JPH1064524A - Lithium ion secondary battery and manufacture thereof - Google Patents

Lithium ion secondary battery and manufacture thereof

Info

Publication number
JPH1064524A
JPH1064524A JP8219518A JP21951896A JPH1064524A JP H1064524 A JPH1064524 A JP H1064524A JP 8219518 A JP8219518 A JP 8219518A JP 21951896 A JP21951896 A JP 21951896A JP H1064524 A JPH1064524 A JP H1064524A
Authority
JP
Japan
Prior art keywords
electrode material
positive electrode
secondary battery
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8219518A
Other languages
Japanese (ja)
Inventor
Masahiro Seto
正博 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8219518A priority Critical patent/JPH1064524A/en
Publication of JPH1064524A publication Critical patent/JPH1064524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a manufacturing yield by excluding influence resulting from the dispersion of area density of a positive electrode agent or a negative electrode agent applied to positive electrode material or negative electrode material. SOLUTION: In the positive electrode manufacturing process of a lithium ion secondary battery, a feed-out portion 10 feeding a wide-width roll-like-rolled positive electrode material is a starting part, and in an applying process 11, positive electrode material which is temperature (viscosity)-controlled by an electrode material storage dedicated tank is applied to both face or one side face of the positive electrode material. Thereafter, the same is dried by a drying process 12, and simultaneously is cooled by a cooling process 13. The same is further compress-formed into a film-like metal foil web by a pressing process 14, and is cut into a predetermined width dimension of a battery cell so as to be a positive electrode by a cutting process 15. Thereby, it is possible to manufacture the positive electrode film-like metal foil web having the little dispersion of area density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池およびその製造方法に関し、更に詳しくは、フィ
ルム状金属箔原反等に塗布する電極剤の面積密度のばら
つきを抑えて、製造歩留りの向上を図ったリチウムイオ
ン二次電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery and a method for manufacturing the same, and more particularly, to a method for manufacturing a lithium ion secondary battery by suppressing variations in the area density of an electrode material applied to a film-shaped metal foil raw material or the like. The present invention relates to an improved lithium ion secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の電子技術の進歩により電子機器の
高性能化が進み、それに伴いこれら電子機器に使用され
る電池の高エネルギー密度化の要求が高まっている。従
来、これらの電子機器に使用される二次電池としてはニ
ッケルカドミウム電池やニッケル水素電池などがある
が、これらの電池は放電電位が低くエネルギー密度が充
分でないため、上述した要求には充分に応えられていな
いのが実情である。
2. Description of the Related Art Recent advances in electronic technology have led to higher performance of electronic devices, and accordingly, demands for higher energy density of batteries used in these electronic devices have been increasing. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and nickel-metal hydride batteries. These batteries have a low discharge potential and do not have a sufficient energy density, and thus sufficiently meet the above requirements. The fact is that it has not been done.

【0003】最近、これらの要求を満たす二次電池とし
て、非水電解液二次電池に属するリチウムイオン二次電
池が実用化されるようになった。このリチウムイオン二
次電池は体積当たりの容量密度が高く、ニッケルカドミ
ウム電池やニッケル水素電池に比して約3倍の高電圧を
有するとともに、電池内のリチウムはイオン状態で存在
するため、高い安全性を有している。
Recently, a lithium ion secondary battery belonging to a non-aqueous electrolyte secondary battery has come into practical use as a secondary battery satisfying these requirements. This lithium-ion secondary battery has a high capacity density per volume, has a voltage three times higher than nickel-cadmium batteries and nickel-metal hydride batteries, and has high safety because the lithium in the battery exists in an ionic state. It has nature.

【0004】図1は本発明に係わるリチウムイオン二次
電池のセル内部を示す斜視図である。図におけるリチウ
ムイオン二次電池は、シート状を成すとともに、正極リ
ード1aを備えた正極1と、同じくシート状を成し、負
極リード2aを備えた負極2とを、例えば厚さ25μm
微多孔性ポリプロピレンフィルム等のセパレータ3を介
して巻き込んで渦巻き状の積層電極体を形成し、その積
層電極体をインシュレータ4を介して電池缶5に内装し
た構造となっている。
FIG. 1 is a perspective view showing the inside of a cell of a lithium ion secondary battery according to the present invention. The lithium ion secondary battery in the figure has a sheet shape and a positive electrode 1 having a positive electrode lead 1a and a negative electrode 2 also having a sheet shape and a negative electrode lead 2a, for example, having a thickness of 25 μm.
The spirally wound electrode body is formed by being wound through a separator 3 such as a microporous polypropylene film, and the laminated electrode body is housed in a battery can 5 via an insulator 4.

