JPH1067519A - Production of laminar rock salt type lithium ferrite by solvothermal ion exchange method - Google Patents

Production of laminar rock salt type lithium ferrite by solvothermal ion exchange method

Info

Publication number
JPH1067519A
JPH1067519A JP8245558A JP24555896A JPH1067519A JP H1067519 A JPH1067519 A JP H1067519A JP 8245558 A JP8245558 A JP 8245558A JP 24555896 A JP24555896 A JP 24555896A JP H1067519 A JPH1067519 A JP H1067519A
Authority
JP
Japan
Prior art keywords
lithium
salt type
layered rock
lifeo
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8245558A
Other languages
Japanese (ja)
Other versions
JP2931961B2 (en
Inventor
Mitsuharu Tabuchi
光春 田渕
Kazuaki Ato
和明 阿度
Hiroyuki Kageyama
博之 蔭山
Osamu Nakamura
治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8245558A priority Critical patent/JP2931961B2/en
Publication of JPH1067519A publication Critical patent/JPH1067519A/en
Application granted granted Critical
Publication of JP2931961B2 publication Critical patent/JP2931961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method capable of mass producing a laminar rock salt type LiFeO2 as a low-cost anode material for a lithium secondary battery. SOLUTION: This method for producing a laminar rock salt type LiFeO2 comprises (1) subjecting α-FeOOH to hydrothermal treatment in an aqueous solution of sodium hydroxide at 130-300 deg.C to give a-NaFeO2 and subjecting the compound to solvothermal treatment with an inorganic lithium salt in a nonaqueous solvent at 130-300 deg.C or (2) directly reacting a sodium compound with a ferric compound to give an α-NaFeO2 and subjecting the compound to solvothermal treatment with an inorganic lithium salt dispersed into a nonaqueous solvent at 130-300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
正極材料などとして有用なリチウムフェライト系粉末
(層状岩塩型LiFeO2)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium ferrite powder (layered rock salt type LiFeO 2 ) useful as a cathode material for a lithium secondary battery.

【0002】[0002]

【従来の技術】現在、ポータブルタイプの電子・電気機
器の可充電電源として使用されているリチウム二次電池
用の正極材料として、層状岩塩型(α-NaFeO2)構造を
有するリチウムコバルトおよびニッケル酸化物(LiCo
O2、LiNiO2およびその固溶体)が研究開発され、実用化
されている。しかしながら、これらの正極材料は、高作
動電圧かつ高容量である反面、希少金属であるCo或いは
Niを含んでいて高価であるため、これらを用いるリチウ
ム二次電池(電池中で正極材料のコストは、約1/3を占
める)の市場拡大の障害となっている。
2. Description of the Related Art Lithium cobalt and nickel oxide having a layered rock salt type (α-NaFeO 2 ) structure are used as a positive electrode material for a lithium secondary battery which is currently used as a rechargeable power source for portable electronic and electric equipment. Object (LiCo
O 2 , LiNiO 2 and solid solutions thereof) have been researched and developed and put to practical use. However, these cathode materials have high operating voltage and high capacity, but rare metals such as Co or
Since Ni is included and is expensive, it is an obstacle to the market expansion of lithium secondary batteries using these (the cost of the cathode material accounts for about 1/3 in the battery).

