JPH1062552A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPH1062552A
JPH1062552A JP8214720A JP21472096A JPH1062552A JP H1062552 A JPH1062552 A JP H1062552A JP 8214720 A JP8214720 A JP 8214720A JP 21472096 A JP21472096 A JP 21472096A JP H1062552 A JPH1062552 A JP H1062552A
Authority
JP
Japan
Prior art keywords
distance
sensor
disturbance
measuring
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8214720A
Other languages
Japanese (ja)
Inventor
Tatsunori Hayashi
辰憲 林
Shigetoshi Shiotani
成敏 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8214720A priority Critical patent/JPH1062552A/en
Publication of JPH1062552A publication Critical patent/JPH1062552A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a highly reliable measurement of the distance to an environmental object which resists environmental changes under an environment on which a turbulence works intensely, for example, outdoors. SOLUTION: The body 2 of a walking robot 1 is provided with four legs 3 and a distance measuring apparatus 4 is carried at an upper part thereof while a turbulence sensor 5 is carried inside. The walking robot 1 measures a distance between the span of the legs 3 and a leg contact point range 6 with the distance measuring apparatus 4 to learn condition at a position where it intends to put its legs 3. In this case, if variations are limited in measured distance within the leg contact point range 6, it is judged that a portion in the measuring range is almost flat to allow the touching of the legs 3 on the ground. The distance measuring apparatus 4 is provided with a plurality of distance measuring sensors based on different measuring theory and a turbulence sensor for measuring turbulence and a weight is applied to output values of the distance measuring sensors according to reliability while a weight is applied to an output of the distance sensor according to a measured value of the turbulence sensor. Output values of the sensors are multiplied by the results to determine the final distance output value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、歩行用ロボットの
屋外等の外乱の影響が強く作用する環境において、障害
物等の環境物体に対する距離計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for an environmental object such as an obstacle in an environment such as an outdoor environment of a walking robot strongly affected by disturbance.

【0002】[0002]

【従来の技術】従来、歩行用ロボットに搭載されて、障
害物等の環境物体に対する距離計測を行なう距離計測装
置としては、例えば特開平4−110790号に記載さ
れたものがある。これは夜間に無人で室内を清掃する移
動ロボットの環境物体に対する距離測定方法に関するも
のであり、図8に示すようにロボット100の前面に取
付けた超音波センサ101で、前方の障害物や壁面等の
環境物体までの距離を検出する。この場合、超音波セン
サ1個では測定範囲が狭いため、複数個取り付けること
によって測定範囲を広げている。
2. Description of the Related Art Conventionally, as a distance measuring device mounted on a walking robot for measuring a distance to an environmental object such as an obstacle, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 4-110790. This relates to a method for measuring the distance to an environmental object of a mobile robot that cleans the room unattended at night. The ultrasonic sensor 101 attached to the front of the robot 100 as shown in FIG. Detect the distance to the environmental object. In this case, since the measurement range is narrow with one ultrasonic sensor, the measurement range is expanded by attaching a plurality of ultrasonic sensors.

【0003】ところで、上記のように複数個の超音波セ
ンサを用いると、それぞれのセンサから発信された超音
波が互いに干渉したり、1台の超音波センサから、直接
他の超音波センサに超音波が伝播したりすることによ
り、誤測される場合がある。
When a plurality of ultrasonic sensors are used as described above, ultrasonic waves transmitted from the respective sensors interfere with each other, or one ultrasonic sensor directly transmits ultrasonic waves to another ultrasonic sensor. The measurement may be erroneously performed due to propagation of sound waves.

【0004】上記清掃ロボットは、このような欠点を考
慮し、上述の超音波センサの欠点を補う工夫がなされて
いる。具体的には、清掃ロボットは、内部に清掃実施す
る部屋の地図情報を持っており、超音波センサ101で
の計測値が地図情報と合致しない時は、環境物体のスリ
ットを通したランプ102の反射光をオートフォーカス
TVカメラシステム103で計測し、超音波センサの誤
測を補正する。
[0004] In consideration of such a drawback, the cleaning robot has been devised to make up for the drawback of the ultrasonic sensor described above. Specifically, the cleaning robot has map information of the room to be cleaned inside, and when the measured value of the ultrasonic sensor 101 does not match the map information, the cleaning robot The reflected light is measured by the auto-focus TV camera system 103 to correct erroneous measurement of the ultrasonic sensor.