【0005】電池缶5上部には内部の気体を抜く安全弁
6が形成されるとともに、その上部にはガス漏れを防ぐ
ガスケット7を把持して正極蓋8がレーザー溶接等によ
り固着されている。このような積層電極体を内装した電
池缶5に、混合溶媒にLiPF6 を1モル/lの割合で
溶解した有機電解液などを注入してリチウムイオン二次
電池が構成される。
A safety valve 6 for bleeding gas is formed on the upper part of the battery can 5, and a gasket 7 for preventing gas leakage is gripped on the upper part of the safety valve 6, and a positive electrode lid 8 is fixed by laser welding or the like. An organic electrolytic solution in which LiPF 6 is dissolved at a ratio of 1 mol / l in a mixed solvent or the like is injected into a battery can 5 containing such a laminated electrode body to constitute a lithium ion secondary battery.

【0006】かかる構成のリチウムイオン二次電池の動
作を簡潔に説明するならば、充電時にはリチウムが正極
1の正極活物質からセパレータ3の電解液中にリチウム
イオンとして溶け出し、負極2の負極活物質中に入り込
み、放電時には負極2の負極活物質中に入り込んだリチ
ウムイオンが電解液中に放出され、正極1の正極活物質
中に再び戻ることによって充放電動作を行っている。
To briefly explain the operation of the lithium ion secondary battery having such a configuration, at the time of charging, lithium is dissolved from the positive electrode active material of the positive electrode 1 into the electrolyte of the separator 3 as lithium ions, and the negative electrode of the negative electrode 2 is charged. At the time of discharge, the lithium ions that have entered the negative electrode active material of the negative electrode 2 are released into the electrolytic solution at the time of discharge, and return to the positive electrode active material of the positive electrode 1 to perform a charge / discharge operation.

【0007】ところで、正極電極剤および負極電極剤塗
布済のフィルム状金属箔原反は、おおよそ1000mな
いし4000mのロール状に巻装されてリチウムイオン
二次電池の製造工程に供給されるが、塗布される電極剤
に面積密度のばらつきがあると、巻装されたフィルム状
金属箔原反ロールにもばらつきが生じる。
[0007] The film-shaped metal foil coated with the positive electrode material and the negative electrode material is wound into a roll of about 1000 m to 4000 m and supplied to a manufacturing process of a lithium ion secondary battery. If the electrode material to be used has a variation in the area density, the wound film-shaped metal foil raw roll also has a variation.

【0008】つまり、図2および図3に示した電極剤塗
布済フィルム状原反9のロール形状は、電極剤の面積密
度のばらつきによって幅方向Xに形状が傾き、面積密度
の大きい方の幅が面積密度の小さい方に比べて大きくな
ってしまう。すなわち、図2の電極剤塗布済フィルム状
原反9の右側の面積密度が大きい場合には、電極剤塗布
済フィルム状原反9の右側のロール径が大きくなり、図
3の電極剤塗布済フィルム状原反9の左側の面積密度が
大きい場合には、逆に電極剤塗布済フィルム状原反9の
左側のロール径が大きくなってしまう。なお、面積密度
のバランスの良い電極剤塗布済フィルム状原反9にはこ
のような幅方向Xのばらつきは発生しない。
That is, the roll shape of the film 9 coated with the electrode material shown in FIGS. 2 and 3 is inclined in the width direction X due to the variation of the area density of the electrode material, and the width of the larger area density is larger. Are larger than those having a smaller area density. That is, when the area density on the right side of the electrode material-coated film raw material 9 in FIG. 2 is large, the roll diameter on the right side of the electrode material-coated film raw material 9 increases, and the electrode material coated If the area density on the left side of the film raw material 9 is large, the diameter of the roll on the left side of the electrode material-coated film raw material 9 is increased. Such a variation in the width direction X does not occur in the film raw material 9 coated with the electrode agent having a good balance of the area density.

【0009】このような幅方向Xに形状の傾いた電極剤
塗布済フィルム状原反9を電池セルの所定寸法に裁断し
た場合、面積密度のばらつきの大きい電極は、リチウム
イオン二次電池製造工程において渦巻き状の積層電極体
を形成しても、積層電極体を電池缶5(図1参照)に挿
入することができず、リチウムイオン二次電池の組み立
てが困難となる問題点がある。
When the electrode material-coated film 9 slanted in the width direction X is cut into a predetermined size of the battery cell, an electrode having a large area density variation is produced in a lithium ion secondary battery manufacturing process. However, even if a spirally-shaped laminated electrode body is formed, the laminated electrode body cannot be inserted into the battery can 5 (see FIG. 1), and there is a problem that it is difficult to assemble the lithium ion secondary battery.

【0010】[0010]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑みてなされたもので、その課題は、電極剤の面積密
度のばらつきによって形状が傾いた電極剤塗布済フィル
ム状原反ロールを使用することにより、リチウムイオン
二次電池の組み立てが困難になるという問題点を解消
し、製造歩留りの向上を図ったリチウムイオン二次電池
およびその製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing problems, and has as its object to use a film-shaped raw material roll coated with an electrode agent, the shape of which is inclined due to the variation in the area density of the electrode agent. Accordingly, an object of the present invention is to provide a lithium ion secondary battery and a method for manufacturing the same, which solve the problem that the assembly of the lithium ion secondary battery becomes difficult and improve the production yield.

