JPH1058161A - Welded steel tube and its manufacture - Google Patents

Welded steel tube and its manufacture

Info

Publication number
JPH1058161A
JPH1058161A JP11709197A JP11709197A JPH1058161A JP H1058161 A JPH1058161 A JP H1058161A JP 11709197 A JP11709197 A JP 11709197A JP 11709197 A JP11709197 A JP 11709197A JP H1058161 A JPH1058161 A JP H1058161A
Authority
JP
Japan
Prior art keywords
steel pipe
edge
steel
heating
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11709197A
Other languages
Japanese (ja)
Other versions
JP3518247B2 (en
Inventor
Takaaki Toyooka
高明 豊岡
Motoaki Itaya
元晶 板谷
Akira Yorifuji
章 依藤
Toshio Onishi
寿雄 大西
Yuji Hashimoto
裕二 橋本
Nobuki Tanaka
伸樹 田中
Yoshinori Sugie
善典 杉江
Koji Sugano
康二 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11709197A priority Critical patent/JP3518247B2/en
Publication of JPH1058161A publication Critical patent/JPH1058161A/en
Application granted granted Critical
Publication of JP3518247B2 publication Critical patent/JP3518247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel tube having a superior seam quality and surface and having an excellent grooving resistance, as well as the manufacture of such tube using an induction heating method capable of high productivity. SOLUTION: A steel strip 1 is preheated, continuously formed into an open tube 7 by a group of forming rolls 3; with both edges of the open tube 7 applied by edge preheating in the temperature range of not less than the Curie point or desirably not more than 1,300 deg.C through induction heating, and by edge heating in the range of not less than 1,300 deg.C and not more than the melting point also through induction heating; and then, abutted, pressure-welded by squeeze rolls, and formed into a steel tube 8. In this case, it is desirable that, after the pressure welding, the joined part is held at 1,300 deg.C or above for 0.03sec or longer or for duration corresponding to oxygen concentration in the atmosphere. It is also desirable that the preheating of the steel strip 1 is carried out at 800 deg.C or below and that the edge preheating, heating and pressure welding are performed in the atmosphere with the oxygen concentration lower than the air. As a result, an acceleration factor αbecomes 1.4 or less in a corrosion test as the index of grooving resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接鋼管およびそ
の製造方法に関し、とくに、固相圧接による鋼管の製造
方法に関する。
The present invention relates to a welded steel pipe and a method for manufacturing the same, and more particularly, to a method for manufacturing a steel pipe by solid-state pressure welding.

【0002】[0002]

【従来の技術】溶接鋼管は、鋼板または鋼帯を管状に成
形しその継目を溶接したもので、小径から大径まで各種
の製造法によりつくられているが、主な製造法として、
電気抵抗溶接(電縫)、鍛接、電弧溶接によるものが挙
げられる。小径〜中径鋼管用としては、高周波誘導加熱
を利用した電気抵抗溶接法(電気抵抗溶接鋼管、電縫
管)が主として利用されている。この方法は、連続的に
帯鋼を供給し、成形ロールで管状に成形してオープン管
とし、続いて高周波誘導加熱によりオープン管の両エッ
ジ部端面を鋼の融点以上に加熱した後、スクイズロール
で両エッジ部端面を衝合溶接して鋼管を製造する方法で
ある(例えば、第3版鉄鋼便覧第III 巻(2)1056〜10
92頁)。
2. Description of the Related Art Welded steel pipes are formed by forming a steel plate or a steel strip into a tube and welding the seams thereof, and are made by various manufacturing methods from a small diameter to a large diameter.
Examples include electric resistance welding (electric resistance welding), forge welding, and electric arc welding. For small to medium diameter steel pipes, an electric resistance welding method (electric resistance welded steel pipe, electric resistance welded pipe) utilizing high frequency induction heating is mainly used. In this method, a steel strip is continuously supplied, formed into a tubular shape with a forming roll to form an open pipe, and then the end faces of both edges of the open pipe are heated by high-frequency induction heating to a temperature equal to or higher than the melting point of the steel. (See, for example, the third edition of the Iron and Steel Handbook, Vol. III (2), 1056-10).
92).

【0003】上記した高周波誘導加熱を利用した電縫管
の製造方法では、オープン管の両エッジ部端面を鋼の融
点以上に加熱するため、電磁力の影響により溶鋼が流動
し、生成された酸化物が衝合溶接部に噛み込まれペネト
レータ等の溶接欠陥あるいは、溶鋼飛散(フラッシュ)
が発生しやすいという問題があった。この問題に対し、
例えば、特開平2-299782号公報には、2つの加熱装置を
有する電縫鋼管の製造法が提案されている。第1の加熱
装置でオープン管の両側エッジ部の温度をキュリー点以
上に加熱し、第2の加熱装置で更に融点以上に加熱し、
スクイズロールで両エッジ部を衝合溶接して鋼管を製造
する。また、特開平2-299783号公報には、第1の加熱装
置で周波数45〜250kHzの電流を流し、両側エッジ部を予
熱し、第2の加熱装置で更に融点以上に加熱し、スクイ
ズロールで両エッジ部を衝合溶接して鋼管を製造する電
縫管製造装置が提案されている。
In the above-described method of manufacturing an electric resistance welded tube utilizing high frequency induction heating, since the end surfaces of both edges of the open tube are heated to the melting point of the steel or higher, the molten steel flows under the influence of electromagnetic force, and the generated oxidation occurs. An object is caught in the abutment weld and welding defects such as penetrators or molten steel scatter (flash)
There is a problem that is easy to occur. For this issue,
For example, Japanese Patent Application Laid-Open No. 2-299782 proposes a method for manufacturing an electric resistance welded steel pipe having two heating devices. The first heating device heats the temperature of both side edges of the open tube to the Curie point or higher, and the second heating device further heats to the melting point or higher.
A steel pipe is manufactured by butt welding both edges with a squeeze roll. Also, in Japanese Patent Application Laid-Open No. 2-299832, a current having a frequency of 45 to 250 kHz is passed by a first heating device to preheat both side edges, and further heated to a melting point or higher by a second heating device and squeezed by a squeeze roll. There has been proposed an electric resistance welded pipe manufacturing apparatus which manufactures a steel pipe by abutting both edges.

【0004】しかしながら、これらの電縫管製造技術で
は、エッジ部を均一に加熱することは示唆しているもの
の、両エッジ部を鋼の融点以上に加熱するため、衝合溶
接時に、溶融した鋼が管の内外面に排出されビード(余
盛)が形成される。そのため、衝合溶接後に管内外面の
溶接ビードの除去が必要であり、ほとんどがビード切削
用バイトにより切削されて除去されている。
[0004] However, although these electric resistance welded pipe manufacturing techniques suggest that the edges are uniformly heated, since both edges are heated to the melting point of the steel or higher, the molten steel is hardened at the time of impact welding. Is discharged to the inner and outer surfaces of the tube to form a bead. Therefore, it is necessary to remove the weld bead on the inner and outer surfaces of the pipe after the impact welding, and most of the bead is removed by cutting with a bead cutting tool.

