JPH1072602A - Production of sheet material having high thermal conductivity - Google Patents

Production of sheet material having high thermal conductivity

Info

Publication number
JPH1072602A
JPH1072602A JP23224196A JP23224196A JPH1072602A JP H1072602 A JPH1072602 A JP H1072602A JP 23224196 A JP23224196 A JP 23224196A JP 23224196 A JP23224196 A JP 23224196A JP H1072602 A JPH1072602 A JP H1072602A
Authority
JP
Japan
Prior art keywords
rolling
powder
plate
thermal conductivity
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23224196A
Other languages
Japanese (ja)
Inventor
Akira Mishima
彰 三島
Nobushi Goto
信志 後藤
Yasunao Kai
安直 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP23224196A priority Critical patent/JPH1072602A/en
Publication of JPH1072602A publication Critical patent/JPH1072602A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a sound sintered and rolled sheet free from cracking and the precipitation of impurities and furthermore free from anisotropy in the characteristics in the rolling for a sintered sheet of mixed powder of thermally conductive metal powder and high m.p. powder such as Cu-Mo. SOLUTION: Mixed powder of thermally conductive metal powder and high m.p. metal powder in which the average grain diameter is respectively regulated to <=50μm and 0.5 to 8μm is formed into a planar green compact, which is formed into a sintered body having >=90% density to the theoretical density. Thereafter, this sintered sheet material is rolled in such a manner that, in the initial stage of the rolling, hot rolling is executed at >=650 deg.C heating temp. at <=25% draft to the multi-axis direction so as to regulate the ratio of the minor axis to the major axis in Mo grains within the rolled sheet to 0.1 to 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板のよう
に高熱伝導性が要求される用途に適した板材の製造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a plate material suitable for applications requiring high thermal conductivity, such as a semiconductor substrate.

【0002】[0002]

【従来の技術】従来から、Cuのように熱伝導性に優れ
た金属生地中にMoのような高融点金属粒子を分散させ
た板材は、放熱性に優れていることから半導体搭載用基
板のように高熱伝導性を要求される用途に用いられてい
る。
2. Description of the Related Art Conventionally, a plate material in which high melting point metal particles such as Mo are dispersed in a metal material having excellent thermal conductivity, such as Cu, is excellent in heat dissipation, so that a substrate for mounting a semiconductor is used. Thus, it is used for applications requiring high thermal conductivity.

【0003】このようなCu−Moの板材の製造法とし
て、例えば特開平5−125407号公報に記載されて
いるように、Cu粉末とMo粉末との混合粉末の圧粉体
を焼結し、圧延する方法がある。ところが、この焼結体
の圧延時には、以下の理由により歩留まりが低いという
問題がある。すなわち、Cu−Mo焼結体を圧延加工す
ると、Moは加工性に劣るために、この部分が低加工率
のうちに破断し、破壊の起源となって圧延材に圧延方向
と垂直なクラックが生じる。
As a method for producing such a Cu-Mo plate material, for example, as described in JP-A-5-125407, a green compact of a mixed powder of Cu powder and Mo powder is sintered, There is a method of rolling. However, when this sintered body is rolled, there is a problem that the yield is low for the following reasons. That is, when the Cu-Mo sintered body is rolled, Mo is inferior in workability, so this portion is broken at a low working rate, and a crack perpendicular to the rolling direction is generated in the rolled material as a source of the fracture. Occurs.

【0004】そこで、このような欠点を解消するため
に、特開平6−212340号公報には、Cu粉末とM
o粉末の混合時に、Mo2C粉末や炭素粉末などの炭素
源粉末を同時に添加し、得られる焼結体の靭性を向上さ
せて圧延時の歩留まりを高めることが開示されている。
しかし、この対策では、半導体搭載用基板として使用す
るためにNiメッキ等の表面処理工程の際に、焼結体に
残留した未反応の炭素源粉末がNiメッキ皮膜とCu−
Mo材との密着不良の原因となり、製品としての歩留ま
りを低下させる。
[0004] In order to solve such a drawback, Japanese Unexamined Patent Publication No. Hei 6-212340 discloses that Cu powder and M
It is disclosed that at the time of mixing o powder, a carbon source powder such as Mo 2 C powder or carbon powder is added at the same time to improve the toughness of the obtained sintered body and increase the yield during rolling.
However, in this measure, unreacted carbon source powder remaining on the sintered body during a surface treatment step such as Ni plating for use as a substrate for mounting a semiconductor on the Ni plating film and Cu-
This causes poor adhesion to the Mo material and lowers the yield as a product.

