown in Table 1 below.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例については(実施例1)、(実施例
2)のいずれも酸素析出物からスリップ転位が発生して
なかった。一方、比較例については、(比較例2)にお
いて10回のうち2回、酸素析出物からスリップ転位が
発生した。
In each of the examples (Example 1) and (Example 2), no slip dislocation was generated from the oxygen precipitate. On the other hand, in the comparative example, slip dislocation occurred from the oxygen precipitate twice in 10 times in (Comparative Example 2).

【0023】上記したように、本発明に係る欠陥発生有
無の予測方法及び半導体基板の熱処理方法を適用するこ
とにより、歩留まり良くLSIを製造できることにな
る。
As described above, by applying the method for predicting the presence or absence of a defect and the method for heat treating a semiconductor substrate according to the present invention, an LSI can be manufactured with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素析出物から発生したスリップ転位を含む半
導体基板を示すX線写真である。
FIG. 1 is an X-ray photograph showing a semiconductor substrate including slip dislocations generated from oxygen precipitates.

【図2】酸素析出物から発生したスリップ転位を模式的
に示した図である。
FIG. 2 is a diagram schematically showing slip dislocations generated from oxygen precipitates.

【符号の説明】[Explanation of symbols]

1 スリップ転位 2 酸素析出物 1 slip dislocation 2 oxygen precipitate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体装置製造の熱処理中に、該半導体
基板内部に存在する酸素析出物からスリップ転位が発生
する可能性があるか否かを、前記酸素析出物のサイズを
測定することで予測することを特徴とする欠陥発生有無
の予測方法。
1. Predicting whether or not slip dislocations may occur from oxygen precipitates present inside a semiconductor substrate during heat treatment for manufacturing a semiconductor device by measuring the size of the oxygen precipitates. A method for predicting the presence or absence of a defect.
【請求項2】 半導体装置製造の熱処理前に複数の半導
体基板のうちの1枚の酸素析出物のサイズを測定し、そ
のサイズが200nm以上であれば他の半導体基板中の
酸素析出物からスリップ転位が発生する可能性があり、
そのサイズが200nm未満であれば他の半導体基板中
の酸素析出物からスリップ転位が発生しないと予測する
ことを特徴とする請求項1記載の欠陥発生有無の予測方
法。
2. The method according to claim 1, wherein the size of the oxygen precipitate in one of the plurality of semiconductor substrates is measured before the heat treatment for manufacturing the semiconductor device. Dislocations can occur,
2. The method according to claim 1, wherein if the size is less than 200 nm, no slip dislocation is generated from oxygen precipitates in another semiconductor substrate.
【請求項3】 請求項1又は2記載の欠陥発生有無の予
測方法により、半導体装置製造の熱処理中にスリップ転
位が発生する可能性があると予測された場合には、半導
体基板の炉への搬入、搬出速度を通常の条件よりは低く
し、及び/又は半導体基板同士の間隔を通常の条件より
は広く設定することにより、酸素析出物によるスリップ
転位の発生を阻止することを特徴とする半導体基板の熱
処理方法。
3. A method according to claim 1, wherein when it is predicted that slip dislocation may occur during heat treatment in the manufacture of the semiconductor device, the semiconductor substrate is transferred to a furnace. A semiconductor characterized in that generation of slip dislocation due to oxygen precipitates is prevented by lowering the loading / unloading speed than under normal conditions and / or setting the interval between semiconductor substrates wider than under normal conditions. Heat treatment method for the substrate.
JP8257408A 1996-09-06 1996-09-06 Predicting method of defect development and heat treatment method of semiconductor substrate Pending JPH1084024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8257408A JPH1084024A (en) 1996-09-06 1996-09-06 Predicting method of defect development and heat treatment method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8257408A JPH1084024A (en) 1996-09-06 1996-09-06 Predicting method of defect development and heat treatment method of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH1084024A true JPH1084024A (en) 1998-03-31

Family

ID=17305970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8257408A Pending JPH1084024A (en) 1996-09-06 1996-09-06 Predicting method of defect development and heat treatment method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH1084024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157865A (en) * 2015-02-25 2016-09-01 株式会社Sumco Quality discrimination method for silicon wafer, manufacturing method of silicon wafer employing the method, and silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157865A (en) * 2015-02-25 2016-09-01 株式会社Sumco Quality discrimination method for silicon wafer, manufacturing method of silicon wafer employing the method, and silicon wafer

Similar Documents

Publication Publication Date Title
US20100290971A1 (en) Silicon wafer and method for producing the same
JP2010040587A (en) Method of manufacturing silicon wafer
JP2002187794A (en) Silicon wafer and production process for silicon single crystal used for producing the same
JP2003031582A (en) Manufacturing method for silicon wafer and silicon wafer
JP5542383B2 (en) Heat treatment method for silicon wafer
JP2000174029A (en) Method of removing defects from single crystal and crystal cleared of the defects by the method
JP4473571B2 (en) Silicon wafer manufacturing method
JPH10150048A (en) Semiconductor substrate
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JP4615161B2 (en) Epitaxial wafer manufacturing method
WO2010131412A1 (en) Silicon wafer and method for producing the same
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
JPH09190954A (en) Semiconductor substrate and its manufacture
CN114182355B (en) Method for eliminating gap type defect B-swirl, silicon wafer and electronic device
JPH08213403A (en) Semiconductor substrate and manufacture thereof
JPH1084024A (en) Predicting method of defect development and heat treatment method of semiconductor substrate
TWI623018B (en) Method for manufacturing a silicon wafer
JPH1192283A (en) Silicon wafer and its production
JP5565079B2 (en) Manufacturing method of SOI wafer
JPH08250505A (en) Silicon wafer and its manufacture
JPH11283987A (en) Silicon epitaxial wafer and manufacture thereof
JP2008227060A (en) Method of manufacturing annealed wafer
JPH09199507A (en) Semiconductor substrate and its manufacture
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPS63112488A (en) Growth method for single crystal silicon