【0005】このようなことから、この方法では、 ビード切削用バイトの切削量の調整で、材料と時間の
ロスが発生する。 ビード切削用バイトは消耗品であるため、造管速度に
よって異なるが、3000〜4000mのビード切削長毎にバイ
トを交換する必要があり、そのため、1時間程度ごとに
3〜5分間のバイト交換のためのラインの停止を余儀な
くされる。
[0005] For this reason, in this method, loss of material and time occurs due to adjustment of the cutting amount of the bead cutting tool. Since the bead cutting tool is a consumable, it needs to be changed every 3000-4000m bead cutting length, depending on the pipe forming speed. Therefore, it is necessary to change the bite for 3-5 minutes every hour. Forced to stop the line.

【0006】特に造管速度が100 m/min を超える高
速造管では、ビード切削用バイトの寿命が短く、交換頻
度が高い。など、ビード切削がネックとなり、高速造管
ができないため生産性が低いという問題があった。ま
た、電縫鋼管の接合部では、アップセット時の圧力で管
の内外面に帯鋼エッジ部が押し出され局部変形するとと
もに、上記したように溶融した鋼が排出されてビードが
形成される。接合部では、このような局部変形により非
金属介在物は半径方向に変形させられ、管の変形時に割
れて欠陥となりやすい。
In particular, in high-speed pipe forming in which the pipe forming speed exceeds 100 m / min, the life of the bead cutting tool is short and the frequency of replacement is high. There was a problem that bead cutting became a bottleneck and high-speed pipe making was not possible, resulting in low productivity. Also, at the joint of the ERW steel pipe, the strip steel edge is pushed out to the inner and outer surfaces of the pipe by the pressure at the time of upsetting, and is locally deformed, and the molten steel is discharged as described above to form a bead. At the joint, the non-metallic inclusions are deformed in the radial direction by such local deformation, and are likely to crack and become defects when the pipe is deformed.

【0007】また、形成されたビードは切削されるが、
このビード切削により、図9(a)に示すように、接合
部では帯鋼内部の非金属介在物(主としてMnS 系)が表
面に露出する場合が多い。さらに、接合部では、急熱急
冷の熱サイクルを受けるため表面に露出した非金属介在
物(MnS 系介在物)周囲にS濃化部が形成されやすく、
腐食環境では局部電池を形成し腐食の起点となる。この
腐食の起点は、拡がりと深さを増して図9(b)に示す
ように腐食孔に成長する。
[0007] The formed beads are cut,
As a result of this bead cutting, non-metallic inclusions (mainly MnS-based) inside the steel strip are often exposed on the surface of the joint at the joint as shown in FIG. Furthermore, in the joint, a S-enriched portion is likely to be formed around the nonmetallic inclusions (MnS-based inclusions) exposed on the surface due to the rapid thermal quenching thermal cycle,
In a corrosive environment, a local battery is formed and becomes a starting point of corrosion. The starting point of this corrosion increases in depth and depth and grows into a corrosion hole as shown in FIG. 9B.

【0008】さらに、接合部にはMnS 系介在物が集積し
ており、マクロ的には接合部はアノードとなり母材部は
カソードとなり、さらに母材部にくらべ接合部の面積は
狭いため接合部が加速度的に腐食され、連続して溝食と
なる。このように、電縫鋼管には、接合部の欠陥発生率
が高く、耐溝食性が低いなどの問題があった。
Further, MnS-based inclusions accumulate in the joint, and the macroscopically, the joint becomes an anode and the base material becomes a cathode. Are acceleratedly corroded and continuously pitted. As described above, the ERW steel pipe has problems such as a high incidence of defects at the joint and low pitting corrosion resistance.

【0009】一方、比較的小径鋼管用として極めて高い
生産性を有する鍛接鋼管製造方法がある。この方法は、
連続的に供給した帯鋼を加熱炉で1300℃程度に加熱した
後、成形ロールで管状に成形してオープン管とし、続い
てオープン管の両エッジ部に高圧空気を吹き付けて端面
のスケールオフを行った後、ウェルディングホーンによ
り端面に酸素を吹き付け、その酸化熱で端面を1400℃程
度に昇温させてから、鍛接ロールで両エッジ部端面を衝
合させ固相接合して鋼管を製造する方法である(例え
ば、第3版鉄鋼便覧第III 巻(2)1056〜1092頁)。
On the other hand, there is a method for producing a forged steel pipe having extremely high productivity for a relatively small diameter steel pipe. This method
After heating the continuously supplied steel strip to about 1300 ° C in a heating furnace, it is formed into a tube using a forming roll to form an open tube, and then high-pressure air is blown to both edges of the open tube to scale off the end face. After that, oxygen is blown to the end face by a welding horn, the end face is heated to about 1400 ° C. by the heat of oxidation, and then the both end end faces are abutted by a forging roll to solid-phase join to produce a steel pipe. (Eg, Third Edition Iron and Steel Handbook, Vol. III, (2), pp. 1056-1092).

【0010】しかし、この鍛接鋼管製造方法では、 端面のスケールオフが完全ではないので、鍛接衝合部
へのスケール噛込みが発生し、シーム部の強度が母材部
に比べてかなり劣る。このため、偏平試験で、電縫鋼管
なら偏平高さ比h/D=2t/D(t:板厚)を達成で
きるのに対し、鍛接鋼管では偏平高さ比h/Dが0.5 程
度に劣るものとなる。
[0010] However, in this method for producing a forged steel pipe, the scale-off of the end face is not perfect, so that the scale bites into the forged joint butting portion, and the strength of the seam portion is considerably inferior to that of the base material portion. For this reason, in the flattening test, the flattened height ratio h / D = 2t / D (t: plate thickness) can be achieved with an ERW steel pipe, while the flattened height ratio h / D is inferior to about 0.5 with a forged steel pipe. It will be.

【0011】帯鋼を高温に加熱するため、管表面にス
ケールが生成し表面肌が悪い。など、造管速度が300m/
min 以上と速く生産性は高いが、シーム品質及び表面肌
が悪く、JISのSTK等の強度信頼性や表面品質を要
求されるものは製造できないという問題があった。
[0011] Since the steel strip is heated to a high temperature, scale is formed on the surface of the pipe, and the surface skin is poor. The pipe making speed is 300m /
Although the productivity is high as short as min or more, the seam quality and the surface skin are poor, and there is a problem that products requiring strength reliability and surface quality such as JIS STK cannot be manufactured.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記問題を
有利に解決し、優れたシーム品質及び表面肌を有し耐溝
食性に優れた溶接鋼管およびこのような特性を有する溶
接鋼管を高い生産性で製造することができる、誘導加熱
方式による鋼管の製造方法を提案することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and provides a welded steel pipe having excellent seam quality and surface skin and having excellent pitting resistance and a welded steel pipe having such characteristics. An object of the present invention is to propose a method of manufacturing a steel pipe by an induction heating method, which can be manufactured with productivity.

【0013】[0013]

【課題を解決するための手段】本発明は、帯鋼を連続的
に成形して衝合接合した鋼管であって、該鋼管の表面粗
さがRmax で20μm 以下、接合部断面あるいは内外面に
おける非金属介在物の面積率と母材部の非金属介在物面
積率の比が1.5 以下であることを特徴とするシーム品質
および表面肌に優れ、さらに腐食試験による加速係数α
が1.4 以下である耐溝食性に優れた、溶接鋼管である。
SUMMARY OF THE INVENTION The present invention relates to a steel pipe in which a strip is continuously formed and abutted and joined, wherein the surface roughness of the steel pipe is 20 μm or less in Rmax, and the cross-section or the inner or outer surface of the joined portion is formed. Excellent in seam quality and surface skin, characterized in that the ratio of the area ratio of non-metallic inclusions to the area ratio of non-metallic inclusions in the base material is 1.5 or less.
It is a welded steel pipe excellent in grooving corrosion resistance of which is 1.4 or less.

