JPH1062032A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1062032A
JPH1062032A JP8218276A JP21827696A JPH1062032A JP H1062032 A JPH1062032 A JP H1062032A JP 8218276 A JP8218276 A JP 8218276A JP 21827696 A JP21827696 A JP 21827696A JP H1062032 A JPH1062032 A JP H1062032A
Authority
JP
Japan
Prior art keywords
refrigerant flow
refrigerant
flow path
flow passage
dehumidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8218276A
Other languages
Japanese (ja)
Inventor
Takeshi Kashiwakura
剛 柏倉
Eisuke Matsubara
栄介 松原
Susumu Hamada
進 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8218276A priority Critical patent/JPH1062032A/en
Publication of JPH1062032A publication Critical patent/JPH1062032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the flowing noise of the refrigerant generated in a dehumidifying throttling device during the dehumidification while deterioration of the performance in the cooling operation or heating operation by forming a sub refrigerant flow passage in which the refrigerant is distributed to the dehumidifying throttling device is formed on a valve disk in the vertical direction to provide the gas-liquid separating function of the refrigerant flow. SOLUTION: When a solenoid coil 20 is energized during the dehumidification, a plunger 25 having a valve disk 24 is moved in a valve body 23 by the attraction of a suction element 21 to close a main refrigerant flow passage 27. The refrigerant passes through the high pressure side refrigerant flow passage 31 from a dehumidification control valve inlet piping 32, flows into a sub refrigerant flow passage 28 and a sub refrigerant flow passage 29, enters a sub refrigerant flow passage 30, passes through a low pressure side refrigerant flow passage 33, and flows out of an outlet piping 34. When the sub refrigerant flow passage 30 is vertically opened in the valve disk 24 and the refrigerant flows into the dehumidification control valve in a gas-liquid two-phase flow, the gas refrigerant and the liquid refrigerant flows in an upper layer and a lower layer except the vertical piping respectively, and the gas refrigerant flows in the sub refrigerant flow passage 28 and the liquid refrigerant flows in the sub refrigerant flow passage 29 in a gas-liquid separated manner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍サイクルを用い
て室温の低下を防ぎながら除湿を行なう除湿が可能な空
気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of dehumidifying by using a refrigeration cycle while preventing a decrease in room temperature.

【0002】[0002]

【従来の技術】冷凍サイクルで除湿運転を行なう空気調
和機の一従来例として、特開平2−183776号公報
のような例がある。この公報には、圧縮機、室外熱交換
器、絞り装置、室内熱交換器等を順次冷媒配管で接続
し、さらに室内熱交換器を二分割してこれらの間に除湿
運転用の除湿絞り装置を設けたサイクル構成が開示され
ている。そして除湿運転時には、冷媒を除湿絞り装置に
流すことにより、二分割した室内熱交換器のうち上流側
を凝縮器、下流側を蒸発器とし、蒸発器で冷却,除湿す
るとともに凝縮器で加熱して、湿度をあまり下げずに湿
度を下げる除湿運転を可能にしている。
2. Description of the Related Art A conventional example of an air conditioner that performs a dehumidifying operation in a refrigeration cycle is disclosed in Japanese Patent Application Laid-Open No. 2-183776. In this publication, a compressor, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and the like are sequentially connected by a refrigerant pipe, and the indoor heat exchanger is further divided into two parts, and a dehumidifying expansion device for a dehumidifying operation is provided therebetween. Is disclosed. During the dehumidification operation, the refrigerant flows through the dehumidification expansion device, so that the upstream side of the two-part indoor heat exchanger is a condenser and the downstream side is an evaporator, and is cooled and dehumidified by the evaporator and heated by the condenser. Therefore, it is possible to perform a dehumidifying operation for lowering the humidity without reducing the humidity so much.

【0003】ところで一般に、絞り装置のところでは、
絞り作用にともない大きな冷媒流動音(連続音及び)不
連続音が発生し、この冷媒流動音(特に不連続音)の大
きさは絞り装置に流入する高圧側冷媒の流動様式に大き
く影響される。中でも、気体と液の二相流状態で砲弾型
気泡と液が交互に現れるスラグ流やプラグ流のときに、
冷媒流動音が非常に大きくなることが知られている。こ
こで、連続流動音は、主に液冷媒が絞り装置の絞り部で
減圧膨張して高速の気液二相流になることによって生じ
るものであり、また不連続流動音は、主に圧縮性流体で
ある気体冷媒と非圧縮性流体である液冷媒とが交互に絞
り装置の狭い流路を通過するときに生じる大きな圧力変
動によって生じるものである。
By the way, in general, at the aperture device,
A large refrigerant flow sound (continuous sound and discontinuous sound) is generated due to the throttling action, and the magnitude of the refrigerant flow sound (particularly, discontinuous sound) is greatly affected by the flow pattern of the high-pressure side refrigerant flowing into the expansion device. . Above all, in the case of slug flow or plug flow in which shell-shaped bubbles and liquid alternately appear in a two-phase flow of gas and liquid,
It is known that the refrigerant flow noise becomes very loud. Here, the continuous flow noise is mainly caused by the liquid refrigerant being decompressed and expanded at the throttle portion of the expansion device to form a high-speed gas-liquid two-phase flow, and the discontinuous flow noise is mainly generated by the compressibility. This is caused by a large pressure fluctuation that occurs when the gaseous refrigerant as the fluid and the liquid refrigerant as the incompressible fluid alternately pass through the narrow flow path of the expansion device.