【0005】また、従来のCu−Mo圧延板は一軸方向
圧延によって製造されており、その金属組織は圧延方向
にMoが繊維状に伸びたものであるため、圧延方向の熱
膨張係数が圧延方向と直角方向の熱膨張係数より小さい
という熱膨張係数の異方性を有している。そのため、半
導体素子と基板材料の熱膨張係数の近似が要求される半
導体素子と基板の接合工程において、半導体素子の破壊
に至る場合がある。
[0005] Further, a conventional Cu-Mo rolled plate is manufactured by uniaxial rolling, and the metal structure thereof is such that Mo expands in a fiber shape in the rolling direction. And has an anisotropy of a thermal expansion coefficient that is smaller than a thermal expansion coefficient in a direction perpendicular to the direction. For this reason, in the bonding process between the semiconductor element and the substrate that requires approximation of the coefficient of thermal expansion between the semiconductor element and the substrate material, the semiconductor element may be broken.

【0006】[0006]

【発明が解決しようとする課題】本願発明が解決しよう
とする課題は、Cu−Moのような熱伝導性金属粉末と
高融点粉末との混合粉末の焼結板の圧延において、割
れ、不純物の析出がなく、さらには、その特性に異方性
のない健全な焼結圧延板の製造方法を得ることにある。
An object of the present invention is to solve the problem of cracks and impurities in rolling a sintered plate of a mixed powder of a heat conductive metal powder such as Cu-Mo and a high melting point powder. It is another object of the present invention to provide a method for producing a sound sintered rolled sheet having no precipitation and no anisotropy in its properties.

【0007】[0007]

【課題を解決するための手段】本発明は、それぞれを粒
度調整した熱伝導性金属粉末と高融点粉末との混合粉末
の焼結板材を多軸方向に圧延することによってその課題
を解決した。
SUMMARY OF THE INVENTION The present invention has solved the problem by rolling a sintered plate of a mixed powder of a heat conductive metal powder and a high melting point powder, each of which has its particle size adjusted, in a multiaxial direction.

【0008】熱伝導性金属粉末の生地中に粒子の集合体
として存在する高融点粉末からなる焼結板を多軸方向に
圧延することによって、高融点粉末粒子の集合体は多方
向に延在することになり、高融点粉末粒子の熱伝導性金
属粉末の生地中に分散により特性の異方性が低減する。
[0008] By rolling in a multiaxial direction a sintered plate made of a high melting point powder present as an aggregate of particles in a dough of heat conductive metal powder, the aggregate of the high melting point powder particles extends in multiple directions. Therefore, the anisotropy of the characteristics is reduced by dispersing the high-melting-point powder particles in the dough of the heat conductive metal powder.

【0009】[0009]

【発明の実施の形態】熱伝導性金属としては、Cu、A
g、Cu−Ag合金などの熱伝導性に優れ、且つ、塑性
加工性に優れた金属を用いることができ、また、高融点
金属としては、Mo、Wのような低い熱膨張係数を有す
る金属を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Cu, A
g, a metal having excellent thermal conductivity, such as a Cu-Ag alloy, and having excellent plastic workability, and a metal having a low coefficient of thermal expansion such as Mo or W as a high melting point metal. Can be used.

【0010】Cu粉末のような熱伝導性金属粉末の粒度
は、平均粒子径が50μmより大きいと焼結性が低下し
て焼結体中に粗大なポアが残り、このポアが圧延時に破
壊の起源となって加工性が低下するので、その平均粒子
径は50μm以下が好適である。
When the average particle diameter of the heat conductive metal powder such as Cu powder is larger than 50 μm, the sinterability is reduced, and coarse pores remain in the sintered body. The average particle diameter is preferably 50 μm or less, since it becomes the origin and the processability is reduced.

【0011】Mo粉末の粒度については、平均粒子径が
0.5μm未満ではMo粉末同士が凝集しているため、
Cu−Mo焼結体中にMoとMoの接触点が存在するこ
とになり、この接触点が圧延時に破壊の起点となって加
工性が低下する。一方、Mo粉末の平均粒子径が8μm
より大きくなると、2個以上の結晶粒から構成される単
一のMo粒子が含まれるようになる。この場合はCu−
Mo焼結体中にMoとMoの結晶粒界が存在することに
なり、この結晶粒界が圧延時に破壊の起点となって加工
性が低下する。したがってMo粉末の平均粒子径は0.
5から8μmの範囲が好ましい。
Regarding the particle size of the Mo powder, if the average particle size is less than 0.5 μm, the Mo powders are aggregated.
Mo-Mo contact points are present in the Cu-Mo sintered body, and these contact points serve as starting points of fracture during rolling, resulting in reduced workability. On the other hand, the average particle diameter of the Mo powder is 8 μm.
As the size increases, a single Mo particle composed of two or more crystal grains is included. In this case, Cu-
Mo and Mo crystal grain boundaries will be present in the Mo sintered body, and these crystal grain boundaries will serve as starting points of fracture during rolling, resulting in reduced workability. Therefore, the average particle size of the Mo powder is 0.1.
A range from 5 to 8 μm is preferred.