【0014】また、本発明は、帯鋼を成形ロールにより
連続的に成形してオープン管とし、該オープン管の両エ
ッジ部を加熱し、スクイズロールで衝合接合する鋼管の
製造方法において、前記帯鋼を予熱してオープン管と
し、該オープン管の両エッジ部に、誘導加熱によりキュ
リー点以上好ましくは1300℃未満の温度域に加熱するエ
ッジ予熱を施したのち、さらに、誘導加熱により1300℃
以上、融点未満の温度域に加熱するエッジ加熱を施し、
該スクイズロールで圧接することを特徴とするシーム品
質および表面肌の優れた鋼管の製造方法であり、前記帯
鋼の予熱は800 ℃以下の温度で行うのが好ましい。ま
た、前記エッジ予熱、前記エッジ加熱および前記圧接
は、大気より低い酸素濃度雰囲気中あるいは、露点が−
10℃以下の雰囲気中で行うのが好ましい。前記圧接後、
接合部が1300℃以上に保持される時間t k (sec )が、
0.03sec 以上または次式(1) tk ≧a・exp{−b・〔O2 c } …… (1) (ここに、O2 :雰囲気中の酸素濃度(vol %)、a=
0.079 、b=1.5 、c=-0.14 )を満足するのが好適で
ある。
Further, the present invention provides a method for forming a steel strip by using a forming roll.
It is continuously formed into an open tube, and both ends of the open tube are formed.
Of the steel pipe to be heated
In the manufacturing method, the steel strip is preheated to form an open pipe.
Then, both sides of the open tube are cured by induction heating.
Heating to a temperature range of the Lie point or higher and preferably lower than 1300 ° C.
1300 ° C after induction preheating and induction heating
Above, subjected to edge heating to heat the temperature range below the melting point,
A seam product characterized by being pressed by the squeeze roll.
A method for producing a steel pipe having excellent quality and surface skin,
Preferably, the steel is preheated at a temperature of 800 ° C or less. Ma
The edge preheating, the edge heating and the pressure welding
Is in an atmosphere with an oxygen concentration lower than the atmosphere or has a dew point of-
It is preferably performed in an atmosphere of 10 ° C. or lower. After the crimping,
Time t at which the joint is maintained at 1300 ° C or higher k(Sec)
0.03sec or more or the following formula (1) tk≧ a · exp {−b · [OTwo]c} (1) (Here, OTwo: Oxygen concentration in the atmosphere (vol%), a =
0.079, b = 1.5, c = -0.14).
is there.

【0015】また、本発明では、前記圧接時に、管内外
からシーム部管材を拘束し、シーム部増肉を抑制しても
よい。また、本発明では、前記圧接後、圧接シーム部近
傍を圧延してもよい。また、本発明では、前記圧接後、
圧接シーム部外面の微小凹形状部を除去して外面を平滑
化してもよい。
Further, in the present invention, at the time of the pressing, the seam portion tube may be restrained from inside and outside of the tube to suppress the increase in the thickness of the seam portion. Further, in the present invention, after the pressing, the vicinity of the pressing seam portion may be rolled. Further, in the present invention, after the pressing,
The outer surface may be smoothed by removing a minute concave portion on the outer surface of the press-seam portion.

【0016】また、前記帯鋼は、エッジ部端面を平坦化
し、該エッジ部端面と該帯鋼表面とのなす角度が所定の
角度とするエッジ処理を施されたものが好ましい。さら
に、前記帯鋼端面のエッジ処理は成形ロールによる成形
前または成形後行ってもよい。
Preferably, the strip is subjected to an edge treatment in which an end face of the edge portion is flattened and an angle formed between the end face of the edge portion and the surface of the strip steel is a predetermined angle. Further, the edge treatment of the end face of the steel strip may be performed before or after forming by a forming roll.

【0017】[0017]

【発明の実施の形態】本発明の溶接鋼管は、帯鋼を連続
的に成形して衝合し固相圧接した鋼管である。鋼管の表
面粗さはRmax で20μm 以下とする。本発明では、帯鋼
を温間域に加熱したのちに成形し、固相圧接するため、
鋼管の表面粗度は帯鋼の表面粗度と同程度の粗度とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The welded steel pipe of the present invention is a steel pipe which is formed by continuously forming a strip, butted and solid-phase pressed. The surface roughness of the steel pipe should be 20 μm or less in Rmax. In the present invention, to form after heating the steel strip in the warm zone, to solid-phase pressure welding,
The surface roughness of the steel pipe is approximately the same as the surface roughness of the steel strip.

【0018】鋼管の接合部断面あるいは内外面における
非金属介在物の面積率と母材部の非金属介在物面積率の
比が1.5 以下とする。接合部断面における介在物の面積
率と母材部の介在物面積率の比が1.5 を超えると、接合
部の欠陥発生率が増加する。また、管内外面における介
在物の面積率と母材部の介在物面積率の比が1.5 を超え
ると、腐食の起点が増加し、接合部が溝状に腐食され耐
溝食性が劣化する。
The ratio of the area ratio of the non-metallic inclusions to the cross-section or the inner and outer surfaces of the joint portion of the steel pipe and the area ratio of the non-metallic inclusions in the base metal part is 1.5 or less. If the ratio of the area ratio of inclusions to the base material in the cross section of the joint exceeds 1.5, the incidence of defects at the joint increases. If the ratio between the area ratio of inclusions on the inner and outer surfaces of the pipe and the area ratio of inclusions in the base material exceeds 1.5, the starting point of corrosion increases, the joints are corroded in a groove shape, and the pitting corrosion resistance is deteriorated.

【0019】耐溝食性は、腐食試験による加速係数で評
価する。腐食試験は、温度40℃、空気雰囲気(溶存酸素
濃度:約5ppm )の人工海水(ASTM D-1141-52)で周速
度25m/min の回転浸漬型腐食試験機を用いて1年間の試
験を行う。そして、腐食前後の断面形状の変化から加速
係数αを求める。αは、図8に示すように溝食部の腐食
前の板厚h2、腐食後板厚h2a と溝食部以外の腐食前の板
厚h1、腐食後板厚h1aから次式 α=(h2−h2a )/(h1−h1a ) で計算する。
The pitting corrosion resistance is evaluated by an acceleration factor obtained by a corrosion test. The corrosion test was performed for one year using a rotating immersion type corrosion tester with a peripheral speed of 25 m / min in artificial seawater (ASTM D-1141-52) at a temperature of 40 ° C and air atmosphere (dissolved oxygen concentration: about 5 ppm). Do. Then, the acceleration coefficient α is determined from the change in the cross-sectional shape before and after the corrosion. As shown in FIG. 8, α is the following equation based on the thickness h 2 before the corrosion of the grooved portion, the thickness h 2a after the corrosion, the thickness h 1 before the corrosion other than the grooved portion, and the thickness h 1a after the corrosion. α = (h 2 −h 2a ) / (h 1 −h 1a ).