【0004】こうした冷媒流動音の低減の一従来例とし
て、特開昭57−129371号公報がある。この公報
は、冷房運転や暖房運転の時に用いる室外熱交換器と室
内熱交換器の間に設けた絞り装置での冷媒流動音低減に
関するものであり、絞り装置である膨張弁の上流側(高
圧側)に固定オリフィスを設け、膨張弁を通過する際の
冷媒中の気泡を多くし、またその分布を均一化して騒音
レベルの低下を図っている。
[0004] Japanese Patent Application Laid-Open (JP-A) No. 57-129371 discloses a conventional example of such a reduction in refrigerant flow noise. This publication relates to reduction of refrigerant flow noise in a throttle device provided between an outdoor heat exchanger and an indoor heat exchanger used in a cooling operation or a heating operation. A fixed orifice is provided on the side) to increase the number of air bubbles in the refrigerant when passing through the expansion valve, and to make the distribution uniform to reduce the noise level.

【0005】[0005]

【発明が解決しようとする課題】ここで特開平2−18
3776号公報のような冷凍サイクルでは、除湿運転時
に、除湿絞り装置上流側の凝縮器となる室内熱交換器の
出口が気液二相流状態になると除湿絞り装置のところで
大きな冷媒流動音が発生し、除湿絞り装置が室内側にあ
るため、人に不快感を与えることになる。この問題に対
して、従来は制振材や遮音材を設けることにより騒音低
減を図っていた。しかし最近は快適性に対する要求が非
常に高くなり、騒音に対してさらに低減することが要求
されている。
SUMMARY OF THE INVENTION Here, Japanese Patent Laid-Open No. 2-18 / 1990
In the refrigerating cycle as disclosed in Japanese Patent No. 3776, when the outlet of the indoor heat exchanger serving as the condenser on the upstream side of the dehumidifying expansion device enters a gas-liquid two-phase flow state during the dehumidifying operation, a large refrigerant flow noise is generated at the dehumidifying expansion device. However, since the dehumidifying squeezing device is located on the indoor side, a person is uncomfortable. To solve this problem, noise reduction has conventionally been achieved by providing a vibration damping material or a sound insulating material. However, recently, the demand for comfort has become extremely high, and there is a demand for further reduction in noise.

【0006】また特開昭57−129371号公報のよ
うな絞り装置の上流側にオリフィスを設けるような構成
を特開平2−183776号公報のような除湿運転を行
なう冷凍サイクルの除湿絞り装置に適用すると、冷房運
転あるいは暖房運転で、オリフィスが冷媒流の流通抵抗
となって、性能低下を引き起こすことになる。
A configuration in which an orifice is provided upstream of the expansion device as disclosed in Japanese Patent Application Laid-Open No. 57-129371 is applied to a dehumidification expansion device of a refrigeration cycle which performs a dehumidification operation as disclosed in Japanese Patent Application Laid-Open No. 2-183776. Then, in the cooling operation or the heating operation, the orifice becomes a flow resistance of the refrigerant flow, which causes a deterioration in performance.

【0007】本発明の目的は、特に冷凍サイクルにより
室温の低下を防ぎながら除湿を行なう除湿運転が可能な
空気調和機で、従来技術の問題点を解決し、冷房運転あ
るいは暖房運転での性能低下を防ぎつつ、除湿運転時に
除湿絞り装置で発生する冷媒流動音の低減できる空気調
和機を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner capable of dehumidifying operation in which dehumidification is performed while preventing a decrease in room temperature by a refrigeration cycle. It is an object of the present invention to provide an air conditioner capable of reducing refrigerant flow noise generated in a dehumidifying expansion device during a dehumidifying operation while preventing the occurrence of a dehumidifying operation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和機は、圧縮機、熱源側熱交換器、
利用側熱交換器を備え、さらに利用側熱交換器を熱的に
二分割してその間に除湿運転時に使用する除湿絞り装置
を設け、除湿運転時には熱的に二分割された利用側熱交
換器の上流側が凝縮器、下流側が蒸発器になって除湿を
行なうように冷凍サイクルを構成し、さらに前記絞り装
置として、弁本体内に設けられて流通させる高圧側冷媒
流路と低圧側冷媒流路、及び前記高圧側冷媒流路と前記
低圧側冷媒流路とを結ぶ主冷媒流路を形成するととも
に、前記主冷媒流路を通過する冷媒流量を調節するため
に前記主冷媒流路を開閉するために使用する前記主冷媒
流路内を往復運動可能な弁体を備え、かつ前記弁体内に
冷媒を前記高圧側冷媒流路から前記低圧側冷媒流路に流
通させるための副冷媒流路が前記高圧側冷媒流路側の入
口孔が前記弁体の上側及び下側に設けられている除湿制
御弁を使用していることを特徴としている。
Means for Solving the Problems To achieve the above object, an air conditioner of the present invention comprises a compressor, a heat source side heat exchanger,
A use-side heat exchanger that is provided with a use-side heat exchanger, and is further provided with a dehumidifying expansion device that is used during dehumidification operation while thermally dividing the use-side heat exchanger into two parts. A refrigeration cycle is configured such that the upstream side of the condenser is a condenser and the downstream side is an evaporator to perform dehumidification. Further, as the expansion device, a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path provided in a valve body and circulated. And forming a main refrigerant flow path connecting the high pressure side refrigerant flow path and the low pressure side refrigerant flow path, and opening and closing the main refrigerant flow path to adjust the flow rate of the refrigerant passing through the main refrigerant flow path A sub-refrigerant flow path for allowing the refrigerant to flow from the high-pressure side refrigerant flow path to the low-pressure side refrigerant flow path is provided with a valve element capable of reciprocating in the main refrigerant flow path used for The inlet hole on the high pressure side refrigerant flow path side is above the valve body. And it is characterized by using the dehumidification control valve is provided on the lower side.