【0005】このように上記清掃ロボットは、超音波セ
ンサの誤測を前提としており、超音波センサが誤測した
と推定される時は、スリット光とオートフォーカス機構
を有する距離測定手段で誤測の補正を行なっている。
As described above, the cleaning robot is premised on erroneous measurement of the ultrasonic sensor, and when it is estimated that the ultrasonic sensor has erroneously measured, the erroneous measurement is performed by the distance measuring means having the slit light and the auto-focus mechanism. Is corrected.

【0006】[0006]

【発明が解決しようとする課題】上記室内清掃ロボット
に代表される従来の距離計測手法は、超音波センサの誤
測を前提にしているが、誤測の原因は複数の超音波セン
サ使用時の互いの干渉によることを想定しており、あく
まで外乱の影響の少ない屋内での使用を前提としてい
る。
The conventional distance measuring method represented by the above-mentioned indoor cleaning robot presupposes an erroneous measurement of the ultrasonic sensor, but the cause of the erroneous measurement is when a plurality of ultrasonic sensors are used. It is assumed that the interference is caused by mutual interference, and it is assumed that the device is used indoors, which is less affected by disturbance.

【0007】例えば超音波センサの計測値は、気温変化
に対して敏感に変動する。このため気温の変化を考慮す
る必要のある屋外では、計測値に大きな差がでる。スリ
ット光とオートフォーカスTVカメラも、検出精度に対
する照度の影響が大きく、屋外の日向では、屋内に比べ
て数倍明るいため誤差が大きく実用上問題があった。
For example, the measurement value of an ultrasonic sensor fluctuates sensitively to a change in temperature. For this reason, there is a large difference in the measured value outdoors when it is necessary to consider a change in temperature. The slit light and the autofocus TV camera also have a large effect on the detection accuracy due to the illuminance, and have a large error in outdoor sunlight and several times brighter than indoors.

【0008】また、上記環境に起因する誤差要因の他
に、機能要求に起因する誤差要因の問題もある。すなわ
ち、距離を計測する場合には、計測装置を計測対象に向
ける必要から一般にチルト機構を備えている。チルト角
度の大きさにより、計測精度が変化するにも拘らず、こ
の誤差を計測装置の出力に反映させて補償する手段、手
法がなく、誤差が大きくなり、この点も実用上問題があ
った。
[0008] In addition to the above error factors caused by the environment, there is also a problem of error factors caused by functional requirements. That is, when measuring a distance, a tilt mechanism is generally provided because it is necessary to point the measuring device at a measurement target. In spite of the fact that the measurement accuracy changes due to the magnitude of the tilt angle, there is no means or method for compensating the error by reflecting the error in the output of the measuring device, and the error increases, which also has a practical problem. .

【0009】本発明は上記の課題を解決するためになさ
れたもので、屋外等の外乱が強く作用する環境におい
て、環境変化に強く、信頼性の高い環境物体の距離計測
を行なうことができる距離計測装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a strong distance to environmental changes, such as outdoors, in an environment where strong disturbance acts. It is an object to provide a measuring device.

【0010】[0010]

【課題を解決するための手段】本発明に係る距離計測装
置は、計測原理の異なる複数の距離計測センサと、屋外
の距離計測を行なう上での外乱を測定する外乱センサ
と、前記距離計測センサの計測値から各距離計測センサ
の信頼性に関する重みを算出する第1の重み算出手段
と、前記外乱センサの計測値に応じて前記各距離計測セ
ンサの外乱に関する重みを算出する第2の重み算出手段
と、前記各距離計測センサの計測値と前記第1及び第2
の重み算出手段で求めた重みの一次結合により最終的な
距離計測値を求める演算手段とを具備したことを特徴と
する。
A distance measuring apparatus according to the present invention comprises a plurality of distance measuring sensors having different measuring principles, a disturbance sensor for measuring a disturbance in performing outdoor distance measurement, and the distance measuring sensor. First weight calculating means for calculating a weight relating to the reliability of each distance measuring sensor from the measured value of the second and second weight calculating for calculating a weight relating to the disturbance of each distance measuring sensor in accordance with the measured value of the disturbance sensor Means, the measured values of the distance measuring sensors and the first and second
And a calculating means for obtaining a final distance measurement value by a linear combination of the weights obtained by the weight calculating means.