【0011】[0011]

【課題を解決するための手段】本発明のリチウムイオン
二次電池の製造方法は、正極材または負極材の片面若し
くは両面に、正極電極剤または負極電極剤を塗布する塗
布工程を、少なくとも有するリチウムイオン二次電池の
製造方法において、正極電極剤または負極電極剤の塗布
温度を20〜35℃に管理するとともに、正極電極剤ま
たは負極電極剤の塗布粘度を3〜20Pa・S(パスカ
ル秒)に管理することにより、正極電極剤または負極電
極剤の面積密度のばらつきを低減するものである。
According to the present invention, there is provided a method for producing a lithium ion secondary battery, comprising at least a coating step of coating a positive electrode material or a negative electrode material on one or both surfaces of a positive electrode material or a negative electrode material. In the manufacturing method of the ion secondary battery, the application temperature of the positive electrode material or the negative electrode material is controlled to 20 to 35 ° C., and the application viscosity of the positive electrode material or the negative electrode material is set to 3 to 20 Pa · S (Pascal second). By managing, the variation in the area density of the positive electrode material or the negative electrode material is reduced.

【0012】本発明のリチウムイオン二次電池の製造方
法においては、正極材または負極材に塗布される正極電
極剤または負極電極剤の塗布温度および塗布粘度を管理
して塗布工程に供給するようにしたため、正極電極剤ま
たは負極電極剤の面積密度のばらつきを抑えた正極・負
極電極用フィルム状金属箔原反を生産できるようにな
る。それに伴ってリチウムイオン二次電池の組み立てが
容易となり、リチウムイオン二次電池の製造歩留りを向
上できる。
In the method of manufacturing a lithium ion secondary battery according to the present invention, the application temperature and the application viscosity of the positive electrode material or the negative electrode material applied to the positive electrode material or the negative electrode material are controlled and supplied to the application step. As a result, it becomes possible to produce a film-shaped metal foil raw material for a positive electrode or a negative electrode in which the variation in the area density of the positive electrode material or the negative electrode material is suppressed. Accordingly, the assembly of the lithium ion secondary battery is facilitated, and the production yield of the lithium ion secondary battery can be improved.

【0013】本発明のリチウムイオン二次電池は、かか
るリチウムイオン二次電池の製造方法によって製造され
た正極および負極を用いて製造されることを特徴とす
る。
[0013] The lithium ion secondary battery of the present invention is characterized by being manufactured using the positive electrode and the negative electrode manufactured by the method for manufacturing a lithium ion secondary battery.

【0014】[0014]

【発明の実施の形態】以下、上記図1ないし図10を参
照して本発明のリチウムイオン二次電池およびその製造
方法の実施の形態例を説明する。なお、従来技術におけ
るリチウムイオン二次電池と同一の部分には同一の参照
符号を付すものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a lithium ion secondary battery and a method of manufacturing the same according to the present invention will be described with reference to FIGS. The same parts as those of the lithium ion secondary battery in the related art are denoted by the same reference numerals.

【0015】先ず、図4を参照して本発明のリチウムイ
オン二次電池の製造工程につき、正極の製造方法を例示
して説明する。図4は本発明のリチウムイオン二次電池
の電極製造工程を示す図であり、(a)は同電極製造の
工程図、(b)は塗布工程で用いる電極剤貯蔵専用タン
クの断面図である。
First, the manufacturing process of the lithium ion secondary battery of the present invention will be described with reference to FIG. 4A and 4B are diagrams showing an electrode manufacturing process of the lithium ion secondary battery of the present invention, wherein FIG. 4A is a process diagram of the electrode manufacturing, and FIG. 4B is a cross-sectional view of a dedicated electrode agent storage tank used in the coating process. .

【0016】図4(a)に示すリチウムイオン二次電池
の正極製造工程は、広幅のロール状に巻装されたアルミ
ニウム箔(正極材)または片面に電極剤が塗布されたア
ルミニウム箔を送出する送出部10を出発点とし、炭酸
リチウム0.5モルを炭酸コバルト1モルと混合し、所
定時間焼成して得たLiCoO2 をスラリー状としたも
のを正極電極剤として塗布工程11に供給する。塗布工
程11では、このような正極電極剤を正極リード1a
(図1参照、以下同様)を残して正極材の両面または片
面に塗布する。
In the step of manufacturing a positive electrode of a lithium ion secondary battery shown in FIG. 4A, an aluminum foil (positive electrode material) wound in a wide roll or an aluminum foil coated with an electrode agent on one side is sent out. Starting from the delivery section 10, 0.5 mol of lithium carbonate is mixed with 1 mol of cobalt carbonate, and a slurry of LiCoO 2 obtained by firing for a predetermined time is supplied to the coating step 11 as a positive electrode agent. In the coating step 11, such a positive electrode material is applied to the positive electrode lead 1a.
The coating is applied to both sides or one side of the positive electrode material except for (see FIG. 1, the same applies hereinafter).