【0009】このように構成された空気調和機で、除湿
絞り装置として用いられる除湿制御弁で、高圧側冷媒流
路と低圧側冷媒流路とを結ぶ主冷媒流路の他に、弁体を
貫通し、冷媒を高圧側冷媒流路と低圧側冷媒流路とを流
通させる副冷媒流路を高圧側冷媒流路側の入口孔が弁体
の上側及び下側に設けるため、気液二相流状態で冷媒流
が除湿制御弁に流入した場合、気液分離機能を有し、弁
体の上側入口孔からはガス冷媒が、また弁体の下側入口
孔からは液冷媒がながれ、各々冷媒流路を確保できるた
め、絞りに気液二相流状態で流入することが防げ、冷媒
気液二相流が原因で発生する冷媒流動音を低減すること
ができる。
In the air conditioner configured as described above, a dehumidification control valve used as a dehumidification expansion device includes a valve element in addition to a main refrigerant flow path connecting a high pressure side refrigerant flow path and a low pressure side refrigerant flow path. Since the inlet holes on the high pressure side refrigerant flow path side are provided above and below the valve body, a sub-refrigerant flow path through which the refrigerant flows through the high pressure side refrigerant flow path and the low pressure side refrigerant flow path is provided. When the refrigerant flow flows into the dehumidification control valve in this state, it has a gas-liquid separation function, and gas refrigerant flows from the upper inlet hole of the valve body, and liquid refrigerant flows from the lower inlet hole of the valve body. Since the flow path can be secured, it is possible to prevent the gas from flowing into the throttle in a gas-liquid two-phase flow state, and it is possible to reduce the refrigerant flow noise generated due to the refrigerant gas-liquid two-phase flow.

【0010】さらに、除湿制御弁の副冷媒流路では流路
の連続的な形状変化により、段階的に減圧がされ、冷媒
流の持つ運動エネルギを消散させ、加振力が低減できる
ため、冷媒流動音の低減を図ることができる。
Further, in the sub-refrigerant flow path of the dehumidification control valve, the pressure is reduced stepwise by a continuous shape change of the flow path, the kinetic energy of the refrigerant flow is dissipated, and the exciting force can be reduced. Flow noise can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を、建家
に取り付ける空気調和機を想定して、図1及び図2によ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. 1 and 2 assuming an air conditioner to be attached to a building.

【0012】図1は本発明の実施例に関係する冷凍サイ
クルを示す系統図であり、圧縮機1、冷房運転や暖房運
転などの運転状態を切り換える四方弁2、室外熱交換器
3、冷房運転や暖房運転などのときに冷媒量を調節する
主絞り装置(膨張弁)4、熱的に二分割された室内熱交
換器5a,5b、室内熱交換器5a,5bとの間にこれ
らと直列に設けた除湿絞り装置である除湿制御弁6、圧
縮機1への冷媒の液戻りを防止するためのアキュムレー
タ7、室外熱交換器3へ送風するための室外ファン8、
室内熱交換器5a及び5bに送風するための室内ファン
9で構成されている。
FIG. 1 is a system diagram showing a refrigeration cycle according to an embodiment of the present invention, and includes a compressor 1, a four-way valve 2 for switching operation states such as a cooling operation and a heating operation, an outdoor heat exchanger 3, and a cooling operation. Throttle device (expansion valve) 4 for adjusting the amount of refrigerant during heating or heating operation, and indoor heat exchangers 5a, 5b, which are thermally divided into two, and indoor heat exchangers 5a, 5b. A dehumidification control valve 6 which is a dehumidification expansion device provided in the air conditioner; an accumulator 7 for preventing refrigerant from returning to the compressor 1; an outdoor fan 8 for blowing air to the outdoor heat exchanger 3;
It comprises an indoor fan 9 for sending air to the indoor heat exchangers 5a and 5b.

【0013】図2は、図1の冷凍サイクルでの説明で述
べた除湿絞り装置6である除湿運転時に絞り作用を行な
う除湿制御弁の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of the dehumidification control valve which performs the throttling operation during the dehumidification operation, which is the dehumidification expansion device 6 described in the description of the refrigeration cycle of FIG.

【0014】この図で弁本体23は、除湿絞りを行なう
ための弁体24と弁体24の取り付けられているプラン
ジャ25、弁体24を稼動させるための電磁コイル2
0、吸引子21、スプリング22、ガイド26で構成さ
れている。冷房運転や暖房運転時には電磁コイル20に
通電はせず冷媒は除湿制御弁入口配管31から高圧側冷
媒流路30に流入し、主冷媒流路27を通過し低圧側冷
媒流路33を通過して出口配管34から流出する。
In this figure, a valve body 23 includes a valve element 24 for performing dehumidifying throttle, a plunger 25 to which the valve element 24 is attached, and an electromagnetic coil 2 for operating the valve element 24.
0, a suction element 21, a spring 22, and a guide 26. During the cooling operation or the heating operation, the electromagnetic coil 20 is not energized, and the refrigerant flows from the dehumidification control valve inlet pipe 31 into the high pressure side refrigerant flow path 30, passes through the main refrigerant flow path 27, and passes through the low pressure side refrigerant flow path 33. Out of the outlet pipe 34.