【0003】また、次世代の低コスト4V級の正極材料と
して、LiMn2O4などのリチウムマンガンスピネルおよび
リチウムフェライト(LiFeO2)が注目され、その研究開
発が行われつつある。特に、リチウムフェライトは、資
源的に極めて豊富なFeを用いるので、次世代の低コスト
正極材料として最も期待されている。しかしながら、こ
の化合物を従来から行われている種々のリチウム化合物
と3価の鉄化合物を300〜900℃で固相反応させる方法
{例えば、J.C.Anderson and M.Schieber,J.Phys.Chem.
Solids,25(1964)961-968}で製造する場合には、陽イオ
ンがランダム分布したα-LiFeO2或いはLiCoO2とは異な
る規則構造を有するγ-LiFeO2しか得られない。そし
て、これらの相は、充放電時のLiの拡散経路が確保され
ていないため、正極特性を示さない。従って、LiNiO2
いはLiCoO2と同一の結晶構造を有する層状岩塩型LiFeO2
の製造方法の確立が急務とされている。現在のところ、
この化合物の合成は、通常の固相反応法で合成したα-N
aFeO2をLiイオンを含む溶融塩中でイオン交換に供する
ことにより行われているが{例えば、T.Shirane,R.Kann
o,Y.Kawamoto,Y.Takeda,M.Takano,T.Kamiya and F.Izum
i,Solid State Ionics,79(1995)227-233}、工業的プロ
セスとしては、大量生産が困難であるなどの問題があ
り、新たな実用的プロセスの開発が望まれている。
Further, lithium manganese spinel such as LiMn 2 O 4 and lithium ferrite (LiFeO 2 ) have been attracting attention as next-generation low-cost 4V-class cathode materials, and research and development thereof are being carried out. In particular, since lithium ferrite uses Fe which is extremely abundant in resources, it is most expected as a next-generation low-cost cathode material. However, this compound is conventionally subjected to a solid-state reaction between various lithium compounds and a trivalent iron compound at 300 to 900 ° C. {for example, JC Anderson and M. Schieber, J. Phys. Chem.
When producing from Solids, 25 (1964) 961-968 °, only γ-LiFeO 2 having a regular structure different from α-LiFeO 2 or LiCoO 2 in which cations are randomly distributed can be obtained. These phases do not exhibit positive electrode characteristics because a diffusion path of Li during charge and discharge is not secured. Thus, a layered rock-salt type having the same crystal structure as LiNiO 2 or LiCoO 2 LiFeO 2
There is an urgent need to establish a manufacturing method. at present,
The synthesis of this compound is based on α-N
It is performed by subjecting aFeO 2 to ion exchange in a molten salt containing Li ions. For example, T. Shirane, R. Kann
o, Y.Kawamoto, Y.Takeda, M.Takano, T.Kamiya and F.Izum
i, Solid State Ionics, 79 (1995) 227-233}. As an industrial process, there are problems such as difficulty in mass production, and the development of a new practical process is desired.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は、低
コストのリチウム二次電池用正極材料としての層状岩塩
型LiFeO2を大量生産しうる新たな製造方法を提供するこ
とを主な目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a new production method capable of mass-producing layered rock salt type LiFeO 2 as a low-cost positive electrode material for a lithium secondary battery. I do.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の様な
従来技術の問題点に鑑みて鋭意研究を重ねた結果、次世
代の二次リチウム電池正極材料用として有望視されてい
るリチウム含有遷移金属酸化物の1種である層状岩塩型
LiFeO2をソルボサーマルイオン交換法により製造する技
術を確立することに成功した。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the above-mentioned problems of the prior art, and as a result, lithium which is expected to be used as a cathode material for a next-generation secondary lithium battery is considered. Layered salt type, one of the transition metal oxides
The technology to produce LiFeO 2 by solvothermal ion exchange was successfully established.

【0006】すなわち、本発明は、下記のソルボサーマ
ルイオン交換法による層状岩塩型LiFeO2の製造方法を提
供するものである: 1.α-FeOOHを水酸化ナトリウム水溶液中で130〜300℃
で水熱処理することによりα-NaFeO2を得た後、これを
非水溶媒中において無機リチウム塩とともに130〜300℃
でソルボサーマル処理することを特徴とする層状岩塩型
LiFeO2の製造方法。
That is, the present invention provides a method for producing a layered rock salt type LiFeO 2 by the following solvothermal ion exchange method: α-FeOOH in aqueous sodium hydroxide solution at 130 ~ 300 ℃
After obtaining α-NaFeO 2 by hydrothermal treatment at 130 to 300 ° C. together with the inorganic lithium salt in a non-aqueous solvent
Layered rock salt type characterized by solvothermal treatment
Method for producing LiFeO 2 .

【0007】2.非水溶媒がメタノール、エタノール、
プロパノール、ブタノール、アセトンおよびヘキサンか
らなる群から選ばれた少なくとも1種である上記項1に
記載の層状岩塩型LiFeO2の製造方法。
[0007] 2. Non-aqueous solvent is methanol, ethanol,
Item 2. The method for producing a layered rock salt type LiFeO 2 according to the above item 1, which is at least one selected from the group consisting of propanol, butanol, acetone and hexane.

【0008】3.無機リチウム塩が、塩化リチウム、フ
ッ化リチウム、ヨウ化リチウム、臭化リチウム、水酸化
リチウム、硝酸リチウムおよびこれらの水和物からなる
群から選ばれた少なくとも1種である上記項1に記載の
層状岩塩型LiFeO2の製造方法。
[0008] 3. Item 2. The inorganic lithium salt according to item 1, wherein the inorganic lithium salt is at least one selected from the group consisting of lithium chloride, lithium fluoride, lithium iodide, lithium bromide, lithium hydroxide, lithium nitrate and hydrates thereof. A method for producing a layered rock salt type LiFeO 2 .