【0017】ここで、正極材に塗布される電極剤は、図
4(b)に示す如く、専用貯蔵タンクに貯蔵されてい
る。この専用貯蔵タンクの壁は、魔法瓶のように二重構
造になっていて、壁面の周囲には温水が常時還流してい
る。この温水の温度は20〜35℃に管理されていて、
設定温度から外れるとヒータ(図示省略)が自動的にO
N/OFF動作して設定温度となるように自動管理され
ている。このように、電極剤を温度管理することによ
り、詳細は図9、図10のグラフで後述するが、電極剤
の粘度も所定値に管理されることになる。
The electrode material applied to the positive electrode material is stored in a dedicated storage tank as shown in FIG. The wall of this dedicated storage tank has a double structure like a thermos bottle, and hot water is constantly flowing around the wall. The temperature of this hot water is controlled at 20-35 ° C,
When the temperature deviates from the set temperature, the heater (not shown)
It is automatically managed so that the temperature becomes the set temperature by N / OFF operation. As described above, by controlling the temperature of the electrode material, the viscosity of the electrode material is also controlled to a predetermined value, as will be described later in detail with reference to the graphs of FIGS.

【0018】電極剤を塗布された正極材は、温度が10
0〜130℃の乾燥工程12により乾燥されるととも
に、乾燥工程12を出た電極剤塗布済フィルム状金属箔
は、ロール状に巻き取られるとともに、冷却工程13ま
たは外気による自然冷却により室温まで冷却される。次
に、電極剤塗布済ロール状となされたフィルム状金属箔
は、圧縮成形を行うプレス工程14へと進み、温度が1
00〜150℃に保持された金属ロールと金属ロール間
に供給される。プレス工程14を経たフィルム状金属箔
は圧縮されることによって、塗布された電極剤の密度を
向上させる。更に、フィルム状金属箔原反は裁断工程1
5に進み、裁断工程15によって電池となるセルの所定
幅寸法に裁断されて正極1となる。なお、この正極製造
工程の巻き取り速度は、一般的に15〜100m/mi
nに制御されており、張力は略30kg/600mm幅
にコントロールされる。
The positive electrode material coated with the electrode material has a temperature of 10
The film-shaped metal foil coated with the electrode agent, which has been dried in the drying step 12 of 0 to 130 ° C. and has passed through the drying step 12, is wound into a roll and cooled to room temperature by the cooling step 13 or natural cooling by outside air. Is done. Next, the roll-shaped film-shaped metal foil coated with the electrode agent proceeds to a pressing step 14 for performing compression molding.
It is supplied between metal rolls held at 00 to 150 ° C. The film-shaped metal foil that has passed through the pressing step 14 is compressed, thereby improving the density of the applied electrode agent. Furthermore, the film-shaped metal foil raw material is subjected to a cutting process 1
In step 5, the cell is cut into a predetermined width by a cutting step 15 to form the positive electrode 1. The winding speed in the positive electrode manufacturing process is generally 15 to 100 m / mi.
n, and the tension is controlled to approximately 30 kg / 600 mm width.

【0019】同様に、出発原料として石油ピッチを用
い、これを焼成して得られたコークス材料粉末をスラリ
ー状としたものを負極電極剤とする。この負極電極剤を
温度20〜35℃、粘度3〜20Pa・Sに管理しつ
つ、塗布工程11に供給する。塗布工程11では、銅箔
である負極材に負極リード2aを残して塗布し、乾燥工
程12で溶剤を乾燥後、冷却工程13を経てプレス工程
14により圧縮成形してフィルム状金属箔原反を作成す
る。これを裁断工程15で電池セルの所定幅寸法に裁断
して負極2を得る。その後、セル組み立て工程により前
述の如く組み立てることにより、本発明のリチウムイオ
ン二次電池が得られる。
Similarly, a petroleum pitch is used as a starting material, and a coke material powder obtained by calcining it is used as a slurry to form a negative electrode. The negative electrode material is supplied to the coating step 11 while controlling the temperature at 20 to 35 ° C. and the viscosity at 3 to 20 Pa · S. In the application step 11, the negative electrode lead 2a is applied to the negative electrode material, which is a copper foil, and the solvent is dried in the drying step 12, and then, after the cooling step 13, the compression step is performed by the pressing step 14 to form the film-shaped metal foil raw material. create. This is cut into a predetermined width dimension of the battery cell in a cutting step 15 to obtain the negative electrode 2. Thereafter, by assembling as described above in a cell assembling step, the lithium ion secondary battery of the present invention is obtained.