【0020】この腐食試験による加速係数αが1.4 以下
であれば、耐溝食性は良好となる。管内外面における非
金属介在物の面積率と母材部の非金属介在物面積率の比
が1.5 以下とすることにより、αが1.4 以下となる。つ
ぎに、上記した溶接鋼管の製造方法について説明する。
本発明では、帯鋼の成形に先立って、帯鋼を予熱する。
If the acceleration coefficient α in the corrosion test is 1.4 or less, the pitting corrosion resistance becomes good. When the ratio of the area ratio of the nonmetallic inclusions on the inner and outer surfaces of the pipe to the area ratio of the nonmetallic inclusions in the base metal part is 1.5 or less, α becomes 1.4 or less. Next, a method for manufacturing the above-described welded steel pipe will be described.
In the present invention, the strip is preheated prior to forming the strip.

【0021】予熱は、後に行うエッジ加熱時にエッジ部
とその近傍の母管との温度差を小さくし、固相圧接段階
において、エッジ部の温度および温度分布を固相圧接可
能温度域に容易に維持できるようにするために行う。予
熱は、加熱炉を用いる方法、誘導コイルを用いる誘導加
熱方法、通電による抵抗加熱方法いずれも好適に適用で
きる。
In the preheating, the temperature difference between the edge portion and the mother pipe near the edge portion is reduced during edge heating performed later, and the temperature and temperature distribution of the edge portion can be easily adjusted to the temperature range where solid phase pressure welding is possible in the solid phase pressure welding stage. Do it so you can maintain it. As the preheating, any of a method using a heating furnace, an induction heating method using an induction coil, and a resistance heating method using current can be suitably applied.

【0022】帯鋼の予熱は、800 ℃以下の温度範囲とす
る。800 ℃を超える予熱は、帯鋼表面に多量のスケール
が生成し、鋼管のシーム品質および表面肌がともに劣化
するため、800 ℃を予熱温度の上限とした。なお、予熱
温度が400 ℃未満では、エッジ加熱時に、エッジ部から
母管側への熱拡散が多いため、圧接時のエッジ部温度及
び温度分布を固相圧接可能温度域に維持できにくく、ま
た、予熱温度が 650℃を超えると、帯鋼表面のスケール
が生成しやすくなり、このため、予熱温度は、400 〜 6
50℃の温度範囲とするのが好適である。
The preheating of the steel strip is performed in a temperature range of 800 ° C. or less. Preheating at a temperature higher than 800 ° C causes a large amount of scale to be generated on the surface of the steel strip, and deteriorates both the seam quality and the surface skin of the steel pipe. If the preheating temperature is less than 400 ° C., the edge temperature and the temperature distribution during pressure welding cannot be maintained in the temperature range where solid-state pressure welding is possible, since there is much heat diffusion from the edge to the mother pipe side during edge heating. However, if the preheating temperature exceeds 650 ° C, scale on the surface of the steel strip is likely to be formed, so that the preheating temperature is 400 to 6 ° C.
Preferably, the temperature range is 50 ° C.

【0023】予熱された帯鋼は、成形ロールにより連続
的に成形されオープン管となる。成形は通常公知の成形
ロールによる方法が好適に適用できる。ついで、オープ
ン管の両エッジ部を予熱する。エッジ予熱は、誘導加熱
方式とする。このエッジ予熱によりエッジ部の温度を、
キュリー点以上1300℃未満とする。図7に示す鋼の比透
磁率の温度依存性から、鋼をキュリー点以上に加熱する
と鋼は強磁性体から常磁性体へ磁気変態し、比透磁率
(対真空比)が1に近い値となる。一方、誘導電流の浸
透深さSは、次式(2)で与えられる。
The preheated steel strip is continuously formed by a forming roll into an open pipe. For molding, a known method using a molding roll can be suitably applied. Then, preheat both edges of the open tube. Edge preheating is performed by an induction heating method. This edge preheating reduces the temperature of the edge,
The temperature should be higher than the Curie point and lower than 1300 ° C. From the temperature dependence of the relative magnetic permeability of the steel shown in FIG. 7, when the steel is heated above the Curie point, the steel undergoes magnetic transformation from a ferromagnetic material to a paramagnetic material, and the relative magnetic permeability (vs. vacuum ratio) is close to 1. Becomes On the other hand, the penetration depth S of the induced current is given by the following equation (2).

【0024】 S=α{ρ/(μr f)}1/2 ……(2) ここに、S:浸透深さ(m)、ρ:抵抗率(Ω・m)、
μr :比透磁率、f:周波数(kHz )、α:定数であ
る。したがって、エッジ部をキュリー点以上に加熱する
ことにより、浸透深さSが大きくなり、被圧接面内の温
度分布が均一化する方向に向かう。しかし、この段階で
一気に1300℃以上の温度域まで昇温すると、角部のみが
融点以上になり、接合時にビード(余盛)が発生する場
合があるため、一旦キュリー点以上1300℃未満の温度域
にエッジ部を予熱するのが好ましい。
S = α {ρ / (μ rf )} 1/2 (2) where, S: penetration depth (m), ρ: resistivity (Ω · m),
μ r: relative permeability, f: Frequency (kHz), α: a constant. Therefore, by heating the edge portion to a temperature higher than the Curie point, the penetration depth S is increased, and the temperature distribution in the pressure contact surface is directed to be uniform. However, at this stage, if the temperature is raised to a temperature range of 1300 ° C or more at a stretch, only the corners become the melting point or more, and beads (surplus) may occur at the time of joining. It is preferred to preheat the edge to the area.

【0025】エッジ予熱は、大気中あるいは、大気中よ
り酸素濃度を低減された雰囲気中(シールド雰囲気中)
いずれでもよいが、シーム品質の点からはシールド雰囲
気中が好ましい。また、エッジ予熱は、露点が−10℃以
下の雰囲気中で行うのが好ましい。エッジ予熱を施され
たオープン管の両エッジ部は、さらに、1300℃以上、融
点未満の温度域に加熱するエッジ加熱が施される。
The edge preheating is performed in the atmosphere or in an atmosphere in which the oxygen concentration is lower than that in the atmosphere (in a shield atmosphere).
Either one may be used, but from the point of seam quality, it is preferable to be in a shield atmosphere. The edge preheating is preferably performed in an atmosphere having a dew point of −10 ° C. or less. Both edge portions of the open tube subjected to the edge preheating are further subjected to edge heating for heating to a temperature range of 1300 ° C. or higher and lower than the melting point.

【0026】エッジ加熱の加熱方式は、エネルギー効率
の観点から、誘導コイルによる誘導加熱方式とする。エ
ッジ加熱は、加熱効率の観点からオープン管内に適当な
大きさのインピーダを配設するのが好ましいが、インピ
ーダの大きさを小さくした場合あるいはインピーダを配
置しない場合でもエッジ加熱は可能である。この場合
は、エッジ部以外の管体も加熱されやすくなる。
The heating method of the edge heating is an induction heating method using an induction coil from the viewpoint of energy efficiency. For the edge heating, it is preferable to dispose an appropriate size of the impeder in the open tube from the viewpoint of the heating efficiency, but the edge heating can be performed even when the size of the impeder is reduced or the impeder is not arranged. In this case, the tube body other than the edge portion is also easily heated.