【0009】4.ナトリウム化合物と3価の鉄化合物と
の直接反応によりα-NaFeO2を得た後、これを非水溶媒
中において無機リチウム塩とともに130〜300℃でソルボ
サーマル処理することを特徴とする層状岩塩型LiFeO2
製造方法。
4. A layered rock salt type characterized in that α-NaFeO 2 is obtained by a direct reaction between a sodium compound and a trivalent iron compound, and then subjected to solvothermal treatment at 130 to 300 ° C. with an inorganic lithium salt in a non-aqueous solvent. Method for producing LiFeO 2 .

【0010】5.ナトリウム化合物がNaOH、Na2O2およ
びNa2CO3からなる群から選ばれた少なくとも1種である
上記項4に記載の層状岩塩型LiFeO2の製造方法。
[0010] 5. Item 5. The method for producing a layered rock salt type LiFeO 2 according to Item 4, wherein the sodium compound is at least one selected from the group consisting of NaOH, Na 2 O 2 and Na 2 CO 3 .

【0011】6.3価の鉄化合物がγ-Fe2O3、γ-FeOO
H、α-Fe2O3およびα-FeOOHからなる群から選ばれた少
なくとも1種である上記項4に記載の層状岩塩型LiFeO2
の製造方法。
6. When the trivalent iron compound is γ-Fe 2 O 3 or γ-FeOO
Item 5. The layered rock salt type LiFeO 2 according to the above item 4, which is at least one member selected from the group consisting of H, α-Fe 2 O 3 and α-FeOOH.
Manufacturing method.

【0012】7.非水溶媒がメタノール、エタノール、
プロパノール、ブタノール、アセトンおよびヘキサンか
らなる群から選ばれた少なくとも1種である上記項4に
記載の層状岩塩型LiFeO2の製造方法。
7. Non-aqueous solvent is methanol, ethanol,
Item 5. The method for producing a layered rock salt type LiFeO 2 according to Item 4, which is at least one selected from the group consisting of propanol, butanol, acetone and hexane.

【0013】8.無機リチウム塩が、塩化リチウム、フ
ッ化リチウム、ヨウ化リチウム、臭化リチウム、水酸化
リチウム、硝酸リチウムおよびこれらの水和物からなる
群から選ばれた少なくとも1種である上記項4に記載の
層状岩塩型LiFeO2の製造方法。
8. Item 5. The inorganic lithium salt according to item 4, wherein the inorganic lithium salt is at least one selected from the group consisting of lithium chloride, lithium fluoride, lithium iodide, lithium bromide, lithium hydroxide, lithium nitrate and hydrates thereof. A method for producing a layered rock salt type LiFeO 2 .

【0014】[0014]

【発明の実施の形態】本発明方法には、α-NaFeO2の製
造方法の相違による2つの態様が存在するので、以下に
それぞれの態様について、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, there are two modes due to the difference in the method of producing α-NaFeO 2 , and each mode will be described in detail below.

【0015】1.形態I この方法においては、まず鉄源原料と水酸化ナトリウム
溶液との水熱反応により、α-NaFeO2を合成する。
1. Form I In this method, α-NaFeO 2 is first synthesized by a hydrothermal reaction between an iron source material and a sodium hydroxide solution.

【0016】鉄源原料としては、特に限定されるもので
はないが、3価の鉄の酸化水酸化物(α-FeOOHなど)お
よび金属鉄が好ましい。ただし、鉄の硝酸塩、硫酸塩、
塩化物などは、水酸化ナトリウム溶液と急激に反応する
ため、好ましくない。
The iron source material is not particularly limited, but trivalent iron oxide hydroxide (such as α-FeOOH) and metallic iron are preferred. However, iron nitrate, sulfate,
Chloride and the like are not preferable because they rapidly react with the sodium hydroxide solution.