【0015】図3は図1の冷凍サイクルでの説明で述べ
た除湿絞り装置6である除湿運転時に絞り作用を行なう
除湿制御弁の除湿運転時の構造を示す断面図である。こ
の図の基本構造は図2に示した除湿制御弁と同様で冷媒
流路部の拡大図である。
FIG. 3 is a sectional view showing the structure of the dehumidification control valve, which is the dehumidification expansion device 6 described in the description of the refrigeration cycle in FIG. The basic structure of this figure is the same as that of the dehumidification control valve shown in FIG.

【0016】除湿運転時に電磁コイル20に通電するこ
とで吸引子21が稼動し、吸引子21の吸引力で弁体2
4を有するプランジャ25が弁本体23内で移動する。
その結果、主冷媒流路27が閉まる。冷媒は除湿制御弁
入口配管32から高圧側冷媒流路31を通過し副冷媒流
路(上側横孔)28、副冷媒流路(下側横孔)29へ流
入し副冷媒流路(縦孔)30に入り低圧側冷媒流路33
を通過して出口配管34より流出される。このとき、弁
体24に副冷媒流路を上下に開けることにより冷媒が除
湿制御弁に気液二相流で流入した場合、一般に垂直配管
以外では上層にガス冷媒35、下層に液冷媒36が流れ
るため副冷媒流路(上側横孔)28には主としてガス冷
媒35、副冷媒流路(下側横孔)29には主として液冷
媒36と気液分離して冷媒を流すことが可能になる。ま
た、気液分離機能は、入口配管32及び少なくとも高圧
側冷媒流路31が水平位置に設置されるとき最も効果が
大となる。
When the electromagnetic coil 20 is energized during the dehumidifying operation, the suction element 21 operates, and the suction force of the suction element 21 causes the valve body 2 to move.
A plunger 25 having a 4 moves within the valve body 23.
As a result, the main refrigerant passage 27 is closed. The refrigerant passes through the high-pressure side refrigerant flow path 31 from the dehumidification control valve inlet pipe 32 and flows into the sub refrigerant flow path (upper horizontal hole) 28 and the sub refrigerant flow path (lower horizontal hole) 29 to flow into the sub refrigerant flow path (vertical hole). ) 30 and the low pressure side refrigerant flow path 33
Through the outlet pipe 34. At this time, when the refrigerant flows into the dehumidification control valve in a gas-liquid two-phase flow by opening the sub-refrigerant passage up and down in the valve element 24, generally, the gas refrigerant 35 is in the upper layer and the liquid refrigerant 36 is in the lower layer except for the vertical piping. Because of the flow, the gas refrigerant 35 mainly flows into the sub-refrigerant flow path (upper side hole) 28, and the liquid refrigerant 36 can flow through the sub-refrigerant flow path (lower side hole) 29 mainly with the liquid refrigerant 36. . The gas-liquid separation function is most effective when the inlet pipe 32 and at least the high-pressure refrigerant flow path 31 are installed in a horizontal position.

【0017】以上のサイクル構成(図1)及び除湿制御
弁構造(図2,図3)より冷房運転時には、主絞り装置
(膨張弁)4の内部流路の開口面積を狭くし、除湿絞り
装置6を開く。その結果、冷媒は図1中の実線矢印で示
されるように、圧縮機1→四方弁2→室外熱交換器3→
主絞り装置(膨張弁)4→室内熱交換器5a→除湿絞り
装置6→室内熱交換器5b→四方弁2→アキュムレータ
4→圧縮機1の順に循環させ、室外熱交換器3を凝縮
器、室内熱交換器5a及び5bを蒸発器として室内を冷
房する。暖房運転時には、冷房運転で四方弁1を切り換
えることにより、冷媒を点線矢印で示すように、圧縮機
1→四方弁2→室内熱交換器5b→絞り装置6→室内熱
交換器5a→主絞り装置(膨張弁)4→室外熱交換器3
→四方弁2→アキュムレータ7→圧縮機1の順に循環さ
せ、室外熱交換器3を蒸発器、室内熱交換器5a及び5
bを凝縮器として室内を暖房する。
According to the above-described cycle configuration (FIG. 1) and the dehumidification control valve structure (FIGS. 2 and 3), the opening area of the internal flow path of the main expansion device (expansion valve) 4 is reduced during cooling operation. Open 6. As a result, the refrigerant flows from the compressor 1 to the four-way valve 2 to the outdoor heat exchanger 3 as shown by the solid arrow in FIG.
The main throttle device (expansion valve) 4 → the indoor heat exchanger 5a → the dehumidifying throttle device 6 → the indoor heat exchanger 5b → the four-way valve 2 → the accumulator 4 → the compressor 1 are circulated in this order, and the outdoor heat exchanger 3 is The room is cooled using the indoor heat exchangers 5a and 5b as evaporators. During the heating operation, the refrigerant is switched by switching the four-way valve 1 in the cooling operation, so that the refrigerant flows from the compressor 1 to the four-way valve 2 → the indoor heat exchanger 5 b → the expansion device 6 → the indoor heat exchanger 5 a → the main throttle as indicated by the dotted arrow. Equipment (expansion valve) 4 → outdoor heat exchanger 3
The four-way valve 2 → the accumulator 7 → the compressor 1 are circulated in this order, and the outdoor heat exchanger 3 is turned into an evaporator and indoor heat exchangers 5a and 5
The room is heated using b as a condenser.