【0027】オープン管の両エッジ部端面の温度は、誘
導加熱コイルの出力の調整により制御する。エッジ加熱
の温度が1300℃未満では、エッジ部端面の接合が不十分
となりシーム品質が劣化する。また、エッジ部端面の温
度が管材の融点を超えると、溶融した鋼が衝合接合時に
管内外にビード(余盛)を形成するため、ビード切削を
必要とする。このことからエッジ加熱は1300℃以上、融
点未満の固相圧接可能温度域とする。なお、好ましくは
1350℃以上融点未満、より好ましくは1400℃以上融点未
満である。
The temperature of the end face of each edge of the open tube is controlled by adjusting the output of the induction heating coil. If the temperature of the edge heating is lower than 1300 ° C., the joining of the end face of the edge portion becomes insufficient and the seam quality is deteriorated. Further, if the temperature of the end face of the edge portion exceeds the melting point of the pipe material, the molten steel forms beads (extra-bulb) inside and outside the pipe at the time of abutment joining, so that bead cutting is required. For this reason, the edge heating is performed in a temperature range of 1300 ° C. or higher and lower than the melting point where solid-state pressure welding can be performed. Preferably,
It is 1350 ° C. or higher and lower than the melting point, more preferably 1400 ° C. or higher and lower than the melting point.

【0028】本発明でいう固相圧接とは、ビード(余
盛)の盛り上がりを抑え、ビード切削を必要としない圧
接を意味する。本発明では、ビード(余盛)の盛り上が
り量を抑制するため、エッジ加熱温度は固相域の温度が
好ましいが、若干液相が存在する融点未満の固液2相域
の温度でもよい。
The term "solid-phase pressure welding" as used in the present invention means a pressure welding in which bead (surplus) is suppressed and no bead cutting is required. In the present invention, the edge heating temperature is preferably the temperature in the solid phase region in order to suppress the amount of bead (surplus) rising, but may be the temperature in the solid-liquid two-phase region slightly lower than the melting point where a liquid phase exists.

【0029】誘導加熱時のエッジ部の温度分布を均一に
するために、本発明では、好ましくは、帯鋼のエッジだ
れを精整し、エッジ部端面を平坦化し、エッジ部端面と
帯鋼表面のなす角度が所定の角度とするのがよい。所定
の角度は60〜120 度が好ましい。このエッジだれの精整
は、コイルをペイオフする前あるいは、コイルをペイオ
フし成形ロールでオープン管に成形する前、あるいは成
形した後いずれで行ってもよい。エッジ処理は、エッジ
ミラーによる切削、グラインダによる研磨、またはエッ
ジャーロールによる圧延加工等により行うのが好まし
い。
In order to make the temperature distribution of the edge portion uniform during induction heating, in the present invention, preferably, the edge of the strip is refined, the end face of the edge is flattened, and the edge face of the strip and the surface of the strip are preferably removed. Is preferably a predetermined angle. The predetermined angle is preferably 60 to 120 degrees. The edge shaping may be performed before the coil is paid off, before the coil is paid off and formed into an open pipe by a forming roll, or after the coil is formed. The edge treatment is preferably performed by cutting with an edge mirror, polishing with a grinder, rolling with an edger roll, or the like.

【0030】両エッジ部を上記固相圧接可能温度域に加
熱されたオープン管は、スクイズロールで両エッジ部を
衝合され、固相圧接される。圧接は、図3(a)に示す
ように、スクイズロールを圧接接合部管外面に当接する
位置に設置して行う方法と、図3(b)に示すように、
スクイズロールを圧接接合部管外面に当接しない位置に
設置して行う方法および図3(c)に示すように、外面
側はスクイズロール、内面側はロール等を圧接接合部に
当接する位置に設置して行う方法があるが、いずれの場
合でも何ら不都合は生じない。
The open pipe whose both edges are heated to the above-mentioned solid-state pressure-contactable temperature range is abutted on both edges by a squeeze roll and solid-phase pressed. As shown in FIG. 3 (a), the pressure welding is performed by setting a squeeze roll at a position where the squeeze roll is in contact with the outer surface of the pressure-welded joint pipe, and as shown in FIG. 3 (b),
As shown in FIG. 3 (c), a method in which a squeeze roll is installed at a position where the squeeze roll does not abut against the outer surface of the press-joined portion and the outer surface side is at a position where the squeeze roll is in contact with the press-joined portion. There is a method of installing and performing, but in any case, no inconvenience occurs.

【0031】エッジ加熱および固相圧接は、大気中ある
いは、大気中より酸素濃度を低減された雰囲気中(シー
ルド雰囲気中)いずれでもよいが、シーム品質の点から
はシールド雰囲気中が好ましい。また、エッジ加熱およ
び固相圧接は、シーム品質の点から、露点が−10℃以下
の雰囲気中が好ましい。本発明者らは、圧接後、接合部
が1300℃以上に保持される時間tk により、鋼管のシー
ム品質が変化することを見いだした。シーム品質(偏平
高さ比h/D)に及ぼすtk と、酸素濃度の関係を図2
に示す。図2から、tk が長くなるにしたがい、シーム
品質が向上していることがわかる。また、雰囲気中の酸
素濃度が低減するにしたがい、同一シーム品質を得るた
めにはtk は短くしてもよいことがわかる。
The edge heating and the solid-state pressure welding may be performed in the atmosphere or in an atmosphere having a lower oxygen concentration than the atmosphere (in a shield atmosphere), but preferably in a shield atmosphere from the viewpoint of seam quality. Further, the edge heating and the solid-state pressure welding are preferably performed in an atmosphere having a dew point of −10 ° C. or less from the viewpoint of seam quality. The inventors have after pressed, by the time t k which joint is held above 1300 ° C., the seam quality of a steel pipe was found to vary. And t k on the seam quality (flat height ratio h / D), the relationship between the oxygen concentration 2
Shown in From Figure 2, t k in accordance becomes longer, it can be seen that the seam quality is improved. Further, in accordance with the oxygen concentration in the atmosphere is reduced, in order to obtain the same seam quality t k it is understood that it may be shortened.

【0032】この時間tk (sec )は、エッジ予熱、エ
ッジ加熱、固相圧接が大気中で行われた場合には、0.03
sec 以上とすることが好ましい。一方、エッジ予熱、エ
ッジ加熱、固相圧接が大気中より酸素濃度が低い雰囲気
(シールド雰囲気中)で行われた場合は、tk は、次式
(1)を満足する時間とすることが好ましい。 tk ≧a・exp{−b・〔O2 c } …… (1) ここに、O2 :雰囲気中の酸素濃度(vol %)、a、
b、c:定数で、低炭素鋼の場合a=0.079 、b=1.5
、c=-0.14 である。より好ましくは、a=0.23、b
=1.4 、c=-0.17 である。
This time t k (sec) is 0.03 when the edge preheating, the edge heating, and the solid-state pressure welding are performed in the atmosphere.
It is preferable to set it to sec or more. On the other hand, if the edge preheating, edge heating, solid phase pressure is carried out in a low oxygen concentration atmosphere (in a sealed atmosphere) than atmospheric, t k is preferably the time that satisfies the following equation (1) . t k ≧ a · exp {−b · [O 2 ] c } (1) where, O 2 : oxygen concentration in the atmosphere (vol%), a,
b, c: constants, a = 0.079, b = 1.5 for low carbon steel
, C = −0.14. More preferably, a = 0.23, b
= 1.4 and c = -0.17.