【0017】反応に際しては、α-FeOOHなどの鉄源材料
と濃水酸化ナトリウム溶液(30〜70N程度)とを混合し
た後、混合物をオートクレーブなどの水熱反応炉中に静
置して、130〜300℃程度の温度で1時間〜7日間程度(よ
り好ましくは150〜220℃程度の温度で1時間〜7日間程
度)水熱処理する。鉄源原料と水酸化ナトリウムとの割
合は、後者が過剰となる様に配合し、通常は鉄源原料:
水酸化ナトリウム=1:2〜50(モル比)程度、より好ま
しくは1:20〜30(モル比)程度である。反応生成物で
あるα-NaFeO2は、過剰の水酸化ナトリウムを含んでい
るので、例えば、エタノールなどのアルコール類で洗浄
し、濾過し、乾燥する。反応生成物の水による洗浄は、
α-NaFeO2中のナトリウムを溶出させ、その分解を促進
するので、好ましくない。
In the reaction, an iron source material such as α-FeOOH and a concentrated sodium hydroxide solution (about 30 to 70 N) are mixed, and the mixture is allowed to stand in a hydrothermal reactor such as an autoclave, and the mixture is stirred for 130 minutes. Hydrothermal treatment is performed at a temperature of about 300 ° C. for about 1 hour to 7 days (more preferably, at a temperature of about 150 to 220 ° C. for about 1 hour to 7 days). The ratio of the iron source material and sodium hydroxide is adjusted so that the latter is excessive, and usually the iron source material:
Sodium hydroxide = about 1: 2 to 50 (molar ratio), more preferably about 1:20 to 30 (molar ratio). Since the reaction product α-NaFeO 2 contains an excess of sodium hydroxide, it is washed with, for example, an alcohol such as ethanol, filtered, and dried. Washing of the reaction product with water
It is not preferable because sodium in α-NaFeO 2 is eluted and its decomposition is promoted.

【0018】次いで、得られたα-NaFeO2を非水溶媒中
で無機リチウム塩とともに130〜300℃で1〜10時間程度
(より好ましくは200〜250℃で2〜5時間程度)ソルボサ
ーマル処理する。非水溶媒としては、メタノール、エタ
ノール、プロパノール、ブタノール、アセトン、ヘキサ
ンなどが使用でき、これらは単独で或いは2種以上混合
して使用される。無機リチウム塩としては、塩化リチウ
ム、フッ化リチウム、ヨウ化リチウム、臭化リチウム、
水酸化リチウム、硝酸リチウムおよびこれらの水和物な
どが使用される。無機リチウム塩も、それぞれの単独或
いは2種以上の混合物を使用することができる。α-NaF
eO2と無機リチウム塩の割合は、特に限定されるもので
はないが、通常前者:後者=1:20〜100(モル比)程度
であり、より好ましくは1:30〜50(モル比)程度であ
る。反応により得られる粉末生成物を蒸留水で、洗浄
し、濾過し、乾燥することにより、層状岩塩型LiFeO2
得る。
Next, the obtained α-NaFeO 2 is treated with an inorganic lithium salt in a non-aqueous solvent at 130 to 300 ° C. for about 1 to 10 hours (more preferably at 200 to 250 ° C. for about 2 to 5 hours) by solvothermal treatment. I do. As the non-aqueous solvent, methanol, ethanol, propanol, butanol, acetone, hexane and the like can be used, and these can be used alone or as a mixture of two or more. As inorganic lithium salts, lithium chloride, lithium fluoride, lithium iodide, lithium bromide,
Lithium hydroxide, lithium nitrate and hydrates thereof are used. The inorganic lithium salts may be used alone or in combination of two or more. α-NaF
The ratio between eO 2 and the inorganic lithium salt is not particularly limited, but is usually about the former: the latter = 1: 20 to 100 (molar ratio), more preferably about 1:30 to 50 (molar ratio). It is. The powder product obtained by the reaction is washed with distilled water, filtered, and dried to obtain a layered rock salt type LiFeO 2 .

【0019】2.形態II この方法においては、まずナトリウム源原料と鉄源原料
である3価の鉄化合物との直接反応により、α-NaFeO2
を合成する。
2. Form II In this method, first, α-NaFeO 2 is formed by a direct reaction between a sodium source material and a trivalent iron compound as an iron source material.
Are synthesized.

【0020】ナトリウム源原料としては、NaOH、Na
2O2、Na2CO3などが挙げられ、その1種または2種以上
の混合物を使用することができる。鉄源原料としては、
γ-Fe2O3、γ-FeOOH、α-Fe2O3、α-FeOOHなどが挙げら
れ、その1種または2種以上の混合物を使用することが
できる。
As the sodium source material, NaOH, Na
2 O 2 , Na 2 CO 3 and the like, and one or a mixture of two or more thereof can be used. As an iron source material,
γ-Fe 2 O 3 , γ-FeOOH, α-Fe 2 O 3 , α-FeOOH and the like, and one or a mixture of two or more thereof can be used.