【0012】多軸圧延に供する板状焼結体としては、従
来の半導体搭載用基板の製造に供されている90%以上
の密度を有するものが好ましい。
As the plate-shaped sintered body to be subjected to the multiaxial rolling, one having a density of 90% or more used in the production of a conventional substrate for mounting a semiconductor is preferable.

【0013】次に、多軸方向圧延の多軸方向としては、
焼結体の各辺に対して直角なクロスになっているのが、
その後の打ち抜きプレスエ程での材料歩留まりの点から
都合が良い。また、圧延の初期には熱間圧延を行う必要
があり、このときの加熱温度が650°Cより低い温度
では圧延材にクラックが発生するため加熱温度は650
°C以上でなければならない。さらに、圧延時の圧下率
が25%より大きいとやはり圧延材にクラックが発生す
るため圧下率は25%以下が望ましい。
Next, as the multiaxial direction of the multiaxial rolling,
The cross at right angles to each side of the sintered body is
It is convenient from the viewpoint of the material yield in the subsequent punching and pressing process. Further, it is necessary to perform hot rolling at the beginning of rolling, and if the heating temperature at this time is lower than 650 ° C., cracks occur in the rolled material, so that the heating temperature is 650 ° C.
° C or higher. Further, if the rolling reduction at the time of rolling is larger than 25%, cracks will also occur in the rolled material, so the rolling reduction is desirably 25% or less.

【0014】圧延材の熱膨張係数の異方性の点から、圧
延材の板面の組織を観察したときに、圧延した焼結体中
のMoのような高融点金属粉末粒子の短軸と長軸の比が
0.1以上かつ1以下の範囲内で加工する必要がある。
その理由は、高融点金属粉末粒子の短軸と長軸の比が
0.1以下では、短軸方向と長軸方向の熱膨張係数の差
が大きく、半導体搭載基板として使用した場合に半導体
素子が破壊してしまうためである。
From the viewpoint of the anisotropy of the coefficient of thermal expansion of the rolled material, when observing the structure of the plate surface of the rolled material, the short axis of the high melting point metal powder particles such as Mo in the rolled sintered body was observed. It is necessary to work within a range of the ratio of the long axis of 0.1 or more and 1 or less.
The reason is that when the ratio of the short axis to the long axis of the refractory metal powder particles is 0.1 or less, the difference between the thermal expansion coefficients in the short axis direction and the long axis direction is large. Is to be destroyed.

【0015】[0015]

【実施例】本発明を半導体搭載基板用として、熱伝導性
金属としてCu、高融点金属としてMoを用いた例につ
いて示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention for a semiconductor mounting substrate using Cu as a heat conductive metal and Mo as a high melting point metal will be described.

【0016】実施例1 Cu−Mo焼結体の圧延加工を行うに当たり、配合粉末
の平均粒子径が焼結体の圧延加工性に及ぼす影響を調べ
た。
Example 1 In rolling a Cu-Mo sintered body, the effect of the average particle size of the compounded powder on the rolling workability of the sintered body was examined.

【0017】平均粒子径が20μmの金属Cu粉末と平
均粒子径が0.5〜13μmの金属Mo粉末とをMoが
重量比で70%となるように混合した後金型でプレス成
型し、寸法が20×50×50mm3の圧粉体を得た。
これを温度1100°Cから1250°Cの水素雰囲気
中で2時間焼結し、寸法が16×40×40mm3で相
対密度が約92%の焼結体とした。この焼結体を温度1
050°Cの窒素雰囲気中で20分間保持し、圧下率約
20%で厚さ3mmまでは熱間圧延を行い、その後厚さ
0.5mmまで圧下率約10%で冷間圧延した。このと
きの圧延は焼結体の各辺に対して直角な多軸方向となる
ようにした。得られた圧延板から一辺が10mmの正方
形の平板を打ち抜いて圧延によるクラックの発生状況を
調べて良品率を算出した。図1にMo粉末の平均粒子径
と良品率との関係として示す。
A metal Cu powder having an average particle diameter of 20 μm and a metal Mo powder having an average particle diameter of 0.5 to 13 μm are mixed so that Mo becomes 70% by weight, and then press-molded with a metal mold. Was 20 × 50 × 50 mm 3 .
This was sintered in a hydrogen atmosphere at a temperature of 1100 ° C. to 1250 ° C. for 2 hours to obtain a sintered body having a size of 16 × 40 × 40 mm 3 and a relative density of about 92%. This sintered body was heated to
It was kept in a nitrogen atmosphere at 050 ° C. for 20 minutes, subjected to hot rolling at a rolling reduction of about 20% to a thickness of 3 mm, and then cold rolled to a thickness of 0.5 mm at a rolling reduction of about 10%. The rolling at this time was performed in a multiaxial direction perpendicular to each side of the sintered body. A square plate having a side of 10 mm was punched out from the obtained rolled plate, and the occurrence of cracks due to rolling was checked to calculate the yield rate. FIG. 1 shows the relationship between the average particle diameter of Mo powder and the yield rate.