【0011】(作用)演算装置では、外乱が距離計測セ
ンサ出力に及ぼす影響を計測装置と環境物体までの距離
を与えることにより、予め調べておき、これを例えばニ
ューラルネットワークのニューロ素子に記憶させてお
く。第1の重み算出手段は、複数のセンサの平均値か
ら、各々のセンサのばらつきを求め、そのばらつきに応
じて各センサの信頼性に関する重みを求める。また、第
2の重み算出手段は、計測された外乱から前記ニューロ
素子に記憶された情報を引き出し、外乱に関する適当な
重みを生成する。そして、演算手段は、異種の複数の距
離計測センサで計測された距離情報は、前記センサのば
らつきに応じた重みと、外乱に関する適当な重みとの算
術的な一次結合により、外乱の影響を補正し、かつ異種
の複数のセンサ出力の中で信頼性が高いものを採用した
最終的な距離情報を出力する。
(Operation) In the arithmetic unit, the influence of disturbance on the output of the distance measuring sensor is checked in advance by giving the distance between the measuring unit and the environmental object, and this is stored in, for example, a neural element of a neural network. deep. The first weight calculating means obtains a variation of each sensor from an average value of the plurality of sensors, and obtains a weight related to reliability of each sensor according to the variation. The second weight calculating means extracts information stored in the neuro element from the measured disturbance, and generates an appropriate weight related to the disturbance. The calculating means corrects the influence of the disturbance by arithmetically linearly combining the distance information measured by the plurality of different distance measuring sensors with a weight corresponding to the variation of the sensor and an appropriate weight relating to the disturbance. Then, it outputs final distance information using a highly reliable one of a plurality of different types of sensor outputs.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。 (第1実施形態)図1は、本発明を歩行ロボットの路面
距離計測に適用した例を示す斜視図である。図1におい
て、1は歩行ロボットで、ロボット本体2に例えば4つ
の脚3を設けている。また、ロボット本体2は、上部に
距離計測装置4を搭載していると共に、内部に外乱計測
用の外乱センサ5を搭載している。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a perspective view showing an example in which the present invention is applied to a road surface distance measurement of a walking robot. In FIG. 1, reference numeral 1 denotes a walking robot, and a robot body 2 is provided with, for example, four legs 3. The robot main body 2 has a distance measuring device 4 mounted thereon and a disturbance sensor 5 for measuring disturbance inside.

【0013】歩行ロボット1は、歩行する際に歩行の可
否、すなわち脚接地の可否を確認する必要があり、脚3
を着きたい位置の状態を知るために、脚3の大きさ程度
の範囲、すなわち脚接地点範囲6に対する距離を距離計
測装置4で計測する。この場合、脚接地点範囲6におけ
る計測距離のばらつきが小さければ、計測距離はほぼ平
らであるとし、脚3を接地できると判断する。
When the walking robot 1 walks, it is necessary to confirm whether or not it can walk, that is, whether or not the leg touches the ground.
In order to know the state of the position where the user wants to wear, the distance measurement device 4 measures the distance to the range of about the size of the leg 3, that is, the leg contact point range 6. In this case, if the variation of the measurement distance in the leg contact point range 6 is small, the measurement distance is assumed to be substantially flat, and it is determined that the leg 3 can be contacted.

【0014】上記距離計測装置4は、図2に示すように
構成される。距離を計測するセンサとして、CCDカメ
ラ11、超音波式距離センサ12、LED式距離センサ
13を用いている。これら種類の異なるセンサ11〜1
3は、レーザポインタ14と共に雲台15上に取付けら
れる。雲台15は、左右方向に回動するパン軸16、上
下方向に回動するチルト軸17からなっている。
The distance measuring device 4 is configured as shown in FIG. As a sensor for measuring the distance, a CCD camera 11, an ultrasonic distance sensor 12, and an LED distance sensor 13 are used. These types of different sensors 11 to 1
3 is mounted on a camera platform 15 together with a laser pointer 14. The camera platform 15 includes a pan shaft 16 that rotates in the left-right direction and a tilt shaft 17 that rotates in the vertical direction.

