JPH1067313A - Wheel speed correction method and device for vehicle - Google Patents

Wheel speed correction method and device for vehicle

Info

Publication number
JPH1067313A
JPH1067313A JP24572996A JP24572996A JPH1067313A JP H1067313 A JPH1067313 A JP H1067313A JP 24572996 A JP24572996 A JP 24572996A JP 24572996 A JP24572996 A JP 24572996A JP H1067313 A JPH1067313 A JP H1067313A
Authority
JP
Japan
Prior art keywords
vehicle
wheel
wheel speed
equal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24572996A
Other languages
Japanese (ja)
Other versions
JP3351259B2 (en
Inventor
Shirou Kadosaki
司朗 門崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24572996A priority Critical patent/JP3351259B2/en
Publication of JPH1067313A publication Critical patent/JPH1067313A/en
Application granted granted Critical
Publication of JP3351259B2 publication Critical patent/JP3351259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent unnecessary correction of a wheel speed when a vehicle is not traveling straight by accurately determining the straight traveling state of a vehicle. SOLUTION: This is a wheel speed correction method and device for a vehicle where a wheel speed Vwi of each wheel is calculated based on an output of a wheel speed sensor provided on each wheel, a ratio of a value Pi corresponding to a traveling distance of each wheel to a value corresponding to the traveling distance of at least one of the other wheels is calculated as a correction coefficient Ki (n (S40), it is determined whether a vehicle is in the straight traveling state (S60 to 90), and when the vehicle is in the straight traveling state, the wheel speed of each wheel is corrected by the correction coefficient (S100). The vehicle is judged as being in the straight traveling state when the state where a change amount of the correction coefficient in a predetermined traveling distance is not more than a reference value continues not less than the reference times (S60 to 80) and the size of an integration valve Σγ(n) of a yaw rate of the vehicle is not more than a reference value (S90).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車輌の車輪速度の
演算に係り、更に詳細には車輌の車輪速度補正方法及び
装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the calculation of wheel speed of a vehicle, and more particularly to a method and an apparatus for correcting the wheel speed of a vehicle.

【0002】[0002]

【従来の技術】自動車等の車輌の車輪速度補正装置の一
つとして、例えば実開平2−45461号公報に記載さ
れている如く、車輪速度検出手段と、車輌の直進状態を
検出する手段と、車輌が直進状態にあるときには車輪速
度の補正係数を演算する手段と、補正係数にて各車輪の
車輪速度を補正する手段とを有する車輪速度補正装置が
従来より知られている。
2. Description of the Related Art As one of wheel speed correcting devices for vehicles such as automobiles, for example, as described in Japanese Utility Model Laid-Open Publication No. 2-45461, a wheel speed detecting means, a means for detecting a straight traveling state of a vehicle, and 2. Description of the Related Art A wheel speed correction device having means for calculating a wheel speed correction coefficient when a vehicle is traveling straight and means for correcting the wheel speed of each wheel using the correction coefficient is conventionally known.

【0003】かかる車輪速度補正装置によれば、車輌が
直進状態にあるときに車輪速度の補正係数が演算され、
その補正係数にて各車輪の車輪速度が補正されるので、
各車輪の車輪径が相互に異なるような状況に於いても、
車輪速度が補正されない場合に比して正確に各車輪の車
輪速度を求め、これにより車輪のスリップ率等を正確に
求めることができる。
According to such a wheel speed correction apparatus, a correction coefficient of the wheel speed is calculated when the vehicle is traveling straight,
Since the wheel speed of each wheel is corrected by the correction coefficient,
Even in a situation where the wheel diameter of each wheel is different from each other,
The wheel speed of each wheel is obtained more accurately than when the wheel speed is not corrected, whereby the wheel slip ratio and the like can be obtained more accurately.

【0004】[0004]

【発明が解決しようとする課題】上記公開公報に記載さ
れた従来の車輪速度補正装置に於いては、車輌の直進状
態の検出は操舵角の大きさが小さいか否かにより行われ
る。しかし操舵角の大きさが小さくても外乱等により車
輌にヨー運動が生じることがあるので、車輌が実際には
直進状態にないにも拘らず直進状態と誤判定され、その
ため車輪速度が不必要に補正されることに起因して車輪
速度が却って不正確な値に補正されてしまう場合があ
る。
In the conventional wheel speed compensator disclosed in the above publication, the detection of the straight traveling state of the vehicle is performed based on whether the steering angle is small or not. However, even when the steering angle is small, the vehicle may be yawed due to disturbance or the like, so that the vehicle is erroneously determined to be in the straight traveling state even though the vehicle is not actually in the straight traveling state, so that the wheel speed is unnecessary In some cases, the wheel speed is corrected to an incorrect value due to the correction.

【0005】本発明は、操舵角の大きさに基づき車輌の
直進状態が判定されるよう構成された従来の車輪速度補
正装置に於ける上述の如き問題に鑑みてなされたもので
あり、本発明の主要な課題は、車輌の直進状態を正確に
判定することにより、車輌の非直進走行時に車輪速度が
不必要に補正されることを防止することである。
The present invention has been made in view of the above-described problems in a conventional wheel speed correction device configured to determine the straight traveling state of a vehicle based on the magnitude of a steering angle. The main problem is to prevent the wheel speed from being unnecessarily corrected during non-straight running of the vehicle by accurately determining the straight running state of the vehicle.

【0006】[0006]

【課題を解決するための手段】上述の如き主要な課題
は、本発明によれば、各車輪に設けられた車輪速度検出
手段よりの出力に基づき各車輪の車輪速度を演算し、前
記出力に基づき求められる各車輪の移動距離に対応する
値と他の少なくとも一つの車輪の移動距離に対応する値
との比を補正係数として演算し、車輌の直進状態を判定
し、車輌が直進状態にあるときには前記補正係数にて各
車輪の車輪速度を補正する車輌の車輪速度補正方法に於
いて、所定の移動距離に於ける前記補正係数の変化量が
基準値以下である状態が基準回数以上継続し、且つ車輌
のヨーレートの積分値の大きさが基準値以下であるとき
に車輌が直進状態にあると判定されることを特徴とする
車輌の車輪速度補正方法(請求項1の構成)、又は各車
輪に設けられた車輪速度検出手段と、車輌のヨーレート
を検出する手段と、前記車輪速度検出手段よりの出力に
基づき各車輪の車輪速度を演算する手段と、前記出力に
基づき求められる各車輪の移動距離に対応する値と他の
少なくとも一つの車輪の移動距離に対応する値との比を
補正係数として演算し、車輌の直進状態を判定し、車輌
が直進状態にあるときには前記補正係数にて各車輪の車
輪速度を補正する手段とを有する車輌の車輪速度補正装
置に於いて、所定の移動距離に於ける前記補正係数の変
化量が基準値以下である状態が基準回数以上継続し、且
つ車輌のヨーレートの積分値の大きさが基準値以下であ
るときに車輌が直進状態にあると判定されることを特徴
とする車輌の車輪速度補正装置(請求項5の構成)によ
って達成される。
According to the present invention, the main object as described above is to calculate the wheel speed of each wheel based on the output from the wheel speed detecting means provided on each wheel, and to calculate the wheel speed. The ratio of the value corresponding to the moving distance of each wheel calculated based on the calculated value to the value corresponding to the moving distance of at least one other wheel is calculated as a correction coefficient to determine the straight traveling state of the vehicle, and the vehicle is in the straight traveling state. Sometimes, in the vehicle wheel speed correction method of correcting the wheel speed of each wheel with the correction coefficient, a state in which the amount of change of the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more. A method for correcting the wheel speed of a vehicle, wherein the vehicle is determined to be in a straight running state when the magnitude of the integrated value of the yaw rate of the vehicle is equal to or smaller than a reference value. Wheels installed on wheels Degree detecting means, means for detecting the yaw rate of the vehicle, means for calculating the wheel speed of each wheel based on the output from the wheel speed detecting means, and a value corresponding to the moving distance of each wheel obtained based on the output. Calculate the ratio of the value corresponding to the moving distance of at least one other wheel as a correction coefficient, determine the straight traveling state of the vehicle, and when the vehicle is in the straight traveling state, calculate the wheel speed of each wheel with the correction coefficient. Means for correcting the wheel speed of a vehicle, wherein the amount of change in the correction coefficient at a predetermined moving distance is equal to or less than a reference value for a predetermined number of times or more, and an integrated value of the yaw rate of the vehicle is provided. It is determined that the vehicle is in the straight running state when the magnitude of the vehicle speed is equal to or smaller than the reference value.