【0018】除湿運転時には、四方弁2を冷房運転と同
様に切り換え、主絞り装置(膨張弁)4を開き除湿絞り
装置6を閉じる。この時、冷媒は除湿絞り装置6内の主
冷媒流路が塞がれ副冷媒流路のみの流路となり冷媒は副
冷媒流路を通過するときに減圧される。その結果、冷媒
は図1中の1点鎖線矢印で示されるように圧縮機1→四
方弁2→室外熱交換器3→主絞り装置(膨張弁)4→室
内熱交換器5a→除湿絞り装置6→室内熱交換器5b→
四方弁2→アキュムレータ4→圧縮機1の順に循環さ
せ、除湿絞り装置6としての除湿制御弁の絞り作用によ
り、室外熱交換器3を上流側の凝縮器、室内熱交換器5
aを下流側の凝縮器、室内熱交換器5bを蒸発器とす
る。そして室内熱交換器5bで室内空気の冷却,除湿を
行なうとともに室内熱交換器5aで空気を加熱すること
により、室温の低下を防ぎながら除湿する除湿運転を行
なうことができる。
During the dehumidifying operation, the four-way valve 2 is switched in the same manner as in the cooling operation, the main expansion device (expansion valve) 4 is opened, and the dehumidification expansion device 6 is closed. At this time, the main refrigerant flow path in the dehumidifying expansion device 6 is closed, and the refrigerant becomes a flow path including only the sub-refrigerant flow path, and the refrigerant is depressurized when passing through the sub-refrigerant flow path. As a result, the refrigerant flows into the compressor 1 → the four-way valve 2 → the outdoor heat exchanger 3 → the main throttle device (expansion valve) 4 → the indoor heat exchanger 5a → the dehumidifying throttle device as shown by the one-dot chain line arrow in FIG. 6 → Indoor heat exchanger 5b →
The four-way valve 2 → the accumulator 4 → the compressor 1 are circulated in this order, and the throttle operation of the dehumidification control valve as the dehumidification throttle device 6 causes the outdoor heat exchanger 3 to be connected to the upstream condenser and the indoor heat exchanger 5.
a is a condenser on the downstream side, and the indoor heat exchanger 5b is an evaporator. By cooling and dehumidifying the indoor air with the indoor heat exchanger 5b and heating the air with the indoor heat exchanger 5a, a dehumidifying operation of dehumidifying while preventing a decrease in room temperature can be performed.

【0019】なおこの場合、室外熱交換器3での凝縮能
力あるいは圧縮機1の能力を変えることにより、室内熱
交換器5aでの凝縮能力、即ち放熱力を変えて室内ファ
ン9による吹出し空気温度を冷房気味から暖房気味の広
い範囲にわたって制御することができる。また室内熱交
換器5aと5bは前後に並べて室内ファン9により風を
室内熱交換器5bから5aに流しても良く、あるいは上
下に並べて室内ファン9により風を室内熱交換器5aと
5bに並列に流しても良い。
In this case, the condensing capacity in the outdoor heat exchanger 3 or the capacity of the compressor 1 is changed to change the condensing capacity in the indoor heat exchanger 5a, that is, the radiating power, so that the temperature of the air blown out by the indoor fan 9 is changed. Can be controlled over a wide range from cooling to heating. The indoor heat exchangers 5a and 5b may be arranged in front and rear, and the wind may flow from the indoor heat exchangers 5b to 5a by the indoor fan 9, or the wind may be arranged vertically and the indoor heat exchangers 5a and 5b parallel the wind to the indoor heat exchangers 5a and 5b. You may pour it.