【0015】そして、上記CCDカメラ11、超音波式
距離センサ12、LED式距離センサ13により脚接地
点範囲6までの距離を測定する。この場合、CCDカメ
ラ11は、脚接地点範囲6に照射されたレーザポインタ
14の光源を撮影し、オートフォーカス機構で焦点を合
わせることにより、その距離を計測する。
The distance to the leg contact point range 6 is measured by the CCD camera 11, ultrasonic distance sensor 12, and LED distance sensor 13. In this case, the CCD camera 11 captures an image of the light source of the laser pointer 14 applied to the leg contact point range 6 and measures the distance by focusing using an autofocus mechanism.

【0016】一方、外乱を計測する外乱センサ5は、図
3に示すように、環境の明るさを計測する照度センサ2
1及び環境の気温を計測する温度(気温)センサ22か
らなり、また、センサのチルト角を計測するための基準
を求める傾斜計23を備えている。
On the other hand, as shown in FIG. 3, a disturbance sensor 5 for measuring disturbance is an illuminance sensor 2 for measuring the brightness of the environment.
1 and a temperature (air temperature) sensor 22 for measuring the ambient temperature, and an inclinometer 23 for obtaining a reference for measuring the tilt angle of the sensor.

【0017】次に距離計測値の演算を行なう演算装置の
処理アルゴリズムを図4により説明する。距離計測値の
演算を行なう演算装置は、演算部30,31,32,3
3からなっている。演算部30は、各方式のセンサの計
測値Lk (L1 ,L2 ,L3 )、すなわち、CCDカメ
ラ11の距離計測値L1 、超音波式距離センサ12の距
離計測値L2 、及びLED式距離センサ13の距離計測
値L3 と各センサ計測値L1 ,L2,L3 の平均値との
差を求め、その差の2乗を演算して各センサ計測値のば
らつきσk (σ1 ,σ2 ,σ3 )を求める。ただし、k
=1はCCDカメラ11、k=2は超音波式距離センサ
12、k=3はLED式距離センサ13の場合を意味す
る。
Next, the processing algorithm of the arithmetic unit for calculating the distance measurement value will be described with reference to FIG. The calculation device for calculating the distance measurement value includes calculation units 30, 31, 32, and 3
It consists of three. The calculation unit 30 calculates the measurement values L k (L 1 , L 2 , L 3 ) of the sensors of each system, that is, the distance measurement value L 1 of the CCD camera 11, the distance measurement value L 2 of the ultrasonic distance sensor 12, and the LED. The difference between the distance measurement value L3 of the distance sensor 13 and the average value of the sensor measurement values L1, L2, L3 is determined, the square of the difference is calculated, and the variation σ k1 , σ 2 , σ 3 ). Where k
= 1 means the case of the CCD camera 11, k = 2 means the case of the ultrasonic distance sensor 12, and k = 3 means the case of the LED type distance sensor 13.

【0018】演算部31は、上記各センサ計測値のばら
つきσk (σ1 ,σ2 ,σ3 )の逆数を求め、各センサ
の信頼性に関する重みWk (W1 ,W2 ,W3 )とす
る。演算部32は、詳細を後述するように各センサの外
乱に関する重みKk (K1,K2 ,K3 )を外乱センサ
の出力、すなわち外乱パラメータに従って求める。上記
1 は外乱パラメータに対するCCDカメラ11の重
み、K2 は外乱パラメータに対する超音波式距離センサ
12の重み、K3 は外乱パラメータに対するLED式距
離センサ13の重みである。
The calculation unit 31 calculates the reciprocal of the variation σ k1 , σ 2 , σ 3 ) of the measured values of the sensors, and weights W k (W 1 , W 2 , W 3 ) relating to the reliability of each sensor. ). The calculation unit 32 obtains the weight K k (K 1 , K 2 , K 3 ) related to the disturbance of each sensor according to the output of the disturbance sensor, that is, the disturbance parameter, as described in detail later. The K 1 is the weight of the CCD camera 11 to the disturbance parameter, K 2 is the weight of the ultrasonic distance sensor 12 to the disturbance parameter, K 3 is the weight of the LED distance sensors 13 to the disturbance parameter.