【0018】図1から、Mo粉末の平均粒子径が0.5
μm未満及び8μmより大きい範囲では良品率が80%
以下であり、圧延時にクラックが発生しやすいことがわ
かる。その原因を調べるため焼結体の組織を観察したと
ころ、平均粒子径が0.5μm未満の場合は、焼結体に
微細なMo粒子の凝集体が多数観察された。このような
凝集体にはMo粒子同士が直接接触する部分があり、圧
延加工の際にこの接触部が破壊の起源となって加工性が
低下することがわかった。一方、平均粒子径が8μm以
上の場合は、1個の粗大なMo粒子の中に結晶粒界が存
在するものがあり、圧延中にその結晶粒界が破壊の起源
となって加工性が低下することがわかった。このことか
ら、Mo原料粉末の平均粒子径は0.5μmから8μm
の範囲にあることが必要であることがわかる。
FIG. 1 shows that the average particle diameter of the Mo powder is 0.5
80% non-defective rate in the range of less than μm and more than 8 μm
The following shows that cracks are likely to occur during rolling. When the structure of the sintered body was observed to investigate the cause, when the average particle diameter was less than 0.5 μm, many aggregates of fine Mo particles were observed in the sintered body. It has been found that there is a portion in which Mo particles are in direct contact with each other in such agglomerates, and the contact portion becomes a source of destruction during rolling, thereby reducing workability. On the other hand, when the average particle diameter is 8 μm or more, there is a grain boundary in one coarse Mo particle, and the grain boundary becomes a source of fracture during rolling, resulting in reduced workability. I found out. From this, the average particle diameter of the Mo raw material powder is 0.5 μm to 8 μm.
It is necessary to be within the range.

【0019】実施例2 次に、原料Cu粉末の平均粒子径が焼結体の圧延加工性
に及ぼす影響を調べた。
Example 2 Next, the effect of the average particle size of the raw material Cu powder on the rolling workability of the sintered body was examined.

【0020】平均粒子径が1.2〜75μmの金属Cu
粉末と平均粒子径が2.3μmのMo粉末とをMoが重
量比で30%となるように混合した後金型でプレス成型
し、寸法が20×50×50mm3の圧粉体を得た。こ
れを温度1050°Cの水素雰囲気中で2時間焼結し
た。これらの焼結体を温度1050°Cの窒素雰囲気中
で20分間保持し、圧下率約25%で厚さ3mmまでは
熱間圧延を行い、その後厚さ0.5mmまで圧下率約1
0%で冷間圧延した。このときの圧延は焼結体の各辺に
対して直角な多軸方向となるようにした。得られた圧延
板から一辺が10mmの正方形の平板を打ち抜いて圧延
によるクラックの発生状況を調べて良品率を算出し、図
2にCu粉末の平均粒子径と良品率との関係として示し
た。
Metal Cu having an average particle size of 1.2 to 75 μm
The powder was mixed with Mo powder having an average particle diameter of 2.3 μm so that the Mo content was 30% by weight, followed by press molding with a mold to obtain a compact having dimensions of 20 × 50 × 50 mm 3 . . This was sintered in a hydrogen atmosphere at a temperature of 1050 ° C. for 2 hours. These sintered bodies are held in a nitrogen atmosphere at a temperature of 1050 ° C. for 20 minutes, hot-rolled to a thickness of 3 mm at a rolling reduction of about 25%, and then reduced to a thickness of 0.5 mm by about 1 mm.
Cold rolled at 0%. The rolling at this time was performed in a multiaxial direction perpendicular to each side of the sintered body. From the obtained rolled plate, a square flat plate having a side of 10 mm was punched out, the occurrence of cracks due to rolling was examined, and the yield rate was calculated. FIG. 2 shows the relationship between the average particle diameter of the Cu powder and the yield rate.