【0020】ここで除湿運転で、室内外の温湿度条件、
圧縮機やファンの運転条件などによっては除湿絞り装置
6の入口で冷媒流が気液二相流状態になり、さらに場合
によっては、この気液二相流は砲弾型の気泡が液流中に
断続的に流入するスラグ流やプラグ流になることがあ
る。また上部に気相、下部に液相と二相になった層状流
や波状流といった流れとなることもある。このような気
液二相流の状態で冷媒が除湿絞り装置6に流入すると、
流れの一部に気液両相が断続的に流れる箇所が存在する
ことがあり、そこで間欠的に流動音が発生する。この間
欠音は耳障りな音となる。そして除湿絞り装置6が室内
側にあるため、室内の人に不快感を与えることになる。
しかし本発明によれば気液二相流の場合で、二つの冷媒
流路を用いることにより、冷媒流の分散化をすることで
加振力となる冷媒の持つ運動量、運動エネルギの消散を
図る。また気液分離を行なうことで、液冷媒の流路を確
保し、気相による絞りの閉塞を防ぐ。これらの結果、気
液二相流により発生する、冷媒流動音を低減することが
できる。
Here, in the dehumidifying operation, indoor and outdoor temperature and humidity conditions,
Depending on the operating conditions of the compressor and the fan, the refrigerant flow is in a gas-liquid two-phase flow state at the inlet of the dehumidifying expansion device 6, and in some cases, this gas-liquid two-phase flow is such that shell-shaped bubbles are generated in the liquid flow. Intermittent slag flow or plug flow may occur. In addition, the flow may be a laminar flow or a wavy flow in which a gas phase is formed in the upper part and a liquid phase is formed in the lower part. When the refrigerant flows into the dehumidifying expansion device 6 in such a gas-liquid two-phase flow state,
There may be a part of the flow where a gas-liquid phase intermittently flows, where intermittent flow noise is generated. This intermittent sound is a harsh sound. Since the dehumidifying squeezing device 6 is located on the indoor side, the person in the room feels uncomfortable.
However, according to the present invention, in the case of a gas-liquid two-phase flow, the use of two refrigerant flow paths disperses the refrigerant flow, thereby dissipating the momentum and kinetic energy of the refrigerant serving as an exciting force. . Further, by performing gas-liquid separation, a flow path for the liquid refrigerant is secured, and the restriction of the throttle by the gas phase is prevented. As a result, the refrigerant flow noise generated by the gas-liquid two-phase flow can be reduced.

【0021】本実施例では、除湿制御弁の弁体の駆動装
置として、電磁コイル、吸引子、スプリングを用いたも
ので示したが、電磁モータを使用しても、機械的に駆動
されるものでも、また感温筒を用いた圧力制御によるも
のでも、どの様な駆動方法でも本発明の効果が適応でき
ることは明らかである。
In this embodiment, an electromagnetic coil, a suction element, and a spring are used as a device for driving the valve element of the dehumidification control valve. However, even if an electromagnetic motor is used, the device is driven mechanically. However, it is apparent that the effects of the present invention can be applied to any driving method, even by pressure control using a temperature-sensitive cylinder.

【0022】これまでは冷房,暖房,除湿の三つの運転
状態ができる冷凍サイクルについて説明してきたが、こ
れに限るものではなく他の冷凍サイクルについてもこれ
までに説明してきた効果は適用できる。例えば図1で、
四方弁2を取り、この位置に圧縮機1とアキュムレータ
7を、室内熱交換器5b、アキュムレータ7、圧縮機
1、室外熱交換器3が直列になるように接続すると(図
示省略)、この場合には、冷房運転と冷房サイクルでの
除湿運転が可能な冷凍サイクルとなり、除湿運転で、図
2,図3の実施例を適用して、同様に除湿絞り装置のと
ころで発生する冷媒流動音を低減することができる。ま
た、図1で、四方弁2を取り、この位置に圧縮機1とア
キュムレータ7を、室外熱交換器3、アキュムレータ
7、圧縮機1、室内熱交換器5b、が直列になるように
接続すると(図示省略)、この場合には、暖房運転と暖
房サイクルでの除湿運転が可能な冷凍サイクルとなり、
除湿運転で、図2,図3の実施例を適用して、同様に除
湿絞り装置のところで発生する冷媒流動音を低減するこ
とができる。
Although the refrigeration cycle in which three operation states of cooling, heating and dehumidification can be performed has been described above, the present invention is not limited to this, and the effects described above can be applied to other refrigeration cycles. For example, in FIG.
If the four-way valve 2 is taken and the compressor 1 and the accumulator 7 are connected to this position so that the indoor heat exchanger 5b, the accumulator 7, the compressor 1, and the outdoor heat exchanger 3 are connected in series (not shown), in this case, In the refrigeration cycle, a cooling operation and a dehumidification operation in a cooling cycle are possible. In the dehumidification operation, the refrigerant flow noise generated at the dehumidifying expansion device is similarly reduced by applying the embodiment of FIGS. can do. In FIG. 1, the four-way valve 2 is taken, and the compressor 1 and the accumulator 7 are connected to this position so that the outdoor heat exchanger 3, the accumulator 7, the compressor 1, and the indoor heat exchanger 5b are connected in series. (Not shown), in this case, a refrigeration cycle capable of performing the heating operation and the dehumidifying operation in the heating cycle,
In the dehumidifying operation, the embodiment of FIGS. 2 and 3 can be applied to similarly reduce the refrigerant flow noise generated at the dehumidifying expansion device.

【0023】なお、図1のサイクル構成で、主絞り装置
に膨張弁をおいてきたが膨張弁のかわりに毛細管(キャ
ピラリチューブ)と二方弁を並列につなぐことにより
(図示省略)冷房運転及び暖房運転時には二方弁を閉じ
毛細管に冷媒を流し減圧させ、除湿運転時には二方弁を
開け冷媒を二方弁に流すことによりこの部分での減圧作
用はなく室内熱交換器5aを凝縮器として機能させるこ
とができるため図2,図3の実施例を適用して、同様に
除湿絞り装置のところで発生する冷媒流動音を低減する
ことができる。また、アキュムレータは必ずしも必要で
なく、使用する圧縮機の種類あるいは主絞り装置の種類
や制御方法によってはアキュムレータ無の冷凍サイクル
構成とすることができる。
In the cycle configuration shown in FIG. 1, an expansion valve is provided in the main throttle device, but instead of the expansion valve, a capillary tube (capillary tube) and a two-way valve are connected in parallel (not shown) for cooling operation and During the heating operation, the two-way valve is closed to flow the refrigerant through the capillary tube to reduce the pressure, and during the dehumidification operation, the two-way valve is opened to allow the refrigerant to flow through the two-way valve. Since it can function, the refrigerant flow noise generated at the dehumidifying expansion device can be similarly reduced by applying the embodiment of FIGS. Further, an accumulator is not always necessary, and a refrigeration cycle configuration without an accumulator can be used depending on the type of compressor used, the type of main throttle device, and the control method.