【0007】一般に、車輌が直進走行状態にあるときに
は、各車輪に設けられた車輪速度検出手段よりの出力に
基づき求められる各車輪の移動距離の各車輪間の比は実
質的に一定であるので、各車輪の所定の移動距離に於け
る補正係数の変化量は小さく、また車輌のヨーレートは
実質的に0であるのでヨーレートの積分値の大きさも小
さい。
In general, when the vehicle is in a straight running state, the ratio of the moving distance of each wheel, which is obtained based on the output from the wheel speed detecting means provided for each wheel, is substantially constant. The amount of change in the correction coefficient at a predetermined moving distance of each wheel is small, and since the yaw rate of the vehicle is substantially 0, the magnitude of the integrated value of the yaw rate is also small.

【0008】上記請求項1又は5の構成によれば、所定
の移動距離に於ける補正係数の変化量が基準値以下であ
る状態が基準回数以上継続し、且つ車輌のヨーレートの
積分値の大きさが基準値以下であるときに車輌が直進状
態にあると判定されるので、操舵角の大きさに基づき車
輌の直進状態が判定される場合に比して車輌の直進状態
が正確に判定される。
According to the first or fifth aspect, the state in which the amount of change in the correction coefficient at a predetermined moving distance is equal to or less than the reference value continues for the reference number of times or more, and the magnitude of the integral value of the yaw rate of the vehicle is large. Is smaller than the reference value, it is determined that the vehicle is in a straight running state, so that the straight running state of the vehicle is accurately determined as compared with the case where the straight running state of the vehicle is determined based on the magnitude of the steering angle. You.

【0009】また本発明によれば、上述の主要な課題を
効果的に達成すべく、上記請求項1、5の構成に於て、
所定の移動距離に於ける前記補正係数の変化量が基準値
以下である状態が基準回数以上継続し、且つ車輌のヨー
レートの積分値の大きさが基準値以下であり、且つ各車
輪が前記所定の移動距離移動する時間が基準値以下であ
るときに車輌が直進状態にあると判定されるよう構成さ
れる(それぞれ請求項2、6の構成)。
Further, according to the present invention, in order to effectively achieve the above-mentioned main problems,
The state in which the amount of change in the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more, and the magnitude of the integrated value of the yaw rate of the vehicle is equal to or less than the reference value, and It is determined that the vehicle is in a straight-ahead state when the travel time of the travel distance is equal to or less than the reference value (the configurations of claims 2 and 6, respectively).

【0010】一般に、車輌がS字走行するような場合に
は旋回方向が逆転するので、車輌のヨーレートの積分値
は実質的に0になり、また車輌のヨーレートの積分値に
はヨーレートの検出誤差が蓄積し易いので、積分時間が
長過ぎると車輌が実際には直進走行していないにも拘ら
ずヨーレートの積分値の大きさが小さい値になることが
ある。
In general, when the vehicle is running in an S-shape, the turning direction is reversed, so that the integrated value of the yaw rate of the vehicle is substantially 0, and the integrated value of the yaw rate of the vehicle includes the detection error of the yaw rate. When the integration time is too long, the magnitude of the integrated value of the yaw rate may be small even though the vehicle is not actually traveling straight.

【0011】上記請求項2又は6の構成によれば、所定
の移動距離に於ける補正係数の変化量が基準値以下であ
る状態が基準回数以上継続し、且つ車輌のヨーレートの
積分値の大きさが基準値以下であることに加えて、各車
輪が所定の移動距離移動する時間が基準値以下であると
きに、換言すれば積分時間が基準値以下であるときに車
輌が直進状態にあると判定されるので、ヨーレートの積
分値に検出誤差が蓄積しヨーレートの積分値の大きさが
小さい値になることに起因して車輌が実際には直進走行
していないにも拘らず車輌が直進走行していると判定さ
れることが防止され、これにより請求項1又は5の構成
の場合に比して更に一層正確に車輌の直進状態が判定さ
れる。
According to the configuration of the second or sixth aspect, the state where the amount of change of the correction coefficient at the predetermined moving distance is equal to or less than the reference value continues for the reference number of times or more, and the magnitude of the integrated value of the yaw rate of the vehicle is large. The vehicle is in a straight-ahead state when the time for each wheel to move a predetermined moving distance is equal to or less than the reference value, in other words, when the integration time is equal to or less than the reference value. Is detected, the detection error is accumulated in the integrated value of the yaw rate, and the magnitude of the integrated value of the yaw rate becomes a small value. It is prevented that it is determined that the vehicle is running, whereby the straight traveling state of the vehicle is more accurately determined as compared with the case of the first or fifth aspect.

【0012】また本発明によれば、上述の主要な課題を
効果的に達成すべく、上記請求項1、5の構成に於て、
所定時間に於ける前記補正係数の変化量が基準値以下で
ある状態が基準時間以上継続し、且つ車輌のヨーレート
の積分値が基準値以下であり、且つ前輪又は後輪の前記
補正係数の左右輪間の差の大きさが基準値以下であると
きに車輌が直進状態にあると判定されるよう構成される
(それぞれ請求項3、7の構成)。
Further, according to the present invention, in order to effectively achieve the above-mentioned main object,
The state in which the amount of change of the correction coefficient at the predetermined time is equal to or less than the reference value continues for the reference time or more, and the integrated value of the yaw rate of the vehicle is equal to or less than the reference value, and the left and right of the correction coefficient of the front wheel or the rear wheel When the magnitude of the difference between the wheels is equal to or smaller than the reference value, it is determined that the vehicle is in a straight traveling state (the configurations of claims 3 and 7, respectively).

【0013】一般に、左右輪の車輪径が実質的に同一の
状態にて車輌が直進走行する場合には、左右輪の補正係
数は実質的に互いに同一の値になるで、補正係数の左右
輪間の差の大きさは小さい値になる。上記請求項3又は
7の構成によれば、所定時間に於ける前記補正係数の変
化量が基準値以下である状態が基準時間以上継続し、且
つ車輌のヨーレートの積分値が基準値以下であることに
加えて、前輪又は後輪の補正係数の左右輪間の差の大き
さが基準値以下であるときに車輌が直進状態にあると判
定されるので、請求項1又は5の構成の場合に比して更
に一層正確に車輌の直進状態が判定される。
In general, when the vehicle travels straight in a state where the wheel diameters of the left and right wheels are substantially the same, the correction coefficients of the left and right wheels have substantially the same value. The magnitude of the difference between them is a small value. According to the configuration of the third or seventh aspect, the state where the amount of change in the correction coefficient at a predetermined time is equal to or less than the reference value continues for the reference time or more, and the integrated value of the yaw rate of the vehicle is equal to or less than the reference value. In addition, when the magnitude of the difference between the correction coefficient of the front wheel or the rear wheel between the left and right wheels is equal to or less than the reference value, it is determined that the vehicle is in a straight traveling state. Thus, the straight traveling state of the vehicle is more accurately determined.