【0019】演算部33は、各方式のセンサの計測値L
k (L1 ,L2 ,L3 )について、上記演算部31から
の各センサの信頼性に関する重みWk (W1 ,W2 ,W
3 )と、演算部32からの各センサの外乱に関する重み
k (K1 ,K2 ,K3 )との算術的な一次結合によ
り、外乱の影響を補正し、かつ異種の複数センサ出力の
中で信頼性が高いものを採用して最終的な距離出力Lを
求める。すなわち、次式により最終的な距離出力Lを算
出する。
The arithmetic unit 33 calculates a measured value L of each type of sensor.
For k (L 1 , L 2 , L 3 ), the weight W k (W 1 , W 2 , W
3 ) and the arithmetic linear combination of the weights K k (K 1 , K 2 , K 3 ) relating to the disturbance of each sensor from the arithmetic unit 32, to correct the influence of the disturbance and to obtain the outputs of the different types of sensors. The final distance output L is obtained by adopting one having high reliability. That is, the final distance output L is calculated by the following equation.

【0020】L=(K111 +K222 +K3
33 )/(K11 +K22 +K33 ) 上記演算部32は、図5に示すように各センサの外乱パ
ラメータα、β、γに従って各センサの外乱に関する重
みKk (K1 ,K2 ,K3 )を算出する。上記αは照度
センサ21による太陽光量の強さに関する外乱パラメー
タ、βは温度センサ22による温度(気温)に関する外
乱パラメータ、γは傾斜計23によるチルト角に関する
外乱パラメータである。上記演算部32は、ニューラル
ネットワーク(NN)で構成され、ニューロは技術的に
公知である多層パーセプトロンで構成される。
L = (K 1 W 1 L 1 + K 2 W 2 L 2 + K 3
W 3 L 3) / (K 1 W 1 + K 2 W 2 + K 3 W 3) the arithmetic unit 32, the disturbance parameters of each sensor, as shown in FIG. 5 alpha, beta, weight for disturbance of the sensor according gamma K k (K 1 , K 2 , K 3 ) is calculated. Α is a disturbance parameter related to the intensity of sunlight by the illuminance sensor 21, β is a disturbance parameter related to the temperature (air temperature) by the temperature sensor 22, and γ is a disturbance parameter related to the tilt angle by the inclinometer 23. The arithmetic unit 32 is configured by a neural network (NN), and the neuro is configured by a multilayer perceptron known in the art.

【0021】上記演算部32のニューラルネットを学習
する上での構成を図6に示す。学習は、オフラインで各
センサから環境物体(路面)までの真値LR を与えて行
なう。真値LR が与えられると、演算部34が演算部3
3により処理された計測値Lとの2乗誤差Eを「E=
(L−LR2 /2」により求め、この誤差Eを最小に
するように、演算部32のニューラルネットのチューニ
ングを行なう。
FIG. 6 shows the configuration of the arithmetic unit 32 for learning the neural network. Learning is performed giving a true value L R offline from the sensors to ambient object (road surface). When the true value L R is given, the operation unit 34
The square error E with respect to the measurement value L processed by Eq.
(L-L R) determined by the 2/2 ", so that the error E is minimized, the tuning of the neural network computation unit 32.

【0022】上記のように本発明によれば、計測原理の
異なる複数のセンサの環境に対して精度の良い部分を生
かすことができ、また、各々のセンサの外乱に対する補
正を行なうことができる。従って、屋外等の外乱が強く
作用する環境において、環境変化に強く、信頼性の高い
環境物体の距離計測が可能となる。
As described above, according to the present invention, it is possible to make use of a high-accuracy portion for the environment of a plurality of sensors having different measurement principles, and to perform correction for disturbance of each sensor. Therefore, in an environment such as outdoors where a disturbance acts strongly, a distance measurement of an environmental object that is resistant to environmental changes and highly reliable can be performed.