【0024】また、これまでは冷凍サイクル内を流れる
冷媒の種類については特に触れなかったが、空気調和機
でよく使われているHCFC22等の単一冷媒を想定し
て説明してきた。しかし、オゾン層破壊や地球温暖化の
点からHCFC22に代わる代替冷媒の一つである混合
冷媒の場合でも、気液二相冷媒流が絞りに流入したと
き、間欠的及び連続的な冷媒流動音の発生が考えられる
が、これまで述べたことと同様に、本発明の実施例を適
用することで、冷媒流動音の低減を図れることは明らか
である。
Although the type of the refrigerant flowing in the refrigeration cycle has not been particularly described so far, the description has been made on the assumption that a single refrigerant such as the HCFC22 commonly used in an air conditioner is used. However, even in the case of a mixed refrigerant, which is one of the alternative refrigerants to replace the HCFC22 in terms of ozone layer depletion and global warming, when the gas-liquid two-phase refrigerant flows into the throttle, the intermittent and continuous refrigerant flow noise is generated. However, it is obvious that the refrigerant flow noise can be reduced by applying the embodiment of the present invention as described above.

【0025】さらに、これまでの説明では、建家の空気
調和機を想定して熱交換器を室内熱交換器、室外熱交換
器とよんできたが、本発明はこれに限らず除湿運転が必
要な他の用途の装置にも適用可能である。こうして場合
を考えると、一般に室内熱交換器は利用側熱交換器、室
外熱交換器は熱源側熱交換器、さらに室内ファンは利用
側ファン、室外ファンは熱源側ファンといいかえること
ができる。
Further, in the above description, the heat exchanger is called an indoor heat exchanger or an outdoor heat exchanger assuming an air conditioner of a house, but the present invention is not limited to this, and a dehumidifying operation is required. However, the present invention can be applied to devices for other uses. Considering this case, in general, the indoor heat exchanger can be called a use side heat exchanger, the outdoor heat exchanger can be called a heat source side heat exchanger, the indoor fan can be called a use side fan, and the outdoor fan can be called a heat source side fan.

【0026】[0026]

【発明の効果】本発明の空気調和機によれば室内熱交換
器のような利用側熱交換器を熱的に2分割してその間に
除湿運転時に使用する除湿絞り装置を設け、除湿運転時
に、利用側熱交換器の一方を蒸発器、他方を凝縮器とし
て冷凍サイクルにより空気の冷却,除湿及び加熱を行な
う冷凍サイクルで、除湿絞り装置に対して冷媒の流通す
る副冷媒流路を弁体に上下に形成することで冷媒流の気
液分離機能を有させることができ、冷媒流が単相流であ
るときはもとより、気液二相流である場合でも、除湿制
御弁を通過する冷媒流による冷媒流動音の発生を低減さ
せることができる。またさらには、冷凍サイクルによる
加熱能力が比較的大きいため、静かで室温を下げずに湿
度を下げる快適な除湿運転を行なうことができる。
According to the air conditioner of the present invention, a utilization side heat exchanger such as an indoor heat exchanger is thermally divided into two parts, and a dehumidification expansion device used during a dehumidification operation is provided between the two. A refrigeration cycle that cools, dehumidifies, and heats air by a refrigeration cycle using one of the utilization-side heat exchangers as an evaporator and the other as a condenser. It can have a gas-liquid separation function of the refrigerant flow by being formed above and below, and when the refrigerant flow is not only a single-phase flow but also a gas-liquid two-phase flow, the refrigerant passing through the dehumidification control valve Generation of the refrigerant flow noise due to the flow can be reduced. Furthermore, since the heating capacity of the refrigeration cycle is relatively large, it is possible to perform a quiet and comfortable dehumidifying operation for lowering the humidity without lowering the room temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による気液分離機能を有する除湿制御弁
を用いた冷凍サイクルにより空気の除湿及び加熱を行な
う除湿運転が可能な空気調和機の系統図。
FIG. 1 is a system diagram of an air conditioner capable of a dehumidifying operation of dehumidifying and heating air by a refrigeration cycle using a dehumidifying control valve having a gas-liquid separation function according to the present invention.

【図2】本発明による除湿運転が可能な冷凍サイクルに
おける、気液分離機能を有する除湿制御弁を用いた除湿
絞り装置を示す断面図。
FIG. 2 is a cross-sectional view showing a dehumidification expansion device using a dehumidification control valve having a gas-liquid separation function in a refrigeration cycle capable of performing a dehumidification operation according to the present invention.