【0021】反応に際しては、Na/Fe=1〜1.5、より好
ましくは1.1(原子比)となる様にナトリウム源原料と
鉄源原料とを秤量し、少量の水とともに混合した後、大
気中、350〜700℃程度で5〜24時間程度(より好ましく
は550〜650℃程度で8〜15時間程度)焼成し、生成物
(α-NaFeO2)を粉砕する。
At the time of the reaction, the sodium source material and the iron source material are weighed so that Na / Fe = 1 to 1.5, more preferably 1.1 (atomic ratio), mixed with a small amount of water, Firing at about 350 to 700 ° C. for about 5 to 24 hours (more preferably at about 550 to 650 ° C. for about 8 to 15 hours) to grind the product (α-NaFeO 2 ).

【0022】直接得られたα-NaFeO2と無機リチウム塩
とを非水溶媒中でソルボサーマル反応させ、層状岩塩型
LiFeO2を合成させる工程は、上記の形態Iの場合と同様
である。
The α-NaFeO 2 directly obtained and an inorganic lithium salt are subjected to a solvothermal reaction in a non-aqueous solvent to form a layered rock salt form.
The step of synthesizing LiFeO 2 is the same as in the case of the above-mentioned form I.

【0023】[0023]

【発明の効果】本発明によれば、これまで低コストで工
業的に製造することが困難であった層状岩塩型LiFeO2
大量生産することが可能となったので、LiFeO2を正極材
料とするリチウム二次電池の開発が一層促進される。
According to the present invention, so far so that the industrial production at a low cost has become possible to mass-produce a layered rock-salt LiFeO 2 was difficult, and the positive electrode material LiFeO 2 The development of a rechargeable lithium battery is further promoted.

【0024】[0024]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。なお、実施例で得られた試
料の結晶相は、X線回折分析により評価した。
EXAMPLES Examples are shown below to further clarify the features of the present invention. The crystal phases of the samples obtained in the examples were evaluated by X-ray diffraction analysis.

【0025】実施例1 ポリテトラフルオロエチレン製ビーカー中に水酸化ナト
リウム300gを秤量し、蒸留水150mlを加え、十分に混合
溶解した。溶解時には、かなりの発熱を伴うので、溶液
を100℃以下に冷却した後、FeOOH 30gを加え、均一に混
合した。反応混合物を入れたビーカーを水熱炉(オート
クレーブ)に静置し、220℃で7時間水熱処理した。水熱
処理終了後、ビーカー内容物の温度が100℃程度に下が
った時点で、ビーカーをオートクレーブ外に取り出し、
生成している粉末をエタノールで洗浄して過剰に存在す
る水酸化ナトリウムを除去し、濾過し、乾燥することに
より、α-NaFeO230gを得た。最終生成物のX線回折パタ
ーンを図1に示す。全ての回折ピークは、α-NaFeO2
単位胞(六方晶系)で指数付けすることができ、格子定
数(a=3.02517±0.00008Å、c=16.0916±0.006Å)は、
報告値に近いものであった。
Example 1 In a polytetrafluoroethylene beaker, 300 g of sodium hydroxide was weighed, 150 ml of distilled water was added, and the mixture was sufficiently mixed and dissolved. During dissolution, a considerable amount of heat was generated, so the solution was cooled to 100 ° C. or lower, and then 30 g of FeOOH was added and mixed uniformly. The beaker containing the reaction mixture was placed in a hydrothermal oven (autoclave) and subjected to hydrothermal treatment at 220 ° C. for 7 hours. After the completion of the hydrothermal treatment, when the temperature of the contents of the beaker has dropped to about 100 ° C, remove the beaker out of the autoclave,
The resulting powder was washed with ethanol to remove excess sodium hydroxide, filtered, and dried to obtain 30 g of α-NaFeO 2 . The X-ray diffraction pattern of the final product is shown in FIG. All diffraction peaks can be indexed by α-NaFeO 2 unit cells (hexagonal), and the lattice constants (a = 3.02517 ± 0.00008Å, c = 16.0916 ± 0.006Å)
It was close to the reported value.