【0023】(第2実施形態)次に本発明の第2実施形
態について説明する。図7(a),(b)は、本発明を
建設用ダンプトラック40に適用した場合の例を示した
ものである。同図(a)はトラック40の側面図、同図
(b)は正面図である。この第2実施形態は、ダンプト
ラック40の自動操縦を行なう上での障害物検出のため
の距離計測に適用したもので、トラック40の前面部に
距離計測装置4を設けている。鉱山の露天掘りを行なっ
ているような所でのダンプトラックの運用においては、
一般の交通と隔離されているため、自動化が容易であ
る。
(Second Embodiment) Next, a second embodiment of the present invention will be described. FIGS. 7A and 7B show an example in which the present invention is applied to a construction dump truck 40. FIG. 2A is a side view of the truck 40, and FIG. 1B is a front view. The second embodiment is applied to a distance measurement for detecting an obstacle in performing the automatic operation of the dump truck 40, and a distance measuring device 4 is provided on a front portion of the truck 40. In the operation of dump trucks in places where mining is open pit,
Because it is isolated from general traffic, automation is easy.

【0024】上記トラック40の前面部には、距離検出
のための異種のセンサとして、長距離計測が可能な超音
波式距離センサ12とレーザ式距離センサ18を搭載
し、また、外乱を計測するセンサとして、照度センサ2
1及び温度センサ22を搭載する。更に、上記トラック
40には、上記各センサ11,18,21,22から出
力される信号を処理する演算装置41が搭載される。こ
の演算装置41は、図4に示したアルゴリズムに従って
各センサ情報の処理を行なう。上記距離計測センサ(超
音波式距離センサ12及びレーザ式距離センサ18)と
外乱センサ(照度センサ21及び温度センサ22)の情
報は、演算装置41で処理され、誤差の少ない環境物体
までの距離が求められる。
On the front surface of the truck 40, an ultrasonic distance sensor 12 and a laser distance sensor 18 capable of measuring a long distance are mounted as heterogeneous sensors for distance detection, and a disturbance is measured. Illuminance sensor 2 as sensor
1 and a temperature sensor 22. Further, on the truck 40, an arithmetic unit 41 for processing signals output from the sensors 11, 18, 21, 22 is mounted. The arithmetic unit 41 processes each sensor information according to the algorithm shown in FIG. The information of the distance measurement sensors (the ultrasonic distance sensor 12 and the laser distance sensor 18) and the disturbance sensors (the illuminance sensor 21 and the temperature sensor 22) are processed by the arithmetic unit 41, and the distance to the environmental object having a small error is calculated. Desired.

【0025】上記トラック40は、走行中、本距離計測
装置でトラック進行方向の距離計測を行なう。障害物が
何もないときは、距離計測装置により計測される距離出
力値は最大値となる。そこで、トラック40の進行方向
に障害物、例えば人間42が現れると、超音波式距離セ
ンサ12及びレーザ式距離センサ18は、人間42まで
の距離を計測し、その計測値を演算装置41に出力す
る。演算装置41は、上記距離センサ12,18により
計測された距離情報に対し、外乱の補正を行なった後、
最も正しいと思われる人間42までの距離を出力する。
While the truck 40 is running, the distance measuring device measures the distance in the track traveling direction. When there is no obstacle, the distance output value measured by the distance measuring device becomes the maximum value. Therefore, when an obstacle, for example, a person 42 appears in the traveling direction of the track 40, the ultrasonic distance sensor 12 and the laser distance sensor 18 measure the distance to the person 42 and output the measured value to the arithmetic device 41. I do. The arithmetic unit 41 corrects the disturbance with respect to the distance information measured by the distance sensors 12 and 18,
The distance to the person 42 that seems to be the most correct is output.

【0026】トラック40の走行制御装置は、上記距離
計測装置で計測される距離情報に基づいて人間42に衝
突しないようにトラック40の速度、進行方向等を制御
する。
The traveling control device of the truck 40 controls the speed, the traveling direction and the like of the truck 40 based on the distance information measured by the distance measuring device so as not to collide with the person 42.