【0021】図2から、Cu粉末の平均粒子径が50μ
m以上では良品率が80%以下であり、圧延時にクラッ
クが発生しやすい事がわかる。その原因を調べるため焼
結体の組織を観察したところ、平均粒子径が75μmの
場合は、焼結性が低下したため粗大なポアが多数存在
し、このポアが破壊の起源となってCu−Mo材の加工
性が低下する事がわかった。従って、Cu原料粉末の平
均粒子径としては50μm以下であることが必要であ
る。
FIG. 2 shows that the average particle size of the Cu powder is 50 μm.
m or more, the non-defective rate is 80% or less, which indicates that cracks are likely to occur during rolling. Observation of the structure of the sintered body to investigate the cause revealed that, when the average particle diameter was 75 μm, a large number of coarse pores were present due to reduced sinterability, and these pores became the origin of fracture and Cu—Mo It was found that the workability of the material was reduced. Therefore, the average particle diameter of the Cu raw material powder needs to be 50 μm or less.

【0022】実施例3 Cu−Mo焼結体の圧延加工における多軸圧延の有効性
を調べるため、まず最初に熱間圧延時の加熱温度を種々
変化させて実験を行った。
Example 3 In order to examine the effectiveness of multiaxial rolling in rolling of a Cu—Mo sintered body, first, an experiment was conducted by changing the heating temperature during hot rolling in various ways.

【0023】平均粒子径が20μmの金属Cu粉末と平
均粒子径が4μmのMo粉末とをMoが重量比で40%
となるように混合した後金型でプレス成型し、寸法が2
0×50×50mm3の圧粉体を得た。これを温度11
50°Cの水素雰囲気中で2時間焼結し、寸法が16×
40×40mm3で相対密度が約92%の焼結体とし
た。この焼結体を温度550°Cから1050°Cの窒
素雰囲気中で20分間保持し、圧下率約20%で厚さ3
mmまでは熱間圧延を行い、その後厚さ0.5mmまで
圧下率約10%で冷間圧延した。このときの圧延は焼結
体の各辺に対して直角な多軸方向となるようにした。得
られた圧延板から一辺が10mmの正方形の平板を打ち
抜いて圧延によるクラックの発生状況を調べて良品率を
算出し、図3に加熱温度と歩留まりの関係として示し
た。比較例として、他の条件は実施例と同一で、圧延の
みを1軸圧延とした場合の結果も図3に示した。
A metal Cu powder having an average particle diameter of 20 μm and a Mo powder having an average particle diameter of 4 μm were mixed with Mo by 40% by weight.
After press-molding with a mold, the size is 2
A compact of 0 × 50 × 50 mm 3 was obtained. Temperature 11
Sintered in a hydrogen atmosphere at 50 ° C for 2 hours, the dimensions are 16 ×
A sintered body of 40 × 40 mm 3 and a relative density of about 92% was obtained. This sintered body was kept in a nitrogen atmosphere at a temperature of 550 ° C. to 1050 ° C. for 20 minutes, and a thickness of 3% with a reduction of about 20%.
mm, followed by cold rolling at a rolling reduction of about 10% to a thickness of 0.5 mm. The rolling at this time was performed in a multiaxial direction perpendicular to each side of the sintered body. From the obtained rolled plate, a square flat plate having a side of 10 mm was punched out, the occurrence of cracks due to rolling was checked, and the yield rate was calculated. FIG. 3 shows the relationship between the heating temperature and the yield. As a comparative example, other conditions were the same as those of the example, and the result when only the rolling was uniaxial rolling is also shown in FIG.

【0024】1軸圧延の場合、加熱温度が950°C以
上では平板の歩留まりが80%以上であるが、加熱温度
が850°C以下では圧延中にCu−Mo板に圧延方向
と垂直なクラックが発生し、これが拡大して板材が破断
するため圧延が不可能となった。クラックが発生した直
後の圧延材の、圧延方向及び圧延方向と直角方向の組織
を観察すると、Mo粒子が繊維状に細長く伸びており、
ところどころで破断している様子が見られた。
In the case of uniaxial rolling, when the heating temperature is 950 ° C. or more, the yield of the flat plate is 80% or more, but when the heating temperature is 850 ° C. or less, cracks perpendicular to the rolling direction are formed on the Cu—Mo plate during rolling. Occurred, and this expanded to break the sheet material, making it impossible to roll. Observation of the rolling direction and the structure in the direction perpendicular to the rolling direction of the rolled material immediately after the occurrence of cracks shows that the Mo particles are elongated in a fibrous form,
Some parts were broken.