【0020】次に、図5ないし図10のグラフを参照し
て本発明のリチウムイオン二次電池およびその製造方法
に関連して行われた実験結果につき、順次説明する。な
お、電極剤塗布後の面積密度は、フィルム状金属箔原反
の幅方向に無作為に3箇所の測定を行うとともに、測定
単位は〔mg/cm2 〕とした。また、電極剤塗布後の
面積密度ばらつきは次式(1)から算出して行うことと
した。
Next, results of experiments performed in connection with the lithium ion secondary battery of the present invention and the method of manufacturing the same will be sequentially described with reference to the graphs of FIGS. The area density after the application of the electrode agent was measured at three points in the width direction of the raw film-shaped metal foil at random, and the unit of measurement was [mg / cm 2 ]. Further, the area density variation after the application of the electrode agent was calculated by the following equation (1).

【0021】[0021]

【数1】 (Equation 1)

【0022】先ず、図5ないし図8の実験結果から電極
剤粘度対面積密度のばらつきの関係について説明する。
図5はフィルム状金属箔原反の片面に負極用電極剤を塗
布した場合の電極剤粘度および電極剤の面積密度のばら
つきの関係を示すグラフ、図6はフィルム状金属箔原反
の片面に正極用電極剤を塗布した場合の電極剤粘度およ
び電極剤の面積密度のばらつきの関係を示すグラフ、図
7はフィルム状金属箔原反の両面に負極用電極剤を塗布
した場合の電極剤粘度および電極剤の面積密度のばらつ
きの関係を示すグラフ、図8はフィルム状金属箔原反の
両面に正極用電極剤を塗布した場合の電極剤粘度および
電極剤の面積密度のばらつきの関係を示すグラフであ
る。
First, the relationship between the viscosity of the electrode material and the variation in the area density will be described based on the experimental results shown in FIGS.
FIG. 5 is a graph showing the relationship between the electrode material viscosity and the variation in the area density of the electrode material when the electrode material for a negative electrode is applied to one surface of the film metal foil raw material, and FIG. FIG. 7 is a graph showing the relationship between the viscosity of the electrode material when the positive electrode material is applied and the variation in the area density of the electrode material. FIG. 7 shows the viscosity of the electrode material when the negative electrode material is applied to both surfaces of the film-shaped metal foil raw material. FIG. 8 is a graph showing the relationship between the variation in the area density of the electrode material and the electrode material, and FIG. 8 shows the relationship between the viscosity of the electrode material and the variation in the area density of the electrode material when the electrode material for the positive electrode is applied to both surfaces of the film-shaped metal foil raw material. It is a graph.

【0023】図5および図6のグラフから明らかなよう
に、負極、正極共に電極剤粘度が低くなるにつれ、電極
剤の面積密度のばらつきは小さくなる。また、電極剤粘
度が高くなるにつれ、電極剤の面積密度のばらつきは大
きくなる傾向にあることが判る。
As is clear from the graphs of FIGS. 5 and 6, as the viscosity of the electrode material for both the negative electrode and the positive electrode decreases, the variation in the area density of the electrode material decreases. Further, it can be seen that as the viscosity of the electrode material increases, the variation in the area density of the electrode material tends to increase.

【0024】同様に、図7および図8のグラフから明ら
かなように、負極、正極共に電極剤粘度が低くなるにつ
れ、電極剤の面積密度のばらつきは小さくなる。また、
電極剤粘度が高くなるにつれ、電極剤の面積密度のばら
つきは大きくなる傾向にあることが知見される。
Similarly, as can be seen from the graphs of FIGS. 7 and 8, as the viscosity of the electrode material for both the negative electrode and the positive electrode decreases, the variation in the area density of the electrode material decreases. Also,
It is found that the variation in the area density of the electrode agent tends to increase as the electrode agent viscosity increases.

【0025】次に、図9および図10の実験結果から電
極剤温度対電極剤粘度の関係について説明する。図9は
本発明のリチウムイオン二次電池における負極用の電極
剤粘度および電極剤温度の関係を示すグラフ、図10は
本発明のリチウムイオン二次電池における正極用の電極
剤粘度および電極剤温度の関係を示すグラフである。
Next, the relationship between the temperature of the electrode material and the viscosity of the electrode material will be described based on the experimental results shown in FIGS. 9 and 10. 9 is a graph showing the relationship between the viscosity of the electrode material for the negative electrode and the temperature of the electrode material in the lithium ion secondary battery of the present invention, and FIG. 10 is the viscosity of the electrode material for the positive electrode and the temperature of the electrode material in the lithium ion secondary battery of the present invention. 6 is a graph showing the relationship of.