【0026】次いで、得られたα-NaFeO21gをエタノー
ル中に分散された塩化リチウム約15gとともにポリテト
ラフルオロエチレン製ビーカーに入れ、ビーカーを水を
入れていない水熱炉内に静置し、220℃で3時間ソルボサ
ーマル処理した後、生成物を取り出し、蒸留水で5回洗
浄して過剰の塩化リチウムを除去し、濾過し、乾燥する
ことにより、層状岩塩型LiFeO2粉末を得た。
Next, 1 g of the obtained α-NaFeO 2 was placed in a polytetrafluoroethylene beaker together with about 15 g of lithium chloride dispersed in ethanol, and the beaker was allowed to stand in a hydrothermal furnace containing no water. After solvothermal treatment at 220 ° C. for 3 hours, the product was taken out, washed with distilled water five times to remove excess lithium chloride, filtered and dried to obtain a layered rock salt type LiFeO 2 powder.

【0027】この様にして得られた粉末のX線回折パタ
ーンを図2に示す。α-NaFeO2の残留は、認められず、
全ての回折ピークは、以前から報告されている{前記の
Solid State Ionics,79(1995)227-233参照}六方晶系の
層状岩塩型LiFeO2の単位胞で指数付けすることができ
た。
FIG. 2 shows the X-ray diffraction pattern of the powder thus obtained. No residual α-NaFeO 2 was observed,
All diffraction peaks have been previously reported.
See Solid State Ionics, 79 (1995) 227-233. It could be indexed by unit cells of hexagonal layered salt-type LiFeO 2 .

【0028】なお、本実施例において、α-NaFeO2を製
造するに際し、FeOOHに代えて金属鉄粉末を使用する場
合にも、上記とほぼ同様の結果が得られる。
In this embodiment, when α-NaFeO 2 is produced, substantially the same results as described above can be obtained when metallic iron powder is used instead of FeOOH.

【0029】実施例2 少量の水に溶解させたNaOH0.9gとγ-Fe2O32gとを均一に
混合し、100℃で乾燥させた後、アルミナ製ルツボに入
れ、大気中600℃で12時間焼成した。冷却後焼成生成物
をルツボから取り出し、粉砕してα-NaFeO2を得た。生
成物のX線回折パターンは、実施例1の図1と同様であ
り、生成物がα-NaFeO2単相であることを示していた。
Example 2 0.9 g of NaOH and 2 g of γ-Fe 2 O 3 dissolved in a small amount of water were uniformly mixed, dried at 100 ° C., put in an alumina crucible, and placed at 600 ° C. in the atmosphere. Baking for 12 hours. After cooling, the fired product was taken out of the crucible and pulverized to obtain α-NaFeO 2 . The X-ray diffraction pattern of the product was similar to FIG. 1 of Example 1, indicating that the product was an α-NaFeO 2 single phase.

【0030】次いで、得られたα-NaFeO21gをエタノー
ル中に分散された塩化リチウム約15gとともにポリテト
ラフルオロエチレン製ビーカーに入れ、ビーカーを水を
入れていない水熱炉内に静置し、220℃で3時間ソルボサ
ーマル処理した後、生成物を取り出し、蒸留水で5回洗
浄して過剰の塩化リチウムを除去し、濾過し、乾燥する
ことにより、層状岩塩型LiFeO2粉末を得た。
Next, 1 g of the obtained α-NaFeO 2 was put into a polytetrafluoroethylene beaker together with about 15 g of lithium chloride dispersed in ethanol, and the beaker was allowed to stand in a hydrothermal furnace containing no water. After solvothermal treatment at 220 ° C. for 3 hours, the product was taken out, washed with distilled water five times to remove excess lithium chloride, filtered and dried to obtain a layered rock salt type LiFeO 2 powder.

【0031】この様にして得られた粉末のX線回折パタ
ーンは、実施例1の図2と同様であり、α-NaFeO2の残
留のない層状岩塩型LiFeO2単相であることを示してい
た。
The X-ray diffraction pattern of the powder thus obtained is the same as that of FIG. 2 of Example 1, and indicates that it is a layered rock salt type LiFeO 2 single phase without α-NaFeO 2 residue. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において得られたα-NaFeO2のX線回
折結果を示すパターンである。
FIG. 1 is a pattern showing the result of X-ray diffraction of α-NaFeO 2 obtained in Example 1.