【図3】本発明による除湿運転が可能な冷凍サイクルに
おける、気液分離機能を有する除湿制御弁を用いた除湿
絞り装置の除湿運転時の構造を示す断面図。
FIG. 3 is a cross-sectional view illustrating a structure of a dehumidifying expansion device using a dehumidifying control valve having a gas-liquid separation function in a refrigeration cycle capable of performing a dehumidifying operation according to the present invention during a dehumidifying operation.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、4…主絞
り装置(膨張弁)、5a,5b…室内熱交換器、6…除
湿絞り装置、7…アキュムレータ、8…室外ファン、9
…室内ファン、10…配管。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... Main expansion device (expansion valve), 5a, 5b ... Indoor heat exchanger, 6 ... Dehumidification expansion device, 7 ... Accumulator, 8 ... Outdoor fan , 9
... indoor fan, 10 ... piping.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、熱源側熱交換器、利用側熱交換器
を備え、前記利用側熱交換器を熱的に二分割して、その
間に除湿運転時に使用する除湿絞り装置を設け、除湿運
転時には熱的に二分割された前記利用側熱交換器の上流
側が凝縮器、下流側が蒸発器になって除湿を行なうよう
に冷凍サイクルを構成し、前記絞り装置として、弁本体
内に設けられて冷媒を流通させる高圧側冷媒流路と低圧
側冷媒流路、及び前記高圧側冷媒流路と前記低圧側冷媒
流路とを結ぶ主冷媒流路を形成し、前記主冷媒流路を通
過する冷媒流量を調節するために、前記主冷媒流路を開
閉するために使用する前記主冷媒流路内を往復運動可能
な弁体を備え、前記弁体内に冷媒を前記高圧側冷媒流路
から前記低圧側冷媒流路に流通させるための副冷媒流路
が前記高圧側冷媒流路側の入口孔が前記弁体の上部側面
及び下部側面に設けられている除湿制御弁を使用してい
ることを特徴とする空気調和機。
1. A dehumidifying expansion device comprising a compressor, a heat source side heat exchanger, and a use side heat exchanger, wherein the use side heat exchanger is thermally divided into two parts, and a dehumidifying throttle device used during a dehumidification operation is provided therebetween. During the dehumidifying operation, a refrigeration cycle is configured such that the upstream side of the thermally-divided utilization-side heat exchanger is a condenser and the downstream side is an evaporator to perform dehumidification, and is provided in the valve body as the expansion device. A high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path through which the refrigerant flows, and a main refrigerant flow path connecting the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path, passing through the main refrigerant flow path In order to adjust the flow rate of the refrigerant to be provided, a valve body capable of reciprocating in the main refrigerant flow path used to open and close the main refrigerant flow path, and the refrigerant in the valve body from the high-pressure side refrigerant flow path The sub-refrigerant flow path for flowing through the low-pressure side refrigerant flow path is the high-pressure side refrigerant. An air conditioner characterized in that the roadside inlet port is using dehumidification control valve is provided on the upper side surface and lower side surface of the valve body.
JP8218276A 1996-08-20 1996-08-20 Air conditioner Pending JPH1062032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218276A JPH1062032A (en) 1996-08-20 1996-08-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218276A JPH1062032A (en) 1996-08-20 1996-08-20 Air conditioner

Publications (1)

Publication Number Publication Date
JPH1062032A true JPH1062032A (en) 1998-03-06

Family

ID=16717332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218276A Pending JPH1062032A (en) 1996-08-20 1996-08-20 Air conditioner

Country Status (1)

Country Link
JP (1) JPH1062032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028537A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioner
JP2003028535A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioning equipment
JP2003056946A (en) * 2001-08-20 2003-02-26 Daikin Ind Ltd Air conditioner, dehumidifier and choking mechanism
CN104515326A (en) * 2013-09-29 2015-04-15 广东美的制冷设备有限公司 Air conditioner and dehumidification method of air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028537A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioner
JP2003028535A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioning equipment
JP2003056946A (en) * 2001-08-20 2003-02-26 Daikin Ind Ltd Air conditioner, dehumidifier and choking mechanism
JP4608828B2 (en) * 2001-08-20 2011-01-12 ダイキン工業株式会社 Air conditioner, dehumidifier, and throttle mechanism
CN104515326A (en) * 2013-09-29 2015-04-15 广东美的制冷设备有限公司 Air conditioner and dehumidification method of air conditioner
CN104515326B (en) * 2013-09-29 2017-02-22 广东美的制冷设备有限公司 Air conditioner and dehumidification method of air conditioner

Similar Documents

Publication Publication Date Title
US7225630B2 (en) Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP2006170608A (en) Heat exchanger in air conditioner
JP3872824B2 (en) Air conditioner
JPH1062032A (en) Air conditioner
JP3047702B2 (en) Air conditioner
JP3404817B2 (en) Air conditioner
JP3435759B2 (en) Air conditioner
JP2002350003A (en) Air conditioner
JPH0942706A (en) Air conditioner
KR100332778B1 (en) Flow control device for heat pump
JP3435743B2 (en) Air conditioner
KR100535807B1 (en) Refrigerating cycle
JP2658668B2 (en) Separate type air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH08338668A (en) Multi-room type air conditioner
JP2002089934A (en) Air conditioner
JP3208889B2 (en) Refrigeration cycle
JP2008151351A (en) Air conditioner
JP2003343895A (en) Air conditioner
JP2003176943A (en) Air conditioner
JP2013181708A (en) Air conditioner
JPH0835733A (en) Air conditioner
JPH10274450A (en) Air-conditioning equipment
JPH05118710A (en) Orifice structure of heat pump type air conditioner
JP2003207231A (en) Air conditioner