【0026】図9から明らかなように、負極用の電極剤
粘度は電極剤温度が低くなるにつれて大きい値を示し、
また、電極剤粘度は電極剤温度が高くなるにつれて小さ
い値を示す傾向にある。また、図10から明らかなよう
に、正極用の電極剤粘度は電極剤温度が低くなるにつれ
て大きい値を示し、また、電極剤粘度は電極剤温度が高
くなるにつれて小さい値を示す傾向にある。
As is clear from FIG. 9, the viscosity of the electrode material for the negative electrode increases as the temperature of the electrode material decreases.
Further, the electrode material viscosity tends to show a smaller value as the electrode material temperature increases. As is clear from FIG. 10, the electrode material viscosity for the positive electrode tends to show a larger value as the electrode material temperature decreases, and the electrode material viscosity tends to show a smaller value as the electrode material temperature increases.

【0027】本発明者はこれらの実験結果を基に検討し
た結果、次のような結論を導き出した。すなわち、電極
剤塗布後の面積密度のばらつきを小さくするためには、
電極剤温度は高くするとともに、電極剤粘度を小さくす
ることが必要である。また、電極剤粘度は電極剤温度を
管理することで、所望の粘度を達成できる。
The present inventor has made the following conclusions as a result of an examination based on these experimental results. That is, in order to reduce the variation in the area density after applying the electrode agent,
It is necessary to increase the temperature of the electrode material and to reduce the viscosity of the electrode material. The desired viscosity can be achieved by controlling the electrode material temperature.

【0028】そして、このような温度および粘度の管理
された電極剤を塗布工程に供給することにより、電極剤
の面積密度のばらつきを従来より10%以下に抑えた電
極を生産することができる。具体的には、電極剤の温度
を20〜35℃に管理するとともに、電極剤の粘度を3
〜20Pa・Sに抑えて塗布工程に供給することによ
り、電極剤の面積密度のばらつきを抑えることができ
る。それに伴いリチウムイオン二次電池の組み立てが容
易になり、リチウムイオン二次電池の製造歩留りを向上
できる。
Then, by supplying such an electrode material whose temperature and viscosity are controlled to the coating step, it is possible to produce an electrode in which the variation in the area density of the electrode material is suppressed to 10% or less as compared with the related art. Specifically, while controlling the temperature of the electrode material to 20 to 35 ° C.,
By supplying to the application step while suppressing the pressure to 20 Pa · S, it is possible to suppress the variation in the area density of the electrode material. Accordingly, the assembly of the lithium ion secondary battery is facilitated, and the production yield of the lithium ion secondary battery can be improved.

【0029】以上本発明の好適な実施の形態例につき詳
細な説明を加えたが、本発明はこの実施の形態例以外に
も各種実施態様が可能である。例えば、実施の形態例と
して円筒型リチウムイオン二次電池を用いて説明した
が、角型、偏平型電池にも本発明を適用することが可能
である。また、リチウムイオン二次電池に限らずこれに
属する非水電解液二次電池に適用されても同様の効果が
得られることは論を待たない。
Although the preferred embodiment of the present invention has been described in detail, various other embodiments of the present invention are possible in addition to this embodiment. For example, although the embodiment has been described using a cylindrical lithium ion secondary battery, the present invention can also be applied to a prismatic or flat battery. It goes without saying that the same effects can be obtained even if the present invention is applied not only to the lithium ion secondary battery but also to a nonaqueous electrolyte secondary battery belonging to the secondary battery.

【0030】[0030]

【発明の効果】本発明のリチウムイオン二次電池および
その製造方法によれば、塗布温度および塗布粘度を例え
ば20〜35℃および3〜20Pa・Sに管理された電
極剤を、フィルム状金属箔原反または片面に電極剤が塗
布されたフィルム状金属箔原反に塗布することにより、
面積密度のばらつきの少ない正極・負極電極用フィルム
状金属箔原反を生産できるようになる。これにより、リ
チウムイオン二次電池の組み立てが容易になり、それに
伴いリチウムイオン二次電池の製造歩留りを向上できる
効果がある。
According to the lithium ion secondary battery and the method of manufacturing the same of the present invention, an electrode agent whose application temperature and application viscosity are controlled, for example, at 20 to 35 ° C. and 3 to 20 Pa · S, can be used as a film metal foil. By applying to the raw material or film-shaped metal foil raw material coated with the electrode agent on one side,
It is possible to produce a film-shaped metal foil raw material for a positive electrode / negative electrode having a small variation in area density. Thereby, the assembly of the lithium ion secondary battery is facilitated, and the production yield of the lithium ion secondary battery can be improved accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるリチウムイオン二次電池のセ
ル内部を示す斜視図である。
FIG. 1 is a perspective view showing the inside of a cell of a lithium ion secondary battery according to the present invention.

【図2】 本発明に係わる右側の面積密度が大きい電極
剤塗布済フィルム状原反ロールを示す上面図である。
FIG. 2 is a top view showing a film-shaped raw material roll coated with an electrode agent and having a large area density on the right side according to the present invention.