【0033】この時間tk は、エッジ予熱時のオープン
管両エッジ部の加熱温度及びキュリー点以上の加熱幅、
さらにはエッジ加熱時の両エッジ部端面の加熱温度を制
御し、固相圧接時の両エッジ部端面から管中央部へ向か
っての管円周方向温度分布を調整することにより、固相
圧接後のシームの冷却速度を調整し、制御する。固相圧
接により形成された圧接シーム部では、スクイズロール
の圧接接合部外面への当接の有無、エッジ部の到達温度
あるいはスクイズロールによる管円周方向絞りの程度に
より図4(a) 、(b)に示すようにシーム部の管内外
または管内に管体肉厚の5%以上の増肉を生じることが
ある。このような場合には、圧接以降の適当な場所で、
増肉したシーム部近傍を圧延により減肉するのが好まし
い。増肉したシーム部近傍の圧延は、例えば、図5
(a) に示す圧接シーム部圧延ロール10により管内外か
ら圧延する。圧接シーム部圧延ロール10は、外面圧延用
ロール10a、内面圧延用ロール10bからなり、10bは圧
接シーム部圧延ロール支持棒10cにより支持されてい
る。
[0033] The time t k is an open pipe both edges of the heating temperature and the Curie point or more heating width during edge preheating,
In addition, by controlling the heating temperature of the end faces of both edges during edge heating and adjusting the temperature distribution in the pipe circumferential direction from the end faces of both edges to the center of the pipe during solid phase pressure welding, Adjust and control the seam cooling rate. 4 (a) and 4 (b), depending on whether or not the squeeze roll is in contact with the outer surface of the press-bonded portion, the temperature reached at the edge portion, or the degree of reduction in the pipe circumferential direction by the squeeze roll. As shown in b), the thickness of the pipe may be increased by 5% or more inside or outside the pipe or inside the pipe at the seam portion. In such a case, at an appropriate place after the welding,
It is preferable to reduce the thickness in the vicinity of the increased seam portion by rolling. Rolling in the vicinity of the increased seam portion is performed, for example, as shown in FIG.
Rolling is performed from the inside and outside of the pipe by a press-seam rolling roll 10 shown in FIG. The pressure-welded seam portion rolling roll 10 includes an outer surface rolling roll 10a and an inner surface rolling roll 10b, and 10b is supported by a pressure-welded seam portion rolling roll support rod 10c.

【0034】また、前記圧接方法のうち、圧接接合部管
内外面にロール等を当接させる方法を採用することによ
って、材料を上下方向に拘束し、圧接による増肉を5%
未満に抑え、圧接以降の圧延を不要とすることも可能で
ある。例えば、図5(b)に示すスクイズロール6と圧
接部内面拘束用ロール11aにより管内外から材料を拘束
し、圧接による増肉を抑制する。圧接部内面拘束用ロー
ル11aは圧接部内面拘束用ロール支持棒11bにより支持
されている。
Further, by adopting a method in which a roll or the like is brought into contact with the inner and outer surfaces of the press-joined pipe in the press-welding method, the material is constrained in the vertical direction, and the increase in thickness due to the press-welding is 5%.
It is also possible to suppress the rolling after the pressure welding. For example, the material is restricted from inside and outside the pipe by the squeeze roll 6 and the roll 11a for restricting the inner surface of the press-contact portion shown in FIG. The roll 11a for restricting the inner surface of the press contact portion is supported by a roll support rod 11b for restricting the inner surface of the press contact portion.

【0035】固相圧接により形成された圧接シーム部で
は、帯鋼のエッジだれの程度、帯鋼のエッジ精整の精
度、圧接の方法あるいは圧接による増肉の度合いによ
り、圧接部の圧延の有無にかかわらず、図6に示すよう
に外面にウェルドラインと呼ばれる深さ0.2mm 程度の微
小な凹形状部分を生じることがあり、外観、シーム品質
に悪影響を及ぼす。このような場合には、圧接以降の適
当な場所でウェルドラインを除去して外面を平滑化する
のが好ましい。
In the welded seam formed by solid-phase welding, the presence or absence of rolling of the welded part depends on the degree of edge droop of the steel strip, the precision of edge adjustment of the steel strip, the method of pressure welding, or the degree of wall thickening by pressure welding. Irrespective of this, as shown in FIG. 6, a minute concave portion having a depth of about 0.2 mm called a weld line may be formed on the outer surface, which adversely affects the appearance and seam quality. In such a case, it is preferable to remove the weld line at an appropriate place after the welding to smooth the outer surface.

【0036】ウェルドラインの除去は、切削、研磨等の
加工を実施することにより行っても、エネルギービーム
を照射してウェルドラインを溶融させることにより行っ
てもよい。エネルギービームとしてはレーザビーム、電
子ビーム、プラズマビーム等が好適である。図10には圧
接後にウェルドラインにレーザビームを照射するウェル
ドライン除去装置の1実施例を模式的に示す。また、ウ
ェルドラインの除去は、圧接増肉部の圧延を行う場合に
は、圧延の前後どちらで実施してもよい。
The removal of the weld line may be performed by performing processing such as cutting or polishing, or may be performed by irradiating an energy beam to melt the weld line. As the energy beam, a laser beam, an electron beam, a plasma beam, or the like is preferable. FIG. 10 schematically shows one embodiment of a weld line removing apparatus for irradiating a weld line with a laser beam after pressure welding. Further, the removal of the weld line may be performed before or after the rolling in the case of rolling the press-welded thickened portion.

【0037】以上述べたように、本発明によれば、オー
プン管の両エッジ部を固相圧接可能温度域に安定的に保
持でき、その後スクイズロールにより固相圧接して優れ
たシーム品質および表面肌を有し、耐溝食性に優れた鋼
管を高い生産性で製造できる。
As described above, according to the present invention, both edges of the open pipe can be stably held in the temperature range in which solid pressure welding can be performed, and then the solid state pressure welding is performed by the squeeze roll to obtain excellent seam quality and surface quality. A steel pipe having skin and excellent in pitting resistance can be manufactured with high productivity.

【0038】[0038]

【実施例】図1に示す本発明の実施に好適な設備列を用
いた。板厚 3.5mmの帯鋼1を 400〜 650℃の温度で予熱
炉2で連続的に予熱したのち、成形ロール群3により連
続的に成形しオープン管7とした。オープン管両エッジ
部に表1に示す条件でエッジ予熱用誘導加熱コイル4に
よりエッジ予熱を、さらにエッジ加熱用誘導加熱コイル
5によりエッジ加熱を施し、圧接シーム部に当接する位
置に設置したスクイズロール6で固相圧接して、管寸
法:60.5mmφ× 3.5mmt、規格:STKM11A の鋼管8とし
た。製造された鋼管8のシーム品質、表面肌、接合部お
よび母材部の非金属介在物面積率、耐溝食性を調査し、
その結果を表1に併記する。シーム品質の評価は、鋼管
の偏平高さ比(h/D、h:偏平高さmm、D:鋼管の外
径mm)で行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An equipment row suitable for carrying out the present invention shown in FIG. 1 was used. After a strip steel 1 having a thickness of 3.5 mm was continuously preheated at a temperature of 400 to 650 ° C. in a preheating furnace 2, it was continuously formed by a forming roll group 3 to obtain an open pipe 7. A squeeze roll installed at a position where the both ends of the open pipe are preheated by the edge preheating induction heating coil 4 under the conditions shown in Table 1 and further subjected to edge heating by the edge heating induction heating coil 5, and are brought into contact with the pressure welding seam portion. Solid-state pressure welding was performed at 6 to obtain a steel pipe 8 having a pipe size of 60.5 mmφ × 3.5 mmt and a standard of STKM11A. The seam quality, surface skin, non-metallic inclusion area ratio and pitting corrosion resistance of the joint and base metal of the manufactured steel pipe 8 were investigated.
The results are also shown in Table 1. The seam quality was evaluated based on the flat height ratio of the steel pipe (h / D, h: flat height mm, D: outer diameter of steel pipe mm).