【0014】また本発明によれば、上述の主要な課題を
効果的に達成すべく、上記請求項1、5の構成に於て、
所定時間に於ける前記補正係数の変化量が基準値以下で
ある状態が基準時間以上継続し、且つ車輌のヨーレート
の積分値が基準値以下であり、且つ操舵角の大きさが基
準値以下であるときに車輌が直進状態にあると判定され
るよう構成される(それぞれ請求項4、8の構成)。
Further, according to the present invention, in order to effectively achieve the above-mentioned main object, in the above-described first and fifth aspects,
The state where the amount of change of the correction coefficient at the predetermined time is equal to or less than the reference value continues for the reference time or more, and the integrated value of the yaw rate of the vehicle is equal to or less than the reference value, and the magnitude of the steering angle is equal to or less than the reference value. It is configured to determine that the vehicle is in a straight traveling state at a certain time (the configurations of claims 4 and 8, respectively).

【0015】請求項4又は8の構成によれば、所定時間
に於ける補正係数の変化量が基準値以下である状態が基
準時間以上継続し、且つ車輌のヨーレートの積分値が基
準値以下であることに加えて、操舵角の大きさが基準値
以下であるときに車輌が直進状態にあると判定されるの
で、請求項1又は5の構成の場合に比して更に一層正確
に車輌の直進状態が判定される。
According to the present invention, the state in which the amount of change of the correction coefficient at the predetermined time is equal to or less than the reference value continues for the reference time or more, and the integrated value of the yaw rate of the vehicle is equal to or less than the reference value. In addition to this, when the magnitude of the steering angle is equal to or smaller than the reference value, the vehicle is determined to be in the straight traveling state, so that the vehicle is more accurately compared with the case of the first or fifth aspect. The straight traveling state is determined.

【0016】[0016]

【課題解決手段の好ましい態様】本発明の一つの好まし
い態様によれば、上記請求項1又は5の構成に於いて、
補正係数は各車輪の移動距離に対応する値と全ての車輪
の平均移動距離に対応する値との比として演算されるよ
う構成される。
According to a preferred aspect of the present invention, there is provided the above-mentioned claim 1 or 5 wherein
The correction coefficient is configured to be calculated as a ratio between a value corresponding to the moving distance of each wheel and a value corresponding to the average moving distance of all wheels.

【0017】本発明の一つの好ましい態様によれば、上
記請求項1又は5の構成に於いて、補正係数は少なくと
も一つの車輪の所定の移動距離毎に演算されるよう構成
される。
According to a preferred aspect of the present invention, in the configuration of the first or fifth aspect, the correction coefficient is calculated for each predetermined moving distance of at least one wheel.

【0018】[0018]

【発明の実施の形態】以下に添付の図を参照しつつ、本
発明を幾つかの好ましい実施形態について詳細に説明す
る。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described in more detail with reference to the accompanying drawings, in which several preferred embodiments are shown.

【0019】図1は本発明による車輌の車輪速度補正方
法及び装置の第一の実施形態を示す概略構成図である。
FIG. 1 is a schematic diagram showing a first embodiment of a method and apparatus for correcting a wheel speed of a vehicle according to the present invention.

【0020】図1に於いて、10i (i=fr、fl、rr、
rl)はそれぞれ右前輪、左前輪、右後輪、左後輪を示し
ており、これらの車輪にはそれぞれ車輪速度センサ12
i が設けられている。車輪速度センサ12i は1パルス
が車輪の一定の微小回転角度に対応するパルス信号Pi
を車輪速度補正装置14へ出力し、従ってパルス信号P
i のパルス数は車輪の回転角度、従って車輪の移動距離
を表し、単位時間当りのパルス信号Pi のパルス数は車
輪速度に対応する。
In FIG. 1, 10i (i = fr, fl, rr,
rl) denote a front right wheel, a front left wheel, a rear right wheel, and a rear left wheel, respectively.
i is provided. The wheel speed sensor 12i outputs a pulse signal Pi in which one pulse corresponds to a constant minute rotation angle of the wheel.
Is output to the wheel speed compensating device 14, so that the pulse signal P
The number of pulses i represents the rotation angle of the wheel, and thus the distance traveled by the wheel, and the number of pulses of the pulse signal Pi per unit time corresponds to the wheel speed.

【0021】車輪速度補正装置14は車輪速度演算ブロ
ック14Aと補正係数演算ブロック14Bと車輪速度補
正ブロック14Cとを有する。後に詳細に説明する如
く、車輪速度演算ブロック14Aはパルス信号Pi に基
づき各車輪の車輪速度Vwiを演算し、補正係数演算ブロ
ック14Bはパルス信号Pi 及びヨーレートセンサ16
により検出される車輌のヨーレートγに基づき車輌の直
進状態を判別すると共に、車輌が直進状態にあるときに
は各車輪の車輪速度Vwiに対する補正係数KMiを演算
し、車輪速度補正ブロック14Cは車輪速度Vwi及び補
正係数KMi の積として補正後の各車輪の車輪速度Vwi
を演算する。
The wheel speed correction device 14 has a wheel speed calculation block 14A, a correction coefficient calculation block 14B, and a wheel speed correction block 14C. As will be described later in detail, the wheel speed calculation block 14A calculates the wheel speed Vwi of each wheel based on the pulse signal Pi, and the correction coefficient calculation block 14B calculates the pulse signal Pi and the yaw rate sensor 16
Is determined based on the yaw rate γ of the vehicle, and when the vehicle is in the straight traveling state, a correction coefficient KMi for the wheel speed Vwi of each wheel is calculated, and the wheel speed correction block 14C calculates the wheel speed Vwi and the wheel speed Vwi. The wheel speed Vwi of each wheel after correction as the product of the correction coefficients KMi
Is calculated.

【0022】尚車輪速度補正装置14は、例えば中央処
理ユニット(CPU)と、リードオンリメモリ(RO
M)と、ランダムアクセスメモリ(RAM)と、入出力
ポート装置とを有し、これらが双方向性のコモンバスに
より互いに接続された一般的な構成のマイクロコンピュ
ータであってよい。
The wheel speed correcting device 14 includes, for example, a central processing unit (CPU) and a read only memory (RO).
M), a random access memory (RAM), and an input / output port device, which may be a microcomputer having a general configuration connected to each other by a bidirectional common bus.

【0023】次に図2に示されたフローチャートを参照
して第一の実施形態に於ける補正係数演算ルーチンにつ
いて説明する。尚図2に示されたフローチャートによる
演算ルーチンは図には示されていないイグニッションス
イッチの閉成により開始され、所定の時間毎に繰返し実
行される。
Next, a correction coefficient calculation routine according to the first embodiment will be described with reference to a flowchart shown in FIG. The calculation routine according to the flowchart shown in FIG. 2 is started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals.