【0025】一方、多軸圧延の場合は加熱温度が650
°C以上であれば平板の歩留まりは80%以上であり、
Cu−Moの加工に有効であることがわかる。しかし、
加熱温度が550°C以下では1軸圧延の場合と同様C
u−Mo板材が破断するため、圧延時の加熱温度は65
0°C以上とする必要がある。また、1軸圧延でクラッ
クが発生した場合と同じ加工率の圧延材において、圧延
方向の組織を観察したところ、Mo粒子はどちらの圧延
軸に関しても均等に伸びており、偏平状に加工されてい
ることがわかった。このように、多軸圧延を行うとMo
粒子が繊維状とならず偏平状となって破断しにくくなる
ため、結果として加工性が向上するものと思われる。
On the other hand, in the case of multiaxial rolling, the heating temperature is 650.
° C or more, the yield of the flat plate is 80% or more,
It turns out that it is effective for processing of Cu-Mo. But,
When the heating temperature is 550 ° C. or lower, C is the same as in the case of uniaxial rolling.
Since the u-Mo plate material breaks, the heating temperature during rolling is 65
The temperature must be 0 ° C. or higher. In addition, when the microstructure in the rolling direction was observed in a rolled material having the same working ratio as that when cracks occurred in uniaxial rolling, the Mo particles were uniformly stretched in both rolling shafts, and were processed into a flat shape. I knew it was there. Thus, when multi-axis rolling is performed, Mo
Since the particles are not fibrous but flat and hard to break, it is thought that the processability is improved as a result.

【0026】実施例4 次に、多軸圧延時の最適な圧下率を調べるため、実施例
3において加熱温度を850°Cと一定として、圧下率
を種々変化させて実験を行ない、得られた平板の歩留ま
りと圧下率の関係を図4に示した。
Example 4 Next, in order to investigate the optimum rolling reduction in the multiaxial rolling, an experiment was carried out by changing the rolling reduction variously in Example 3 while keeping the heating temperature constant at 850 ° C. FIG. 4 shows the relationship between the yield of the flat plate and the rolling reduction.

【0027】図4から、1軸圧延の場合圧下率が10%
以下では平板の歩留まりが90%以上である事がわか
る。また、圧下率が15%以上では圧延中にCu−Mo
板に圧延方向と垂直なクラック発生し、これが拡大して
板材が破断するため圧延が不可能となった。一方、多軸
圧延の場合は圧下率が25%以下であれば平板の良品率
は80%以上であり、多軸圧延によりCu−Moの加工
が効率的に行えることがわかる。しかし、圧下率が25
%以上より大きくなると1軸圧延の場合と同様Cu−M
o板材が破断するため、圧延時の圧下率は25%以下と
する必要がある。 実施例5 さらに、圧延方法が基板材料の熱膨張係数の異方性に及
ぼす影響を調べるため、以下の実験を行った。Moの含
有量が重量比で80%で、相対密度が90%であるCu
−Mo焼結体に実施例3と同様の多軸圧延を行った。た
だし、加熱温度は1050°C、圧下率は5%であっ
た。また、多軸圧延を行う場合に、焼結体の各辺に対す
る圧延回数を変化させてCu−Mo中のMo粒子の短軸
と長軸の比を変化させた。圧延板から試料を採取し、各
圧延方向の熱膨張係数を測定すると共に、圧延板の組織
観察を行って次式によりMo粒子の短軸と長軸の比(軸
比)を算出し、軸比と熱膨張係数の関係を図5に示し
た。
FIG. 4 shows that the rolling reduction is 10% in the case of uniaxial rolling.
In the following, it is understood that the yield of the flat plate is 90% or more. When the rolling reduction is 15% or more, Cu-Mo
Cracks were generated in the sheet perpendicular to the rolling direction, and the cracks were enlarged and the sheet material was broken, so that rolling was impossible. On the other hand, in the case of multiaxial rolling, if the rolling reduction is 25% or less, the non-defective rate of the flat plate is 80% or more, and it can be seen that the processing of Cu-Mo can be efficiently performed by the multiaxial rolling. However, the rolling reduction is 25
% Or more, Cu-M as in the case of uniaxial rolling.
oSince the sheet material breaks, the rolling reduction during rolling needs to be 25% or less. Example 5 Further, the following experiment was conducted in order to investigate the effect of the rolling method on the anisotropy of the thermal expansion coefficient of the substrate material. Cu having a Mo content of 80% by weight and a relative density of 90%
The same multiaxial rolling as in Example 3 was performed on the -Mo sintered body. However, the heating temperature was 1050 ° C. and the rolling reduction was 5%. In addition, when performing multiaxial rolling, the ratio of the short axis to the long axis of Mo particles in Cu-Mo was changed by changing the number of times of rolling on each side of the sintered body. A sample is taken from the rolled sheet, the coefficient of thermal expansion in each rolling direction is measured, the structure of the rolled sheet is observed, and the ratio of the short axis to the long axis of Mo particles (axis ratio) is calculated by the following equation. FIG. 5 shows the relationship between the ratio and the coefficient of thermal expansion.