【0039】また、鋼管の表面肌の評価は、表面粗さR
max (μm )で行った。非金属介在物面積率は、母材、
接合部断面および管内外面についてJIS G 0555に準拠し
て光学顕微鏡観察により求め、接合部の非金属介在物面
積率と母材部の非金属介在物面積率の比で示す。耐溝食
性は、上記した試験条件の腐食試験により加速係数αを
求めた。なお、一部の鋼管については、エッジ予熱、エ
ッジ加熱および固相圧接をシールド雰囲気中で行った。
Further, the evaluation of the surface skin of the steel pipe was performed by using the surface roughness R
max (μm). Nonmetallic inclusion area ratio is
The cross section of the joint and the inner and outer surfaces of the tube are determined by optical microscope observation in accordance with JIS G 0555, and are shown by the ratio of the area ratio of nonmetallic inclusions at the joint to the area ratio of nonmetallic inclusions at the base material. For the pitting corrosion resistance, an acceleration coefficient α was obtained by a corrosion test under the above test conditions. For some steel pipes, edge preheating, edge heating, and solid-state pressure welding were performed in a shield atmosphere.

【0040】[0040]

【表1】 [Table 1]

【0041】また、帯鋼を1300℃に加熱したのち、鍛接
により60.5mmφの鍛接管とし、従来例(No.11 )とし
た。実施例と同様に鋼管の特性を調査し表1に併記し
た。試験No.1、No.2、No.8、No.9の本発明例では、偏平
高さ比 0.3以下、表面粗さRmax 10μm 以下であり、従
来例の試験No.11 の鍛接管では、偏平高さ比0.56、表面
粗さRmax 37.5μm であるのに対し向上している。ま
た、本発明例では、接合部の介在物面積率が低く、溝食
の加速係数αが小さく耐溝食性が優れている。これに対
し、本発明の範囲を外れると、試験No.3、No.4、No.7の
ように、偏平高さ比が大きくなり、また、試験No.10 の
ように、表面粗さRmax が大きくなる。さらに、試験N
o.5のように、エッジ部端面が溶融すると余盛が形成さ
れ、ビード切削する必要が生じるため、造管速度が100m
/minに低下する。
After the strip was heated to 1300 ° C., a forged pipe of 60.5 mmφ was formed by forging to obtain a conventional example (No. 11). The characteristics of the steel pipe were investigated in the same manner as in the examples, and are shown in Table 1. In the present invention examples of Test No. 1, No. 2, No. 8, and No. 9, the flat height ratio is 0.3 or less, and the surface roughness Rmax is 10 μm or less. The flattened height ratio is 0.56 and the surface roughness Rmax is 37.5 μm, which is improved. In addition, in the example of the present invention, the area ratio of inclusions at the joining portion is low, the acceleration coefficient α of grooving is small, and the grooving resistance is excellent. On the other hand, if the ratio is out of the range of the present invention, the flat height ratio becomes large as in Tests No. 3, No. 4 and No. 7, and the surface roughness Rmax as shown in Test No. 10. Becomes larger. In addition, test N
As shown in o.5, when the end face of the edge part melts, a margin is formed and it is necessary to bead cutting, so the pipe forming speed is 100 m
/ min.

【0042】また、試験No.6は、シーム品質及び表面肌
は優れるが、エッジ部を1300℃を超える温度に予熱した
ため、エッジ端面の角部のみが融点以上になり、余盛が
形成されてビード切削の必要が生じたため、造管速度が
100m/minに低下した。それに伴い、接合部の介在物面積
率が大きく、また溝食の加速係数αが高くなり耐溝食性
が劣化している。
In Test No. 6, although the seam quality and surface skin were excellent, the edge portion was preheated to a temperature exceeding 1300 ° C., so that only the corner portion of the edge end surface became higher than the melting point and a margin was formed. Because of the need for bead cutting,
It dropped to 100m / min. Along with this, the area ratio of inclusions at the joint is large, and the acceleration coefficient α of pitting corrosion is increased, thereby deteriorating pitting corrosion resistance.

【0043】また、本発明例の生産性は、30ton/hrと高
く、ビード切削する従来の電縫管の生産性が15ton/hrで
あるのに対し、生産性が著しく向上している。本発明例
の試験No.1、No.8、No.12 では、圧接シーム部の管内面
に0.5 〜1.5mm の増肉がみられたが、圧接シーム部近傍
を管内外から圧延ロールで圧延し、0.2mm 以内に減肉
し、鋼管寸法の規格範囲内となった。
The productivity of the example of the present invention is as high as 30 tons / hr, and the productivity of a conventional ERW pipe for bead cutting is 15 tons / hr, whereas the productivity is remarkably improved. In Tests No. 1, No. 8, and No. 12 of the present invention example, the inner wall of the welded seam was increased by 0.5 to 1.5 mm on the inner surface of the tube, but the area near the welded seam was rolled from inside and outside the tube with rolling rolls. However, the wall thickness was reduced to within 0.2mm, and the steel pipe dimensions were within the specified range.

【0044】また、試験No.2、No.9、No.13 は、圧接位
置において管外面にスクイズロールを、管内面に圧延ロ
ールをそれぞれ当接させ、材料を上下方向に拘束するこ
とによって、圧接シーム部の増肉が0.1mm 以下で鋼管寸
法の規格範囲内となり、圧接以降の圧延が不要であっ
た。本発明例の試験No.12 〜13では、帯鋼のエッジ処理
(具体的にはミーリングによる切削加工)を実施し、エ
ッジ部角を直角とした。エッジ処理を行った試験No.12
〜13では、エッジ処理を行わなかった他の試験No.1〜2
に比べ偏平高さ比が小さくなっている。
In Tests No. 2, No. 9 and No. 13, the squeeze roll was brought into contact with the outer surface of the tube and the rolling roll was brought into contact with the inner surface of the tube at the pressed position to restrain the material in the vertical direction. When the thickness of the welded seam was 0.1 mm or less, it was within the standard range of steel pipe dimensions, and rolling after the welding was unnecessary. In Test Nos. 12 to 13 of the present invention, edge treatment of the strip (specifically, cutting by milling) was performed, and the edge angle was set to a right angle. Test No.12 with edge treatment
In No. 13 to 13, other tests No. 1 to 2 where edge processing was not performed
The flat height ratio is smaller than that of.