【0024】まずステップ10に於いては車輪速度セン
サ12i より出力されるパルス信号等の読み込みが行わ
れ、ステップ20に於いてはΣγ(n-1) を1サイクル前
のヨーレートγの積分値として下記の数1に従ってヨー
レートの積分値Σγ(n) が演算され、ステップ30に於
いては右前輪の車輪速度センサ12frよりのパルス信号
Pfrのパルス数が基準値Nc (例えば正の一定の整数)
以上であるか否かの判別が行われ、否定判別が行われた
ときにはそのままステップ10へ戻り、肯定判別が行わ
れたときにはステップ40へ進む。
First, in step 10, a pulse signal or the like output from the wheel speed sensor 12i is read, and in step 20, Σγ (n-1) is set as an integral value of the yaw rate γ one cycle before. The integral value Σγ (n) of the yaw rate is calculated according to the following equation (1). In step 30, the pulse number of the pulse signal Pfr from the right front wheel speed sensor 12fr is changed to the reference value Nc (for example, a positive constant integer).
It is determined whether or not this is the case. If a negative determination is made, the process returns to step 10 as is, and if an affirmative determination is made, the process proceeds to step 40.

【数1】Σγ(n) =Σγ(n-1) +γ数 γ (n) = Σγ (n-1) + γ

【0025】ステップ40に於いては下記の数2に従っ
て各車輪の補正係数Ki(n)が演算され、ステップ50に
於いては各車輪のパルス数Pi がクリアされる。
In step 40, the correction coefficient Ki (n) of each wheel is calculated according to the following equation (2), and in step 50, the pulse number Pi of each wheel is cleared.

【数2】 Ki(n)=(Pfr+Pfl+Prr+Prl)/4/Pi## EQU2 ## Ki (n) = (Pfr + Pfl + Prr + Prl) / 4 / Pi

【0026】ステップ60に於いては現在の補正係数K
i(n)と1サイクル前の補正係数Ki(n-1)との偏差の絶対
値が基準値C1 (微小な正の定数)以下であるか否かの
判別が行われ、何れかの車輪について否定判別が行われ
たときにはステップ110へ進み、全ての車輪について
肯定判別が行われたときにはステップ70に於いてカウ
ンタのカウント値jが1インクリメントされる。
In step 60, the current correction coefficient K
It is determined whether or not the absolute value of the deviation between i (n) and the correction coefficient Ki (n-1) one cycle before is equal to or smaller than a reference value C1 (a small positive constant). When the determination is negative, the routine proceeds to step 110, and when the determination is positive for all wheels, the count value j of the counter is incremented by one in step 70.

【0027】ステップ80に於いてはカウント値jが基
準値Nm (例えば正の一定の整数)であるか否かの判別
が行われ、否定判別が行われたときにはステップ120
へ進み、肯定判別が行われたときにはステップ90へ進
む。ステップ90に於いてはヨーレートの積分値Σγ
(n) の絶対値が基準値C2 (正の定数)以下であるか否
かの判別が行われ、否定判別が行われたときにはステッ
プ110へ進み、肯定判別が行われたときにはステップ
100に於いて補正係数KMi が現在の補正係数Ki(n)
に設定される。
In step 80, it is determined whether or not the count value j is a reference value Nm (for example, a positive constant integer). If a negative determination is made, step 120 is executed.
The process proceeds to step 90 when the affirmative determination is made. In step 90, the integrated value of the yaw rate Σγ
It is determined whether or not the absolute value of (n) is equal to or less than a reference value C2 (positive constant). If a negative determination is made, the process proceeds to step 110; And the correction coefficient KMi is the current correction coefficient Ki (n).
Is set to

【0028】ステップ110に於いてはカウンタのカウ
ント値jが0にリセットされると共に、ヨーレートの積
分値Σγ(n) が0にリセットされる。ステップ120に
於いては次ぎのサイクルのための補正係数Ki(n-1)が現
在の補正係数Ki(n)にセットされると共に、次ぎのサイ
クルのためのヨーレートの積分値Σγ(n-1) が現在の積
分値Σγ(n) にセットされる。
In step 110, the count value j of the counter is reset to 0, and the integrated value Σγ (n) of the yaw rate is reset to 0. In step 120, the correction coefficient Ki (n-1) for the next cycle is set to the current correction coefficient Ki (n), and the integrated value of the yaw rate Σγ (n-1 ) Is set to the current integral Σγ (n).

【0029】次に図3に示されたフローチャートを参照
して第一の実施形態に於ける車輪速度演算補正ルーチン
について説明する。尚図3に示されたフローチャートに
よる演算補正ルーチンは所定時間毎の割り込みにより実
行される。
Next, a wheel speed calculation correction routine in the first embodiment will be described with reference to a flowchart shown in FIG. The calculation correction routine according to the flowchart shown in FIG. 3 is executed by interruption every predetermined time.

【0030】まずステップ210に於いては車輪速度セ
ンサ12i より出力されるパルス信号の読み込みが行わ
れ、ステップ220に於いてはパルス信号Pi のパルス
数に基づき周知の要領にてパルス数に比例する値として
各車輪の車輪速度Vwiが演算され、ステップ230に於
いては下記の数3に従って補正後の各車輪の車輪速度V
wiが演算される。
First, in step 210, a pulse signal output from the wheel speed sensor 12i is read, and in step 220, the pulse number is proportional to the pulse number in a well-known manner based on the pulse number of the pulse signal Pi. The wheel speed Vwi of each wheel is calculated as a value, and in step 230, the wheel speed V of each wheel after correction according to the following equation (3).
wi is calculated.

【数3】Vwi=KMi *Vwi## EQU3 ## Vwi = KMi * Vwi

【0031】かくして図示の第一の実施形態によれば、
ステップ20及び30に於いて右前輪の車輪速度センサ
12frよりのパルス信号Pfrのパルス数が基準値Nc 以
上になるまでのヨーレートの積分値Σγ(n) が演算さ
れ、パルス信号Pfrのパルス数が基準値Nc 以上になる
とステップ40に於いて各車輪の補正係数Ki(n)が演算
される。
Thus, according to the illustrated first embodiment,
In steps 20 and 30, the integrated value Σγ (n) of the yaw rate until the number of pulses of the pulse signal Pfr from the right front wheel speed sensor 12fr becomes equal to or more than the reference value Nc is calculated, and the number of pulses of the pulse signal Pfr is calculated. When the value exceeds the reference value Nc, a correction coefficient Ki (n) for each wheel is calculated in step 40.

【0032】そしてステップ60〜80に於いて現在の
補正係数Ki(n)と1サイクル前の補正係数Ki(n-1)との
偏差の絶対値が基準値C1 以下である旨の判別がNm 回
連続したか否かの判別が行われ、肯定判別が行われたと
きにはステップ90に於いてヨーレートの積分値Σγ
(n) の絶対値が基準値C2 以下であるか否かの判別が行
われ、肯定判別が行われたときにはステップ100に於
いて補正係数KMi が現在の補正係数Ki(n)に設定され
る。
In steps 60 to 80, it is determined that the absolute value of the deviation between the current correction coefficient Ki (n) and the correction coefficient Ki (n-1) one cycle before is equal to or smaller than the reference value C1 by Nm. A determination is made as to whether the yaw rate has been consecutively determined, and if an affirmative determination has been made, in step 90 the integral value of the yaw rate Σγ
It is determined whether or not the absolute value of (n) is equal to or less than the reference value C2. If the determination is affirmative, in step 100, the correction coefficient KMi is set to the current correction coefficient Ki (n). .