【0028】軸比=Mo粒子の短軸方向の長さ/Mo粒
子の長軸方向の長さ また、比較例として1軸圧延を行った場合の結果も同時
に示した。図5から、1軸圧延の場合は軸比が小さく熱
膨張係数の異方性が大であり、多軸圧延を行う事によ
り、軸比が1に近づくとともに熱膨張係数の異方性が小
さくなることがわかる。
Axial ratio = length of Mo particle in the short axis direction / length of Mo particle in the long axis direction The results of uniaxial rolling as a comparative example are also shown. From FIG. 5, in the case of uniaxial rolling, the axial ratio is small and the anisotropy of the thermal expansion coefficient is large. By performing multiaxial rolling, the axial ratio approaches 1 and the anisotropy of the thermal expansion coefficient is reduced. It turns out that it becomes.

【0029】次に、熱膨張係数の異方性が半導体搭載用
基板としての特性に及ぼす影響を調べたところ、プラス
チックパッケージにおいては軸比が0.1以上、セラミ
ックパッケージにおいては軸比が0.5以上であれば半
導体搭載用基板として十分使用可能である事がわかっ
た。
Next, the effect of the anisotropy of the coefficient of thermal expansion on the characteristics of the substrate for mounting a semiconductor was examined. The axial ratio of the plastic package was 0.1 or more, and the axial ratio of the ceramic package was 0.1. It has been found that if it is 5 or more, it can be sufficiently used as a semiconductor mounting substrate.

【0030】[0030]

【発明の効果】本発明によって以下の効果を奏する。According to the present invention, the following effects can be obtained.

【0031】(1)Cu−Mo焼結体の圧延加工におい
て、圧延時のクラックの発生を抑制し、歩留まりが向上
する。
(1) In rolling processing of a Cu—Mo sintered body, generation of cracks during rolling is suppressed, and the yield is improved.

【0032】(2)圧延軸方向による熱膨張係数の異方
性がなくなり、とくに、半導体搭載基板として使用した
場合に、信頼性が向上する。
(2) The anisotropy of the thermal expansion coefficient in the rolling axis direction is eliminated, and the reliability is improved especially when used as a semiconductor mounting substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 圧延焼結体中の高融点金属粉末粒子の平均粒
子径と良品率との関係を示す。
FIG. 1 shows the relationship between the average particle size of refractory metal powder particles in a rolled sintered body and the yield rate.

【図2】 高熱伝導金属粉末粒子の平均粒子径と良品率
との関係を示す。
FIG. 2 shows the relationship between the average particle size of high thermal conductive metal powder particles and the yield rate.

【図3】 多軸圧延時の平板の歩留まりと加熱温度の関
係を示す。
FIG. 3 shows the relationship between the yield of a flat plate and the heating temperature during multiaxial rolling.

【図4】 得られた平板の歩留まりと圧下率の関係を示
す。
FIG. 4 shows the relationship between yield and rolling reduction of the obtained flat plate.