【図2】実施例1において得られた層状岩塩型LiFeO2
末のX線回折結果を示すパターンである。
FIG. 2 is a pattern showing an X-ray diffraction result of a layered rock salt type LiFeO 2 powder obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 治 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Osamu Nakamura 1-8-31 Midorioka, Ikeda-shi, Osaka Inside the Osaka Institute of Technology

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】α-FeOOHを水酸化ナトリウム水溶液中で13
0〜300℃で水熱処理することによりα-NaFeO2を得た
後、これを非水溶媒中において無機リチウム塩とともに
130〜300℃でソルボサーマル処理することを特徴とする
層状岩塩型LiFeO2の製造方法。
1. An α-FeOOH is dissolved in an aqueous sodium hydroxide solution
After obtaining α-NaFeO 2 by hydrothermal treatment at 0 to 300 ° C., this is mixed with an inorganic lithium salt in a non-aqueous solvent.
A method for producing a layered rock-salt type LiFeO 2 , which comprises performing a solvothermal treatment at 130 to 300 ° C.
【請求項2】非水溶媒がメタノール、エタノール、プロ
パノール、ブタノール、アセトンおよびヘキサンからな
る群から選ばれた少なくとも1種である請求項1に記載
の層状岩塩型LiFeO2の製造方法。
2. A non-aqueous solvent is methanol, ethanol, propanol, butanol, production method of layered rock-salt LiFeO 2 of claim 1 is at least one selected from the group consisting of acetone and hexane.
【請求項3】無機リチウム塩が、塩化リチウム、フッ化
リチウム、ヨウ化リチウム、臭化リチウム、水酸化リチ
ウム、硝酸リチウムおよびこれらの水和物からなる群か
ら選ばれた少なくとも1種である請求項1に記載の層状
岩塩型LiFeO2の製造方法。
3. The inorganic lithium salt is at least one selected from the group consisting of lithium chloride, lithium fluoride, lithium iodide, lithium bromide, lithium hydroxide, lithium nitrate and hydrates thereof. Item 4. The method for producing a layered rock salt type LiFeO 2 according to Item 1.
【請求項4】ナトリウム化合物と3価の鉄化合物との直
接反応によりα-NaFeO2を得た後、これを非水溶媒中に
おいて無機リチウム塩とともに130〜300℃でソルボサー
マル処理することを特徴とする層状岩塩型LiFeO2の製造
方法。
4. A method in which α-NaFeO 2 is obtained by a direct reaction between a sodium compound and a trivalent iron compound and then subjected to solvothermal treatment at 130 to 300 ° C. together with an inorganic lithium salt in a non-aqueous solvent. For producing a layered rock salt type LiFeO 2 .
【請求項5】ナトリウム化合物がNaOH、Na2O2およびNa2
CO3からなる群から選ばれた少なくとも1種である請求
項4に記載の層状岩塩型LiFeO2の製造方法。
5. The method according to claim 1, wherein the sodium compound is NaOH, Na 2 O 2 or Na 2.
The method for producing a layered rock salt type LiFeO 2 according to claim 4, wherein the layered rock salt type LiFeO 2 is at least one selected from the group consisting of CO 3 .
【請求項6】3価の鉄化合物がγ-Fe2O3、γ-FeOOH、α
-Fe2O3およびα-FeOOHからなる群から選ばれた少なくと
も1種である請求項4に記載の層状岩塩型LiFeO2の製造
方法。
6. The trivalent iron compound is γ-Fe 2 O 3 , γ-FeOOH, α
The method for producing a layered rock-salt type LiFeO 2 according to claim 4, which is at least one member selected from the group consisting of -Fe 2 O 3 and α-FeOOH.
【請求項7】非水溶媒がメタノール、エタノール、プロ
パノール、ブタノール、アセトンおよびヘキサンからな
る群から選ばれた少なくとも1種である請求項4に記載
の層状岩塩型LiFeO2の製造方法。
7. The method for producing a layered rock salt type LiFeO 2 according to claim 4, wherein the non-aqueous solvent is at least one selected from the group consisting of methanol, ethanol, propanol, butanol, acetone and hexane.
【請求項8】無機リチウム塩が、塩化リチウム、フッ化
リチウム、ヨウ化リチウム、臭化リチウム、水酸化リチ
ウム、硝酸リチウムおよびこれらの水和物からなる群か
ら選ばれた少なくとも1種である請求項4に記載の層状
岩塩型LiFeO2の製造方法。
8. The method according to claim 1, wherein the inorganic lithium salt is at least one selected from the group consisting of lithium chloride, lithium fluoride, lithium iodide, lithium bromide, lithium hydroxide, lithium nitrate and hydrates thereof. Item 5. The method for producing a layered rock salt type LiFeO 2 according to Item 4.
JP8245558A 1996-08-27 1996-08-27 Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method Expired - Lifetime JP2931961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8245558A JP2931961B2 (en) 1996-08-27 1996-08-27 Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8245558A JP2931961B2 (en) 1996-08-27 1996-08-27 Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method