【図3】 本発明に係わる左側の面積密度が大きい電極
剤塗布済フィルム状原反ロールを示す上面図である。
FIG. 3 is a top view showing a film-shaped raw material roll coated with an electrode agent and having a large area density on the left side according to the present invention.

【図4】 本発明のリチウムイオン二次電池の電極製造
工程を示す図であり、(a)は同電極製造の工程図、
(b)は塗布工程で用いる電極剤貯蔵専用タンクの断面
図である。
FIG. 4 is a view showing a process of manufacturing an electrode of the lithium ion secondary battery of the present invention, wherein (a) is a process diagram of manufacturing the electrode;
(B) is sectional drawing of the electrode agent storage exclusive tank used in a coating process.

【図5】 フィルム状金属箔原反の片面に負極用電極剤
を塗布した場合の電極剤粘度および電極剤の面積密度の
ばらつきの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the viscosity of an electrode material and the variation in the area density of the electrode material when an electrode material for a negative electrode is applied to one surface of a film metal foil raw material.

【図6】 フィルム状金属箔原反の片面に正極用電極剤
を塗布した場合の電極剤粘度および電極剤の面積密度の
ばらつきの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the viscosity of the electrode material and the variation in the area density of the electrode material when the electrode material for a positive electrode is applied to one side of a film-shaped metal foil raw material.

【図7】 フィルム状金属箔原反の両面に負極用電極剤
を塗布した場合の電極剤粘度および電極剤の面積密度の
ばらつきの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the viscosity of the electrode material and the variation in the area density of the electrode material when the electrode material for a negative electrode is applied to both surfaces of the film-shaped metal foil raw material.

【図8】 フィルム状金属箔原反の両面に正極用電極剤
を塗布した場合の電極剤粘度および電極剤の面積密度の
ばらつきの関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the viscosity of the electrode material and the variation in the area density of the electrode material when the electrode material for the positive electrode is applied to both surfaces of the film metal foil raw material.

【図9】 本発明のリチウムイオン二次電池における負
極用の電極剤粘度および電極剤温度の関係を示すグラフ
である。
FIG. 9 is a graph showing the relationship between the viscosity of an electrode material for a negative electrode and the temperature of an electrode material in a lithium ion secondary battery of the present invention.

【図10】 本発明のリチウムイオン二次電池における
正極用の電極剤粘度および電極剤温度の関係を示すグラ
フである。
FIG. 10 is a graph showing the relationship between the viscosity of an electrode material for a positive electrode and the temperature of an electrode material in a lithium ion secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、4…インシュレ
ータ、5…電池缶、6…安全弁、7…ガスケット、8…
正極蓋、9…電極剤塗布済フィルム状原反、10…送出
部、11…塗布工程、12…乾燥工程、13…冷却工
程、14…プレス工程、15…裁断工程
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Insulator, 5 ... Battery can, 6 ... Safety valve, 7 ... Gasket, 8 ...
Positive electrode cover, 9 ... Film raw material coated with electrode agent, 10 ... Sending unit, 11 ... Coating process, 12 ... Drying process, 13 ... Cooling process, 14 ... Pressing process, 15 ... Cutting process

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極材または負極材の片面若しくは両面
に、正極電極剤または負極電極剤を塗布する塗布工程
を、少なくとも有するリチウムイオン二次電池の製造方
法において、 正極電極剤または負極電極剤の塗布温度を20℃ないし
35℃に管理するとともに、正極電極剤または負極電極
剤の塗布粘度を3Pa・Sないし20Pa・Sに管理す
ることにより、正極材または負極材に塗布される正極電
極剤または負極電極剤の面積密度のばらつきを低減する
ことを特徴とするリチウムイオン二次電池の製造方法。
1. A method for producing a lithium ion secondary battery, comprising at least a coating step of coating a positive electrode material or a negative electrode material on one or both surfaces of a positive electrode material or a negative electrode material. By controlling the application temperature to 20 ° C. to 35 ° C. and controlling the application viscosity of the positive electrode material or the negative electrode material to 3 Pa · S to 20 Pa · S, the positive electrode material applied to the positive electrode material or the negative electrode material or A method for producing a lithium ion secondary battery, characterized by reducing the variation in the area density of the negative electrode material.
【請求項2】 前記正極電極剤はLiCoO2 であると
ともに、前記負極電極剤はコークス材料であることを特
徴とする請求項1に記載のリチウムイオン二次電池の製
造方法。
2. The method according to claim 1, wherein the positive electrode material is LiCoO 2 and the negative electrode material is a coke material.
【請求項3】 請求項1または請求項2のリチウムイオ
ン二次電池の製造方法によって製造された正極および負
極を用いて製造されることを特徴とするリチウムイオン
二次電池。
3. A lithium ion secondary battery manufactured by using the positive electrode and the negative electrode manufactured by the method for manufacturing a lithium ion secondary battery according to claim 1.
【請求項4】 前記正極および負極を渦巻状に積層して
円筒型構成としたことを特徴とする請求項3に記載のリ
チウムイオン二次電池。
4. The lithium ion secondary battery according to claim 3, wherein the positive electrode and the negative electrode are spirally stacked to form a cylindrical structure.
【請求項5】 前記正極および負極をN段積層して角型
構成としたことを特徴とする請求項3に記載のリチウム
イオン二次電池。
5. The lithium ion secondary battery according to claim 3, wherein the positive electrode and the negative electrode are stacked in an N-stage configuration to form a square configuration.
JP8219518A 1996-08-21 1996-08-21 Lithium ion secondary battery and manufacture thereof Pending JPH1064524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8219518A JPH1064524A (en) 1996-08-21 1996-08-21 Lithium ion secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8219518A JPH1064524A (en) 1996-08-21 1996-08-21 Lithium ion secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1064524A true JPH1064524A (en) 1998-03-06