【図5】 圧延焼結体中の高融点粒子の短軸と長軸との
軸比と熱膨張係数の関係を示す。
FIG. 5 shows the relationship between the axial ratio of the short axis and the long axis of the high melting point particles in the rolled sintered body and the coefficient of thermal expansion.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ粒度調整された熱伝導性金属粉
末と高融点金属粉末との混合粉末を板状圧粉体とし、こ
れを焼結後、この焼結板材を多軸方向に圧延することを
特徴とする高熱伝導性を有する板材の製造方法。
1. A mixed powder of a heat conductive metal powder and a high melting point metal powder, each having a controlled particle size, is made into a plate-shaped green compact, and after sintering, the sintered plate is rolled in a multiaxial direction. The manufacturing method of the board | plate material which has high thermal conductivity characterized by the above-mentioned.
【請求項2】 請求項1に記載の粒度調整された熱伝導
性金属粉末と高融点粉末が、それぞれの平均粒子径が5
0μm以下と、0.5から8μmであることを特徴とす
る高熱伝導性を有する板材の製造方法。
2. The heat conductive metal powder and the high melting point powder whose particle size has been adjusted according to claim 1 have an average particle diameter of 5
A method for producing a plate material having high thermal conductivity, which is 0 μm or less and 0.5 to 8 μm.
【請求項3】 請求項1に記載の焼結板材が理論密度の
90%以上の密度を有することを特徴とする高熱伝導性
を有する板材の製造方法。
3. A method for producing a plate having high thermal conductivity, wherein the sintered plate according to claim 1 has a density of 90% or more of the theoretical density.
【請求項4】 請求項1に記載の熱伝導性金属粉末がC
uであり、且つ、高融点粉末がMoであることを特徴と
する高熱伝導性を有する板材の製造方法。
4. The heat conductive metal powder according to claim 1, wherein
u, and the high melting point powder is Mo, a method for producing a plate material having high thermal conductivity.
【請求項5】 請求項1に記載の多軸方向に圧延する条
件が、圧延の初期においては、加熱温度が650°C以
上、圧下率が25%以下での熱間圧延であり、かつ、圧
延板内のMo粒子の短軸と長軸の比が0.1以上、1以
下となるように圧延することを特徴とする高熱伝導性を
有する板材の製造方法。
5. The condition for rolling in the multiaxial direction according to claim 1, wherein in the initial stage of rolling, hot rolling is performed at a heating temperature of 650 ° C. or more and a rolling reduction of 25% or less, and A method for producing a plate having high thermal conductivity, characterized in that rolling is performed so that the ratio of the short axis to the long axis of Mo particles in a rolled sheet is 0.1 or more and 1 or less.
【請求項6】 請求項1から請求項5の何れかに記載の
高熱伝導性を有する板材が半導体搭載用基板であること
を特徴とする高熱伝導性を有する板材の製造方法。
6. A method for manufacturing a plate having high thermal conductivity, wherein the plate having high thermal conductivity according to any one of claims 1 to 5 is a semiconductor mounting substrate.
JP23224196A 1996-09-02 1996-09-02 Production of sheet material having high thermal conductivity Withdrawn JPH1072602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23224196A JPH1072602A (en) 1996-09-02 1996-09-02 Production of sheet material having high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23224196A JPH1072602A (en) 1996-09-02 1996-09-02 Production of sheet material having high thermal conductivity

Publications (1)

Publication Number Publication Date
JPH1072602A true JPH1072602A (en) 1998-03-17

Family

ID=16936190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23224196A Withdrawn JPH1072602A (en) 1996-09-02 1996-09-02 Production of sheet material having high thermal conductivity

Country Status (1)

Country Link
JP (1) JPH1072602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132489A1 (en) * 2011-03-25 2012-10-04 株式会社アライドマテリアル Molybdenum material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132489A1 (en) * 2011-03-25 2012-10-04 株式会社アライドマテリアル Molybdenum material
JP2012201930A (en) * 2011-03-25 2012-10-22 Allied Material Corp Molybdenum material

Similar Documents

Publication Publication Date Title
EP1796164B1 (en) Aluminum-silicon carbide composite
JP2014012895A (en) High density, refractory metal, and sputtering target of alloy
WO2021177460A1 (en) Pure copper plate, copper/ceramic bonded body, and insulated circuit board
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
KR20180009736A (en) Copper alloy sheet and manufacturing method thereof
JPH029763A (en) Boron nitride sintered body and production thereof under ordinary pressure
EP2189548B1 (en) Stress-buffering material
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JPH1072602A (en) Production of sheet material having high thermal conductivity
JP7158658B2 (en) Aluminum alloy, aluminum alloy wire, and method for producing aluminum alloy
JP2002256422A (en) W-Ti TARGET AND MANUFACTURING METHOD THEREFOR
JPS60122783A (en) Manufacture of ceramics
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
US5894008A (en) Method for manufacturing an alumina-silicon carbide nanocomposite
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
CN102257170A (en) Copper alloy material for electrical/electronic components, and method for producing same
KR102206421B1 (en) Copper-ceramic composite
JP2002275625A (en) Ru TARGET MATERIAL AND PRODUCTION METHOD THEREFOR
TWI553131B (en) Copper-nickel-silicon-chromium quench substrate and method of producing the same
JP3194118B2 (en) Semiconductor device and method of manufacturing semiconductor component used in the semiconductor device
JP2000192168A (en) Silicon carbide composite material and its production
JP2001335872A (en) Low thermal expansion aluminum alloy sheet for electronic apparatus
WO2021210352A1 (en) Aluminum alloy material
JP3356992B2 (en) Fe-Ni-based lead frame material excellent in punching workability, Fe-Ni-based press-punched product, and method of punching Fe-Ni-based material
TW202319555A (en) Sputtering target, method for producing same, and method for producing sputtering film using sputtering target

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104