【0033】従って第一の実施形態によれば、右前輪が
所定の移動距離以上移動する間に於ける各車輪の補正係
数Ki(n)の変化量が基準値C1 以下である状態が基準回
数Nm 継続し、且つ車輌のヨーレートの積分値Σγ(n)
の大きさが基準値C2 以下であるときに車輌が直進状態
にあると判定されるので、例えば操舵角の大きさに基づ
き車輌の直進状態が判定される場合に比して車輌に作用
する外乱等に拘らず車輌の直進状態を正確に判定し、こ
れにより各車輪の補正後の車輪速度を正確に求めること
ができる。
Therefore, according to the first embodiment, the state in which the amount of change in the correction coefficient Ki (n) of each wheel is equal to or less than the reference value C1 while the right front wheel moves by a predetermined moving distance or more is determined by the reference number of times. Nm continues and the integrated value of the yaw rate of the vehicle Σγ (n)
Is smaller than or equal to the reference value C2, it is determined that the vehicle is in a straight-ahead state. Therefore, the disturbance acting on the vehicle is smaller than when the straight-ahead state of the vehicle is determined based on the magnitude of the steering angle, for example. Regardless of the above, the straight traveling state of the vehicle can be accurately determined, whereby the corrected wheel speed of each wheel can be accurately obtained.

【0034】図4乃至図6はそれぞれ本発明による車輌
の車輪速度補正装置の第二乃至第四の実施形態に於ける
補正係数演算ルーチンを示すフローチャートである。尚
これらの図に於いて図2に示されたステップと同一のス
テップには図2に於いて付されたステップ番号と同一の
ステップ番号が付されている。
FIGS. 4 to 6 are flowcharts showing a correction coefficient calculation routine in the second to fourth embodiments of the vehicle wheel speed correcting apparatus according to the present invention. In these figures, the same steps as those shown in FIG. 2 are denoted by the same step numbers as those shown in FIG.

【0035】図4に示された第二の実施形態に於いて
は、ステップ20に於いてヨーレートの積分値Σγ(n)
が演算されると共に、タイマのカウント値Tが1インク
リメントされる。またステップ90の次ぎに実行される
ステップ95に於いてタイマのカウント値Tが基準値T
c (正の定数)以下であるか否かの判別が行われ、否定
判別が行われたときにはステップ110へ進み、肯定判
別が行われたときにはステップ100へ進む。更にステ
ップ110に於いてカウンタのカウント値jが0にリセ
ットされ、ヨーレートの積分値Σγ(n) が0にリセット
されると共にタイマのカウント値Tが0にリセットされ
る。
In the second embodiment shown in FIG. 4, in step 20, the integrated value of the yaw rate Σγ (n)
Is calculated, and the count value T of the timer is incremented by one. In step 95, which is executed after step 90, the count value T of the timer is set to the reference value T.
It is determined whether or not the value is equal to or less than c (positive constant). When a negative determination is made, the process proceeds to step 110, and when an affirmative determination is made, the process proceeds to step 100. Further, in step 110, the count value j of the counter is reset to 0, the integrated value ヨ ー γ (n) of the yaw rate is reset to 0, and the count value T of the timer is reset to 0.

【0036】従ってこの第二の実施形態によれば、ステ
ップ90に於いてヨーレートの積分値Σγ(n) の大きさ
が基準値C2 以下である旨の判別が行われても、ステッ
プ95に於いてタイマのカウント値Tが基準値Tc を越
えている旨の判別が行われたときには、換言すればヨー
レートの積分値を演算するための積分時間が基準値を越
えているときには、補正係数KMi は現在の補正係数K
i(n)に更新されないので、ヨーレートの積分値に検出誤
差が蓄積しヨーレートの積分値の大きさが小さい値にな
ることに起因して車輌が実際には直進走行していないに
も拘らず車輌が直進走行していると判定され不必要な車
輪速度の補正が行われることを防止し、これにより第一
の実施形態に比して更に一層正確に車輪速度を補正する
ことができる。
Therefore, according to the second embodiment, even if it is determined in step 90 that the magnitude of the integrated value Σγ (n) of the yaw rate is equal to or smaller than the reference value C 2, the process proceeds to step 95. When it is determined that the count value T of the timer exceeds the reference value Tc, in other words, when the integration time for calculating the integral value of the yaw rate exceeds the reference value, the correction coefficient KMi is Current correction coefficient K
Since it is not updated to i (n), the detection error accumulates in the integrated value of the yaw rate, and the magnitude of the integrated value of the yaw rate becomes a small value. It is possible to prevent the vehicle from being determined to be traveling straight and to perform unnecessary correction of the wheel speed, whereby the wheel speed can be corrected more accurately than in the first embodiment.

【0037】図5に示された第三の実施形態に於いて
は、ステップ90に於いて肯定判別が行われると、ステ
ップ92に於いて右前輪の補正係数Kfr(n) と左前輪の
補正係数Kfl(n) との偏差の絶対値が基準値C3 (正の
定数)以下であるか否かの判別が行われ、肯定判別が行
われたときにはステップ100へ進み、否定判別が行わ
れたときにはステップ94へ進む。ステップ94に於い
ては右後輪の補正係数Krr(n) と左後輪の補正係数Krl
(n) との偏差の絶対値が基準値C4 (正の定数)以下で
あるか否かの判別が行われ、肯定判別が行われたときに
はステップ100へ進み、否定判別が行われたときには
ステップ110へ進む。
In the third embodiment shown in FIG. 5, if an affirmative determination is made in step 90, a correction coefficient Kfr (n) for the right front wheel and a correction for the left front wheel are made in step 92. It is determined whether or not the absolute value of the deviation from the coefficient Kfl (n) is equal to or less than a reference value C3 (positive constant). If an affirmative determination is made, the process proceeds to step 100, and a negative determination is made. Sometimes the process proceeds to step 94. In step 94, the right rear wheel correction coefficient Krr (n) and the left rear wheel correction coefficient Krl
It is determined whether or not the absolute value of the deviation from (n) is equal to or smaller than a reference value C4 (positive constant). If an affirmative determination is made, the process proceeds to step 100; Proceed to 110.

【0038】従ってこの第三の実施形態によれば、ステ
ップ90に於いてヨーレートの積分値Σγ(n) の大きさ
が基準値C2 以下である旨の判別が行われても、左右前
輪の補正係数Ki(n)の差の大きさが基準値C3 以下では
ない旨の判別又は左右後輪の補正係数Ki(n)の差の大き
さが基準値C4 以下ではない旨の判別が行われたときに
は、補正係数KMi は現在の補正係数Ki(n)に更新され
ないので、第一の実施形態に比して更に一層正確に車輪
速度を補正することができる。
Therefore, according to the third embodiment, even if it is determined in step 90 that the magnitude of the integrated value Σγ (n) of the yaw rate is equal to or smaller than the reference value C2, the correction of the left and right front wheels is performed. It is determined that the magnitude of the difference between the coefficients Ki (n) is not less than the reference value C3 or that the magnitude of the difference between the correction coefficients Ki (n) of the left and right rear wheels is not less than the reference value C4. Sometimes, the correction coefficient KMi is not updated to the current correction coefficient Ki (n), so that the wheel speed can be corrected even more accurately than in the first embodiment.