【0027】[0027]

【発明の効果】以上詳記したように本発明によれば、計
測原理の異なる複数のセンサの環境に対して精度の良い
部分を生かすことができ、また、各センサの外乱に対す
る補正を行なうことができる。従って、屋外等の外乱が
強く作用する環境において、環境変化に強く、信頼性の
高い環境物体の距離計測を行なうことができる。
As described above in detail, according to the present invention, it is possible to make use of a portion with high accuracy in the environment of a plurality of sensors having different measurement principles, and to perform correction for disturbance of each sensor. Can be. Therefore, in an environment such as outdoors where a disturbance acts strongly, it is possible to perform a distance measurement of an environmental object that is resistant to environmental changes and highly reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る距離計測装置を歩
行ロボットの路面距離計測に適用した場合の概念図。
FIG. 1 is a conceptual diagram of a case where a distance measuring device according to a first embodiment of the present invention is applied to measuring a road surface distance of a walking robot.

【図2】同実施形態における距離計測装置の構成図。FIG. 2 is a configuration diagram of a distance measuring device in the embodiment.

【図3】同実施形態における外乱センサの構成図。FIG. 3 is a configuration diagram of a disturbance sensor in the embodiment.

【図4】同実施形態におけるセンサ計測値演算装置の処
理アルゴリズムを示す図。
FIG. 4 is an exemplary view showing a processing algorithm of the sensor measurement value calculation device in the embodiment.

【図5】同実施形態における外乱パラメータに応じて各
センサの外乱に関する重みの計算を行なう演算部の入出
力信号関係を示す図。
FIG. 5 is a diagram showing input / output signal relationships of a calculation unit that calculates a weight related to a disturbance of each sensor according to a disturbance parameter in the embodiment.

【図6】同実施形態におけるニューロ学習時の構成図。FIG. 6 is a configuration diagram at the time of neuro learning in the embodiment.

【図7】本発明の第2実施形態に係るダンプトラックの
障害物検出用距離計測装置の構成図。
FIG. 7 is a configuration diagram of an obstacle detection distance measuring device for a dump truck according to a second embodiment of the present invention.

【図8】従来の室内無人清掃ロボットに実施した場合の
構成例を示す斜視図。
FIG. 8 is a perspective view showing a configuration example when implemented in a conventional indoor unmanned cleaning robot.

【符号の説明】[Explanation of symbols]

1 歩行ロボット 2 ロボット本体 3 脚 4 距離計測装置 5 外乱センサ 6 脚接地点範囲 10 超音波式距離センサ 11 CCDカメラ 12 超音波式距離センサ 13 LED式距離センサ 14 レーザポインタ 15 雲台 16 パン軸 17 チルト軸 21 照度センサ 22 温度センサ 23 傾斜計 31〜34 演算部 40 トラック 41 演算装置 42 人間 DESCRIPTION OF SYMBOLS 1 Walking robot 2 Robot main body 3 Leg 4 Distance measuring device 5 Disturbance sensor 6 Leg ground point range 10 Ultrasonic distance sensor 11 CCD camera 12 Ultrasonic distance sensor 13 LED distance sensor 14 Laser pointer 15 Pan head 16 Pan axis 17 Tilt axis 21 illuminance sensor 22 temperature sensor 23 inclinometer 31-34 arithmetic unit 40 truck 41 arithmetic unit 42 human