Family

ID=16736732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8219518A Pending JPH1064524A (en) 1996-08-21 1996-08-21 Lithium ion secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1064524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283614A (en) * 1998-03-26 1999-10-15 Tdk Corp Manufacture of electrode for nonaqueous electrolyte battery
CN105514476A (en) * 2015-12-29 2016-04-20 惠州金源精密自动化设备有限公司 Battery edge-cutting and transferring system
CN108242550A (en) * 2016-12-23 2018-07-03 中天科技精密材料有限公司 Battery core shaping methods and battery core shaping device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242071A (en) * 1991-01-16 1992-08-28 Matsushita Electric Ind Co Ltd Manufacture of sheet-form electrode plate, and nonaqueous electrolyte battery
JPH0765816A (en) * 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd Manufacture of sheet electrode and chemical battery manufactured thereby
JPH1055799A (en) * 1996-08-08 1998-02-24 Toshiba Battery Co Ltd Manufacture of sheet-shaped electrode plate and nonaqueous electrolyte battery
JPH1074521A (en) * 1996-08-02 1998-03-17 Saft (Soc Accumulateurs Fixes Traction) Sa Composition for positive electrode, manufacture thereof, and use of organic acid compound for neutralizing lioh

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242071A (en) * 1991-01-16 1992-08-28 Matsushita Electric Ind Co Ltd Manufacture of sheet-form electrode plate, and nonaqueous electrolyte battery
JPH0765816A (en) * 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd Manufacture of sheet electrode and chemical battery manufactured thereby
JPH1074521A (en) * 1996-08-02 1998-03-17 Saft (Soc Accumulateurs Fixes Traction) Sa Composition for positive electrode, manufacture thereof, and use of organic acid compound for neutralizing lioh
JPH1055799A (en) * 1996-08-08 1998-02-24 Toshiba Battery Co Ltd Manufacture of sheet-shaped electrode plate and nonaqueous electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283614A (en) * 1998-03-26 1999-10-15 Tdk Corp Manufacture of electrode for nonaqueous electrolyte battery
CN105514476A (en) * 2015-12-29 2016-04-20 惠州金源精密自动化设备有限公司 Battery edge-cutting and transferring system
CN105514476B (en) * 2015-12-29 2018-04-13 惠州金源精密自动化设备有限公司 Battery trimming and conveyer system
CN108242550A (en) * 2016-12-23 2018-07-03 中天科技精密材料有限公司 Battery core shaping methods and battery core shaping device

Similar Documents

Publication Publication Date Title
KR100963981B1 (en) Jelly-roll Having Active Material Layer with Different Loading Amount
JP4036889B2 (en) battery
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
JPH09298057A (en) Lithium ion battery
JP2006318892A (en) Square lithium secondary battery
US11456489B2 (en) Nonaqueous electrolyte secondary battery, and method for producing a nonaqueous electrolyte secondary battery
EP3985755A1 (en) Negative electrode, electrochemical device, and electronic device
JP6128391B2 (en) Non-aqueous electrolyte secondary battery and battery pack
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
CN101183735A (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH1131534A (en) Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
JP7290124B2 (en) Manufacturing method and negative electrode material for lithium ion secondary battery
US6818354B2 (en) Nonaqueous electrolyte secondary cell
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JPH1064524A (en) Lithium ion secondary battery and manufacture thereof
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JPH10302842A (en) Winding type secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP5030433B2 (en) Square battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
US10424776B2 (en) Method for manufacturing electrodes using three-dimensional substrate for electrochemical applied products
JPH11339839A (en) Square or thin secondary battery
JP2018125216A (en) Lithium ion secondary battery
JP2002134102A (en) Battery electrode plate and its producing method, and battery
JP7284920B2 (en) Method for manufacturing secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720