【0039】尚第三の実施形態に於いては、左右前輪及
び左右後輪の両方について左右輪の補正係数の差の大き
さがそれぞれ基準値以下であることが直進判定の条件に
される訳ではないので、左右前輪及び左右後輪の両方の
左右輪の車輪径に比較的大きい差がある状況でない限り
車輌の直進状態を正確に判定することができる。
In the third embodiment, the condition for determining whether the vehicle is traveling straight is that the magnitude of the difference between the correction coefficients of the right and left front wheels and the right and left rear wheels is equal to or smaller than a reference value. Therefore, the straight traveling state of the vehicle can be accurately determined unless there is a relatively large difference in wheel diameter between the left and right front wheels and the left and right rear wheels.

【0040】図6に示された第四の実施形態に於いて
は、図には示されていないが操舵輪である前輪の操舵角
θが操舵角センサにより検出され、操舵角θを示す信号
が車輪速度補正装置14の補正係数演算ブロック14B
へ入力される。またステップ90に於いて肯定判別が行
われると、ステップ96に於いて操舵角θの絶対値が基
準値θc (正の定数)以下であるか否かの判別が行わ
れ、肯定判別が行われたときにはステップ100へ進
み、否定判別が行われたときにはステップ110へ進
む。
In the fourth embodiment shown in FIG. 6, although not shown, the steering angle θ of the front wheel, which is a steered wheel, is detected by a steering angle sensor, and a signal indicating the steering angle θ is provided. Is a correction coefficient calculation block 14B of the wheel speed correction device 14.
Is input to If an affirmative determination is made in step 90, a determination is made in step 96 as to whether the absolute value of the steering angle θ is equal to or smaller than a reference value θc (positive constant), and an affirmative determination is made. If so, the process proceeds to step 100, and if a negative determination is made, the process proceeds to step 110.

【0041】従ってこの第四の実施形態によれば、ステ
ップ90に於いてヨーレートの積分値Σγ(n) の大きさ
が基準値C2 以下である旨の判別が行われても、ステッ
プ96に於いて操舵角θの大きさが基準値以下ではない
旨の判別が行われたときには、補正係数KMi は現在の
補正係数Ki(n)に更新されないので、第一の実施形態に
比して更に一層正確に車輪速度を補正することができ
る。
Therefore, according to the fourth embodiment, even if it is determined in step 90 that the magnitude of the integrated value Σγ (n) of the yaw rate is equal to or smaller than the reference value C2, the process proceeds to step 96. Therefore, when it is determined that the magnitude of the steering angle θ is not smaller than the reference value, the correction coefficient KMi is not updated to the current correction coefficient Ki (n). The wheel speed can be accurately corrected.

【0042】尚図示の第一乃至第三の実施形態によれ
ば、操舵角θの大きさが基準値以下であることが直進判
定の条件にされる訳ではないので、路面に比較的大きい
キャンバや左右方向の傾斜があり、これに起因して車輌
に作用する横方向の力を相殺すべくステアリングホイー
ルが実質的に一定の操舵角の位置に操作され、これによ
り車輌は実際に直進走行状態にあるにも拘らず操舵角の
大きさが基準値を越える状況に於いても車輪速度を正確
に且つ確実に補正することができる。
According to the illustrated first to third embodiments, the condition of the steering angle θ being equal to or smaller than the reference value is not a condition for the straight traveling judgment, and therefore, a relatively large camber on the road surface. The steering wheel is operated at a substantially constant steering angle position to offset the lateral force acting on the vehicle due to this, so that the vehicle is actually running straight. The wheel speed can be accurately and reliably corrected even in a situation where the magnitude of the steering angle exceeds the reference value.

【0043】また第一及び第二の実施形態によれば、ヨ
ーレートの積分値Σγ(n) の大きさが基準値C2 以下で
あることが直進判定の一つの条件であるので、左右前輪
及び左右後輪の両方の左右輪の車輪径に同一の大小関係
にて比較的大きい差があり、車輪径の小さい前後輪が旋
回内輪となるよう車輌が定常円旋回することにより、四
輪全ての回転速度が実質的に同一になる状況に於いて、
誤って車輌の直進状態が判定されることを確実に防止す
ることができる。
According to the first and second embodiments, one condition for the straight traveling judgment is that the magnitude of the integrated value Σγ (n) of the yaw rate is equal to or smaller than the reference value C2. There is a relatively large difference between the wheel diameters of both the left and right wheels in the same magnitude relationship, and the four wheels are all rotated by a steady circular turning of the vehicle so that the front and rear wheels with smaller wheel diameters become inner turning wheels. In situations where the speeds are substantially the same,
It is possible to reliably prevent the erroneous determination of the straight traveling state of the vehicle.

【0044】また第一乃至第四の実施形態によれば、補
正係数Ki(n)は数2に従って各車輪の移動距離に対応す
る値と全ての車輪の平均移動距離に対応する値との比と
して演算されるので、補正係数が各車輪の移動距離に対
応する値と他の一つ又は二つの車輪の平均移動距離に対
応する値との比として演算される場合に比して正確に補
正係数を演算することができる。
According to the first to fourth embodiments, the correction coefficient Ki (n) is the ratio of the value corresponding to the moving distance of each wheel to the value corresponding to the average moving distance of all the wheels according to Equation 2. , So that the correction coefficient is corrected more accurately than when the correction coefficient is calculated as the ratio of the value corresponding to the moving distance of each wheel to the value corresponding to the average moving distance of the other one or two wheels. The coefficients can be calculated.

【0045】更に第一乃至第四の各実施形態によれば、
補正係数Ki(n)は右前輪が所定の移動距離以上移動する
毎に演算されるので、各車輪がそれぞれ所定の移動距離
以上移動する毎に補正係数が演算される場合に比して補
正係数の演算を単純に行うことができる。
Further, according to the first to fourth embodiments,
Since the correction coefficient Ki (n) is calculated each time the right front wheel moves by a predetermined moving distance or more, the correction coefficient is calculated as compared with a case where the correction coefficient is calculated every time each wheel moves by a predetermined moving distance or more. Can be simply performed.

【0046】以上に於ては本発明を特定の実施形態につ
いて詳細に説明したが、本発明は上述の実施形態に限定
されるものではなく、本発明の範囲内にて他の種々の実
施形態が可能であることは当業者にとって明らかであろ
う。
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments may be included within the scope of the present invention. It will be clear to those skilled in the art that is possible.

【0047】例えば上述の各実施形態に於いては、所定
の移動距離はステップ30に於いて右前輪の車輪速度セ
ンサ12frよりのパルス信号のパルス数に基づき判定さ
れるようになっているが、所定の移動距離は右前輪以外
の一つ又は複数の車輪の車輪速度センサよりのパルス信
号のパルス数に基づき判定されされてもよい。
For example, in each of the above-described embodiments, the predetermined moving distance is determined in step 30 based on the pulse number of the pulse signal from the right front wheel speed sensor 12fr. The predetermined moving distance may be determined based on the number of pulses of a pulse signal from one or more wheel speed sensors other than the right front wheel.

【0048】また上述の第二の実施形態と第三の実施形
態、第二の実施形態と第四の実施形態、第三の実施形態
と第四の実施形態、第二乃至第四の実施形態が組み合わ
され、これにより各実施形態の場合によりも更に一層正
確に車輪速度が補正されるよう構成されてもよい。
The above-described second and third embodiments, the second and fourth embodiments, the third and fourth embodiments, and the second to fourth embodiments May be combined so that the wheel speed is corrected even more accurately than in the case of each embodiment.