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測原理の異なる複数の距離計測センサ
と、 屋外の距離計測を行なう上での外乱を測定する外乱セン
サと、 前記距離計測センサの計測値から各距離計測センサの信
頼性に関する重みを算出する第1の重み算出手段と、 前記外乱センサの計測値に応じて前記各距離計測センサ
の外乱に関する重みを算出する第2の重み算出手段と、 前記各距離計測センサの計測値と前記第1及び第2の重
み算出手段で求めた重みの一次結合により最終的な距離
計測値を求める演算手段とを具備したことを特徴とする
距離計測装置。
1. A plurality of distance measurement sensors having different measurement principles, a disturbance sensor for measuring disturbance in performing outdoor distance measurement, and a weight relating to the reliability of each distance measurement sensor based on a measurement value of the distance measurement sensor. First weight calculation means for calculating the distance, second weight calculation means for calculating the weight of the distance measurement sensor relating to the disturbance in accordance with the measurement value of the disturbance sensor, And a calculating means for obtaining a final distance measurement value by a linear combination of the weights obtained by the first and second weight calculating means.
JP8214720A 1996-08-14 1996-08-14 Distance measuring apparatus Withdrawn JPH1062552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8214720A JPH1062552A (en) 1996-08-14 1996-08-14 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8214720A JPH1062552A (en) 1996-08-14 1996-08-14 Distance measuring apparatus

Publications (1)

Publication Number Publication Date
JPH1062552A true JPH1062552A (en) 1998-03-06

Family

ID=16660513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8214720A Withdrawn JPH1062552A (en) 1996-08-14 1996-08-14 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH1062552A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131017A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Apparatus and method of distance measurement
JP2012057962A (en) * 2010-09-06 2012-03-22 Sharp Corp Distance measurement device, non-contact pulse measurement device and electronic apparatus
JP2018503099A (en) * 2014-11-03 2018-02-01 大連融科儲能技術発展有限公司 Flow battery system charge state monitoring and measurement method, flow battery based on redundant design of SOC detection device, flow battery actual capacity determination method and device, flow battery AC side input / output characteristics estimation method and method system
WO2024111475A1 (en) * 2022-11-25 2024-05-30 ソニーグループ株式会社 Information processing apparatus, information processing method, and information processing program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131017A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Apparatus and method of distance measurement
JP2012057962A (en) * 2010-09-06 2012-03-22 Sharp Corp Distance measurement device, non-contact pulse measurement device and electronic apparatus
JP2018503099A (en) * 2014-11-03 2018-02-01 大連融科儲能技術発展有限公司 Flow battery system charge state monitoring and measurement method, flow battery based on redundant design of SOC detection device, flow battery actual capacity determination method and device, flow battery AC side input / output characteristics estimation method and method system
WO2024111475A1 (en) * 2022-11-25 2024-05-30 ソニーグループ株式会社 Information processing apparatus, information processing method, and information processing program

Similar Documents

Publication Publication Date Title
US8027515B2 (en) System and method for real-time calculating location
US11692811B2 (en) System and method of defining a path and scanning an environment
JP5642341B2 (en) Range measuring device
US6031606A (en) Process and device for rapid detection of the position of a target marking
KR101542498B1 (en) Robot cleaner and method for detecting position thereof
US7489255B2 (en) Self-position identification apparatus and self-position identification method
US20040158358A1 (en) Method of teaching traveling path to robot and robot having function of learning traveling path
CN108692701B (en) Mobile robot multi-sensor fusion positioning method based on particle filter
JP2002250607A (en) Object detection sensor
JPH02170205A (en) Visual navigation composed of light beam system and obstacle avoiding apparatus
JP2009031884A (en) Autonomous mobile body, map information creation method in autonomous mobile body and moving route specification method in autonomous mobile body
US5957984A (en) Method of determining the position of a landmark in the environment map of a self-propelled unit, the distance of the landmark from the unit being determined dynamically by the latter
US20210364296A1 (en) Positioning method, positioning apparatus, and computer-program product
CN115047869A (en) Method and device for determining motion parameters of autonomous mobile equipment
KR100965902B1 (en) Photoflight system
JP7275553B2 (en) MOBILE BODY, MOBILE BODY CONTROL METHOD AND PROGRAM
JPH1062552A (en) Distance measuring apparatus
JP4782816B2 (en) Sensor unit
Tatsis et al. Design and implementation of obstacle detection system for powered wheelchairs
Poppinga et al. A characterization of 3D sensors for response robots
CN112414407A (en) Positioning method, positioning device, computer equipment and storage medium
JP4425383B2 (en) Sensor unit
CN116721512B (en) Autonomous navigation robot environment perception control method and system
JPS61104202A (en) Optical displacement meter
JPH112524A (en) Incorrect measurement preventing method and device for measuring measurement station

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104