Publications (2)

Publication Number Publication Date
JPH1067519A true JPH1067519A (en) 1998-03-10
JP2931961B2 JP2931961B2 (en) 1999-08-09

Family

ID=17135500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8245558A Expired - Lifetime JP2931961B2 (en) 1996-08-27 1996-08-27 Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method

Country Status (1)

Country Link
JP (1) JP2931961B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053556A1 (en) * 1998-04-09 1999-10-21 Danionics A/S Rechargeable lithium electrochemical cell
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2002524380A (en) * 1998-09-11 2002-08-06 アクセンタス パブリック リミテッド カンパニー Material based on manganese oxide
JP2014086279A (en) * 2012-10-24 2014-05-12 National Institute Of Advanced Industrial & Technology Positive electrode active material for sodium ion secondary battery
CN104692465A (en) * 2015-02-04 2015-06-10 天津大学 Preparation method of alpha-LiFeO2 nano powder for positive pole material of lithium-ion battery
JP2016003156A (en) * 2014-06-16 2016-01-12 国立大学法人埼玉大学 METHOD FOR MANUFACTURING α-SODIUM FERRITE
WO2023142666A1 (en) * 2022-01-27 2023-08-03 广东邦普循环科技有限公司 Lithium ion battery pre-lithiation agent, preparation method therefor, and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053556A1 (en) * 1998-04-09 1999-10-21 Danionics A/S Rechargeable lithium electrochemical cell
JP2002524380A (en) * 1998-09-11 2002-08-06 アクセンタス パブリック リミテッド カンパニー Material based on manganese oxide
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2014086279A (en) * 2012-10-24 2014-05-12 National Institute Of Advanced Industrial & Technology Positive electrode active material for sodium ion secondary battery
JP2016003156A (en) * 2014-06-16 2016-01-12 国立大学法人埼玉大学 METHOD FOR MANUFACTURING α-SODIUM FERRITE
CN104692465A (en) * 2015-02-04 2015-06-10 天津大学 Preparation method of alpha-LiFeO2 nano powder for positive pole material of lithium-ion battery
WO2023142666A1 (en) * 2022-01-27 2023-08-03 广东邦普循环科技有限公司 Lithium ion battery pre-lithiation agent, preparation method therefor, and application
GB2620047A (en) * 2022-01-27 2023-12-27 Guangdong Brunp Recycling Technology Co Ltd Lithium ion battery pre-lithiation agent, preparation method therefore, and application

Also Published As

Publication number Publication date
JP2931961B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US5981106A (en) Positive electrode active material for lithium battery, method for producing the same, and lithium battery containing the same
Croy et al. Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures
JP3500424B2 (en) Single-phase lithium ferrite composite oxide
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
JP6174145B2 (en) Spinel type lithium metal composite oxide
Thirunakaran et al. Cr3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol–gel method for lithium rechargeable batteries
CA2551562A1 (en) High voltage laminar cathode materials for lithium rechargeable batteries, and processes for making the same
JP2003048718A (en) Lithium ferritic multiple oxide and production method therefor
JP4997609B2 (en) Method for producing lithium manganese composite oxide
KR100500699B1 (en) Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating
CA2096264A1 (en) Novel method for preparing solid solution materials for secondary non-aqueous batteries
CA2324936A1 (en) Method for producing lithium metal oxides
JP2931961B2 (en) Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method
JP2896510B1 (en) Method for producing layered rock salt type lithium cobalt oxide by hydrothermal oxidation method
JPH1064516A (en) Lithium battery
US6589695B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP2855190B2 (en) Production method of layered rock salt type lithium ferrite by mixed alkaline hydrothermal method
JPH10106566A (en) Manufacture of positive electrode active material for lithium secondary battery
JP2009242121A (en) Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP4345934B2 (en) Low temperature lithiation of hydroxides containing cobalt, nickel and manganese using a wet process
JP2001064020A (en) Production of lithium manganate
JP3407042B2 (en) Lithium ion secondary battery positive electrode material and method for producing the same
JP3914981B2 (en) Cubic rock salt type lithium ferrite oxide and method for producing the same
Padhi Mapping redox energies of electrode materials for lithium batteries
JP3968420B2 (en) Cubic rock salt type lithium ferrite complex oxide and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term