【0049】[0049]

【発明の効果】以上の説明より明らかである如く、本発
明の請求項1の方法又は請求項5の装置によれば、所定
の移動距離に於ける補正係数の変化量が基準値以下であ
る状態が基準回数以上継続し、且つ車輌のヨーレートの
積分値の大きさが基準値以下であるときに車輌が直進状
態にあると判定されるので、操舵角の大きさに基づき車
輌の直進状態が判定される場合に比して車輌の直進状態
を正確に判定し、これにより車輪速度を正確に補正する
ことができる。
As is apparent from the above description, according to the method of the present invention or the apparatus of the present invention, the amount of change of the correction coefficient at a predetermined moving distance is equal to or less than the reference value. When the state continues for the reference number of times or more and the magnitude of the integrated value of the yaw rate of the vehicle is equal to or less than the reference value, it is determined that the vehicle is in the straight traveling state, so that the straight traveling state of the vehicle is determined based on the magnitude of the steering angle. The straight traveling state of the vehicle is accurately determined as compared with the case where the determination is made, and thus the wheel speed can be accurately corrected.

【0050】また請求項2乃至4の方法又は請求項6乃
至8の装置によれば、車輌が実際には直進走行していな
いにも拘らず車輌が直進走行していると誤判定され不必
要な車輪速度の補正が行われる虞れを更に一層低減し、
これにより請求項1の方法又は請求項5の装置に比して
更に一層正確に車輪速度を補正することができる。
According to the method of claims 2 to 4 or the apparatus of claims 6 to 8, it is erroneously determined that the vehicle is traveling straight despite the fact that the vehicle is not actually traveling straight, and unnecessary. Further reduce the possibility that the correction of the wheel speed will be performed,
As a result, the wheel speed can be more accurately corrected as compared with the method of the first aspect or the apparatus of the fifth aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による車輌の車輪速度補正方法及び装置
の第一の実施形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle wheel speed correction method and device according to the present invention.

【図2】第一の実施形態の補正係数演算ルーチンを示す
フローチャートである。
FIG. 2 is a flowchart illustrating a correction coefficient calculation routine according to the first embodiment.

【図3】第一の実施形態の車輪速度演算補正ルーチンを
示すフローチャートである。
FIG. 3 is a flowchart illustrating a wheel speed calculation correction routine according to the first embodiment.

【図4】第二の実施形態の補正係数演算ルーチンを示す
フローチャートである。
FIG. 4 is a flowchart illustrating a correction coefficient calculation routine according to a second embodiment.

【図5】第三の実施形態の補正係数演算ルーチンの一部
を示すフローチャートである。
FIG. 5 is a flowchart illustrating a part of a correction coefficient calculation routine according to a third embodiment.

【図6】第四の実施形態の補正係数演算ルーチンの一部
を示すフローチャートである。
FIG. 6 is a flowchart illustrating a part of a correction coefficient calculation routine according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

10fl〜10rr…車輪 12fl〜12rr…車輪速度センサ 14…車輪速度補正装置 16…ヨーレートセンサ 10fl-10rr: Wheel 12fl-12rr: Wheel speed sensor 14: Wheel speed correction device 16: Yaw rate sensor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】各車輪に設けられた車輪速度検出手段より
の出力に基づき各車輪の車輪速度を演算し、前記出力に
基づき求められる各車輪の移動距離に対応する値と他の
少なくとも一つの車輪の移動距離に対応する値との比を
補正係数として演算し、車輌の直進状態を判定し、車輌
が直進状態にあるときには前記補正係数にて各車輪の車
輪速度を補正する車輌の車輪速度補正方法に於いて、所
定の移動距離に於ける前記補正係数の変化量が基準値以
下である状態が基準回数以上継続し、且つ車輌のヨーレ
ートの積分値の大きさが基準値以下であるときに車輌が
直進状態にあると判定されることを特徴とする車輌の車
輪速度補正方法。
1. A wheel speed of each wheel is calculated based on an output from a wheel speed detecting means provided on each wheel, and a value corresponding to a moving distance of each wheel obtained based on the output and at least one other wheel speed are calculated. Calculate the ratio with the value corresponding to the moving distance of the wheel as a correction coefficient, determine the straight running state of the vehicle, and when the vehicle is in the straight running state, correct the wheel speed of each wheel with the correction coefficient. In the correction method, when the amount of change in the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more, and the magnitude of the integrated value of the yaw rate of the vehicle is equal to or less than the reference value. Wherein the vehicle is determined to be in a straight-ahead state.
【請求項2】請求項1の車輌の車輪速度補正方法に於い
て、所定の移動距離に於ける前記補正係数の変化量が基
準値以下である状態が基準回数以上継続し、且つ車輌の
ヨーレートの積分値の大きさが基準値以下であり、且つ
各車輪が前記所定の移動距離移動する時間が基準値以下
であるときに車輌が直進状態にあると判定されることを
特徴とする車輌の車輪速度補正方法。
2. The method according to claim 1, wherein the state in which the amount of change of the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more, and the yaw rate of the vehicle. When the magnitude of the integral value is less than or equal to the reference value, and when the time for each wheel to move the predetermined moving distance is less than or equal to the reference value, it is determined that the vehicle is in a straight traveling state. Wheel speed correction method.
【請求項3】請求項1の車輌の車輪速度補正方法に於い
て、所定時間に於ける前記補正係数の変化量が基準値以
下である状態が基準時間以上継続し、且つ車輌のヨーレ
ートの積分値が基準値以下であり、且つ前輪又は後輪の
前記補正係数の左右輪間の差の大きさが基準値以下であ
るときに車輌が直進状態にあると判定されることを特徴
とする車輌の車輪速度補正方法。
3. The method according to claim 1, wherein the state in which the amount of change in the correction coefficient within a predetermined time is equal to or less than a reference value continues for a reference time or more, and integrates the yaw rate of the vehicle. The vehicle is determined to be in a straight-ahead state when the value is equal to or less than a reference value and the magnitude of the difference between the left and right wheels of the correction coefficient of the front wheel or the rear wheel is equal to or less than the reference value. Wheel speed correction method.
【請求項4】請求項1の車輌の車輪速度補正方法に於い
て、所定時間に於ける前記補正係数の変化量が基準値以
下である状態が基準時間以上継続し、且つ車輌のヨーレ
ートの積分値が基準値以下であり、且つ操舵角の大きさ
が基準値以下であるときに車輌が直進状態にあると判定
されることを特徴とする車輌の車輪速度補正方法。
4. The method according to claim 1, wherein the state in which the amount of change in the correction coefficient at a predetermined time is equal to or less than a reference value continues for a reference time or more and integrates the yaw rate of the vehicle. A vehicle speed correcting method for a vehicle, comprising: determining that the vehicle is in a straight-ahead state when the value is equal to or less than a reference value and the magnitude of the steering angle is equal to or less than the reference value.
【請求項5】各車輪に設けられた車輪速度検出手段と、
車輌のヨーレートを検出する手段と、前記車輪速度検出
手段よりの出力に基づき各車輪の車輪速度を演算する手
段と、前記出力に基づき求められる各車輪の移動距離に
対応する値と他の少なくとも一つの車輪の移動距離に対
応する値との比を補正係数として演算し、車輌の直進状
態を判定し、車輌が直進状態にあるときには前記補正係
数にて各車輪の車輪速度を補正する手段とを有する車輌
の車輪速度補正装置に於いて、所定の移動距離に於ける
前記補正係数の変化量が基準値以下である状態が基準回
数以上継続し、且つ車輌のヨーレートの積分値の大きさ
が基準値以下であるときに車輌が直進状態にあると判定
されることを特徴とする車輌の車輪速度補正装置。
5. Wheel speed detecting means provided on each wheel;
Means for detecting the yaw rate of the vehicle, means for calculating the wheel speed of each wheel based on the output from the wheel speed detecting means, and a value corresponding to the moving distance of each wheel determined based on the output and at least one other Means for calculating a ratio between the value and the value corresponding to the moving distance of the two wheels as a correction coefficient, determining the straight running state of the vehicle, and correcting the wheel speed of each wheel with the correction coefficient when the vehicle is in the straight running state. In the vehicle wheel speed correction device, the state where the amount of change in the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more, and the magnitude of the integrated value of the yaw rate of the vehicle is determined as a reference. A wheel speed correction device for a vehicle, characterized in that it is determined that the vehicle is in a straight running state when the vehicle speed is equal to or less than the value.
【請求項6】請求項5の車輌の車輪速度補正装置に於い
て、所定の移動距離に於ける前記補正係数の変化量が基
準値以下である状態が基準回数以上継続し、且つ車輌の
ヨーレートの積分値の大きさが基準値以下であり、且つ
各車輪が前記所定の移動距離移動する時間が基準値以下
であるときに車輌が直進状態にあると判定されることを
特徴とする車輌の車輪速度補正装置。
6. The vehicle wheel speed correcting apparatus according to claim 5, wherein the state in which the amount of change of the correction coefficient at a predetermined moving distance is equal to or less than a reference value continues for a reference number of times or more, and the yaw rate of the vehicle. When the magnitude of the integral value is less than or equal to the reference value, and when the time for each wheel to move the predetermined moving distance is less than or equal to the reference value, it is determined that the vehicle is in a straight traveling state. Wheel speed correction device.
【請求項7】請求項5の車輌の車輪速度補正装置に於い
て、所定時間に於ける前記補正係数の変化量が基準値以
下である状態が基準時間以上継続し、且つ車輌のヨーレ
ートの積分値が基準値以下であり、且つ前輪又は後輪の
前記補正係数の左右輪間の差の大きさが基準値以下であ
るときに車輌が直進状態にあると判定されることを特徴
とする車輌の車輪速度補正装置。
7. A vehicle wheel speed correcting apparatus according to claim 5, wherein the state in which the amount of change of said correction coefficient at a predetermined time is equal to or less than a reference value continues for a reference time or more, and integrates the yaw rate of the vehicle. The vehicle is determined to be in a straight-ahead state when the value is equal to or less than a reference value and the magnitude of the difference between the left and right wheels of the correction coefficient of the front wheel or the rear wheel is equal to or less than the reference value. Wheel speed correction device.
【請求項8】請求項5の車輌の車輪速度補正装置に於い
て、所定時間に於ける前記補正係数の変化量が基準値以
下である状態が基準時間以上継続し、且つ車輌のヨーレ
ートの積分値が基準値以下であり、且つ操舵角の大きさ
が基準値以下であるときに車輌が直進状態にあると判定
されることを特徴とする車輌の車輪速度補正装置。
8. A vehicle wheel speed correcting device according to claim 5, wherein the state in which the amount of change of said correction coefficient at a predetermined time is equal to or less than a reference value continues for a reference time or more, and integrates the yaw rate of the vehicle. A wheel speed correction device for a vehicle, wherein when the value is equal to or less than a reference value and the magnitude of the steering angle is equal to or less than the reference value, the vehicle is determined to be in a straight traveling state.
JP24572996A 1996-08-28 1996-08-28 Method and apparatus for correcting wheel speed of vehicle Expired - Lifetime JP3351259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24572996A JP3351259B2 (en) 1996-08-28 1996-08-28 Method and apparatus for correcting wheel speed of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24572996A JP3351259B2 (en) 1996-08-28 1996-08-28 Method and apparatus for correcting wheel speed of vehicle

Publications (2)

Publication Number Publication Date
JPH1067313A true JPH1067313A (en) 1998-03-10
JP3351259B2 JP3351259B2 (en) 2002-11-25

Family

ID=17137943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24572996A Expired - Lifetime JP3351259B2 (en) 1996-08-28 1996-08-28 Method and apparatus for correcting wheel speed of vehicle

Country Status (1)

Country Link
JP (1) JP3351259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012704A (en) * 2007-07-09 2009-01-22 Honda Motor Co Ltd Device for determining object for control
JP5800092B2 (en) * 2012-07-26 2015-10-28 トヨタ自動車株式会社 Braking / driving force control device
JP2019081408A (en) * 2017-10-30 2019-05-30 トヨタ自動車株式会社 Wheel speed estimation device
JP2020083077A (en) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 Control device of four-wheel drive vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012704A (en) * 2007-07-09 2009-01-22 Honda Motor Co Ltd Device for determining object for control
JP5800092B2 (en) * 2012-07-26 2015-10-28 トヨタ自動車株式会社 Braking / driving force control device
JPWO2014016945A1 (en) * 2012-07-26 2016-07-07 トヨタ自動車株式会社 Braking / driving force control device
JP2019081408A (en) * 2017-10-30 2019-05-30 トヨタ自動車株式会社 Wheel speed estimation device
JP2020083077A (en) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 Control device of four-wheel drive vehicle
US10889290B2 (en) 2018-11-27 2021-01-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for four-wheel-drive vehicle

Also Published As

Publication number Publication date
JP3351259B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP2780887B2 (en) Vehicle tire pressure determination device
EP1167086B1 (en) Method for alarming decrease in tyre air pressure and apparatus used therefor
JPH09118212A (en) Side slip speed estimating device of car body
JP3624446B2 (en) Tire pressure drop detection device
JPH0346505A (en) Abnormality detecting device of steering angle sensor
JPH095352A (en) Traverse acceleration detector for vehicle
EP1145875B1 (en) Apparatus and method for alarming decrease in tyre air pressure
JP3351259B2 (en) Method and apparatus for correcting wheel speed of vehicle
JP3255108B2 (en) Failure determination device for yaw rate sensor
US6304807B1 (en) Method for determining the yaw velocity of a vehicle
JP3765539B2 (en) Air pressure drop detection device
JP3282449B2 (en) Vehicle skidding state quantity detection device
JP3319989B2 (en) Sensor detection value correction device in vehicle motion control device
JPH0613301B2 (en) Vehicle steering angle detector
JPH10281944A (en) Tire judging device for vehicle
JP2557970B2 (en) Curve identification and lateral acceleration detection method in automobile
JP3456336B2 (en) Vehicle control device
JP3324966B2 (en) Forward judgment device in vehicle motion control device
JP2001260855A (en) Different-diameter wheel judging device and brake hydraulic pressure control device using the same
JP3013723B2 (en) Tire pressure drop detection method
JP3695215B2 (en) Abnormality detection device for yaw rate sensor
JP4237586B2 (en) Tire pressure alarm device
JP2959415B2 (en) Tire pressure drop detection method
JPH04213067A (en) Apparatus for correcting midpoint of acceleration sensor
JP3013722B2 (en) Tire pressure drop detection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

EXPY Cancellation because of completion of term