【0045】本発明例の試験No.14 では、エッジ加熱お
よび固相圧接時の雰囲気中の露点を−20℃に制御した。
これにより、雰囲気中の露点制御を行わなかった試験N
o.9に比べ偏平高さ比が小さくなっている。本発明例の
試験No.15 では、形成されたウェルドラインを図10のレ
ーザビームを利用したウェルドライン除去装置を稼働さ
せ除去した。レーザビームは出力10kWのCO2 レーザを使
用した。ウェルドライン除去により偏平高さはウェルド
ラインなしに比較し遜色ない偏平高さを示した。
In Test No. 14 of the present invention, the dew point in the atmosphere during edge heating and solid-phase pressure welding was controlled to -20.degree.
As a result, the test N in which the dew point control in the atmosphere was not performed
The flat height ratio is smaller than o.9. In Test No. 15 of the example of the present invention, the formed weld line was removed by operating the weld line removing device using the laser beam in FIG. The laser beam used was a 10 kW CO 2 laser. By removing the weld line, the flat height was comparable to that without the weld line.

【0046】[0046]

【発明の効果】本発明によれば、オープン管の両エッジ
部を固相圧接可能温度域に安定的に保持でき、優れたシ
ーム品質および表面肌を有する鋼管を高い生産性で製造
できるという格段の効果を奏する。
According to the present invention, both edges of an open pipe can be stably held in a temperature range in which solid pressure welding can be performed, and a steel pipe having excellent seam quality and surface skin can be manufactured with high productivity. Has the effect of

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に好適な鋼管製造設備列の1例を
示す説明図である。
FIG. 1 is an explanatory diagram showing one example of a steel pipe manufacturing facility line suitable for carrying out the present invention.

【図2】固相圧接接合部のシーム品質に及ぼす圧接後13
00℃以上に保持される時間tkと雰囲気中の酸素濃度と
の関係を示すグラフである。
Fig. 2 Effect of post-welding on seam quality of solid-state welded joints
00 is a graph showing the relationship between the oxygen concentration in the time t k and the atmosphere is maintained above ° C..

【図3】固相圧接時のスクイズロール、圧接シーム部内
面拘束用ロールと圧接接合部との位置関係を示す断面図
である。
FIG. 3 is a cross-sectional view showing a positional relationship between a squeeze roll, a roll for restraining the inner surface of a press-seam portion, and a press-joint portion during solid-phase press welding.

【図4】固相圧接後の鋼管断面形状の例を示す断面図で
ある。
FIG. 4 is a cross-sectional view illustrating an example of a cross-sectional shape of a steel pipe after solid-phase pressure welding.

【図5】本発明の実施に好適な設備列の模式的部分断面
側面図である。
FIG. 5 is a schematic partial sectional side view of an equipment row suitable for carrying out the present invention.

【図6】固相圧接後の圧接シーム部外面形状の1例を示
す断面図である。
FIG. 6 is a cross-sectional view showing an example of the outer shape of a press-seam portion after solid-phase press-bonding.

【図7】鋼の比透磁率の温度依存性を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing temperature dependence of relative magnetic permeability of steel.

【図8】腐食試験による試験片断面形状の変化を示す概
念図である。
FIG. 8 is a conceptual diagram illustrating a change in the cross-sectional shape of a test piece due to a corrosion test.

【図9】電縫管の接合部近傍における腐食孔の発生状況
を示す概念図である。
FIG. 9 is a conceptual diagram showing a state of occurrence of a corrosion hole near a joint of an electric resistance welded tube.

【図10】ウェルドライン除去に好適なウェルドライン除
去装置の1例を示す概念図である。
FIG. 10 is a conceptual diagram illustrating an example of a weld line removal device suitable for weld line removal.

【符号の説明】[Explanation of symbols]

1 帯鋼 2 予熱炉 3 成形ロール群 4 エッジ予熱用誘導加熱コイル 5 エッジ加熱用誘導加熱コイル 6 スクイズロール 7 オープン管 8 鋼管 9 圧接シーム部 10 圧接シーム部圧延用ロール 10a 圧接シーム部外面圧延用ロール 10b 圧接シーム部内面圧延用ロール 10c 圧接シーム部圧延用ロール支持棒 11a 圧接シーム部内面拘束用ロール 11b 圧接シーム部内面拘束用ロール支持棒 12 圧接シーム部外面ウェルドライン 13 レーザ発振器 13a ミラー 13b レンズ DESCRIPTION OF SYMBOLS 1 Strip steel 2 Preheating furnace 3 Forming roll group 4 Induction heating coil for edge preheating 5 Induction heating coil for edge heating 6 Squeeze roll 7 Open pipe 8 Steel pipe 9 Pressure welding seam part 10 Roll for pressure welding seam part rolling 10a For external rolling of pressure welding seam part Roll 10b Roll for inner surface rolling of press-welded seam portion 10c Roll support rod for rolling of seam for press-welded portion 11a Roll for restraining inner surface of press-welded seam portion 11b Roll support bar for inner surface of press-welded seam portion 12 Weld line for outer surface of press-welded seam portion 13 Laser oscillator 13a Mirror 13b Lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 13/00 B23K 13/00 A (72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 大西 寿雄 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 橋本 裕二 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 田中 伸樹 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 杉江 善典 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 菅野 康二 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // B23K 13/00 B23K 13/00 A (72) Inventor Akira Yoto 1 Kawasaki-cho, Handa-shi, Aichi 1-chome, Kawasaki Steel Corporation Chita Works (72) Inventor Toshio Onishi 1-1-1, Kawasaki-cho, Handa City, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Yuji Hashimoto 1, Kawasaki-cho, Handa City, Aichi Prefecture No. 1 at Kawasaki Steel Corporation Chita Works (72) Inventor Nobuki Tanaka 1-1-1 Kawasakicho, Handa City, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Yoshinori Sugie 1 Kawasakicho, Handa City, Aichi Prefecture 1-chome, Kawasaki Steel Corporation Chita Works (72) Koji Kanno 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Chita Corporation Kawasaki Steel Corporation Concrete plant

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 帯鋼を連続的に成形して衝合接合した鋼
管であって、該鋼管の表面粗さがRmax で20μm 以下、
接合部断面あるいは内外面における非金属介在物の面積
率と母材部の非金属介在物面積率の比が1.5 以下である
ことを特徴とするシーム品質および表面肌の優れた溶接
鋼管。
Claims: 1. A steel pipe formed by continuously forming a strip of steel and abutting and joining, wherein the surface roughness of the steel pipe is 20 μm or less in Rmax.
A welded steel pipe having excellent seam quality and surface texture, wherein the ratio of the area ratio of non-metallic inclusions to the cross-section or the inner and outer surfaces of the joint portion and the area ratio of non-metallic inclusions in the base metal part are 1.5 or less.
【請求項2】 帯鋼を連続的に成形して衝合接合した鋼
管であって、該鋼管の表面粗さがRmax で20μm 以下、
接合部内外面における非金属介在物の面積率と母材部の
非金属介在物面積率の比が1.5 以下であることを特徴と
する腐食試験による加速係数αが1.4 以下である耐溝食
性に優れた溶接鋼管。
2. A steel pipe formed by continuously forming and joining a steel strip, wherein the steel pipe has a surface roughness Rmax of 20 μm or less.
The ratio of the area ratio of non-metallic inclusions on the inner and outer surfaces of the joint to the area ratio of non-metallic inclusions on the base metal is 1.5 or less.Acceleration coefficient α by corrosion test is 1.4 or less. Welded steel pipe.
【請求項3】 帯鋼を成形ロールにより連続的に成形し
てオープン管とし、該オープン管の両エッジ部を加熱
し、スクイズロールで衝合接合する鋼管の製造方法にお
いて、前記帯鋼を予熱してオープン管とし、該オープン
管の両エッジ部に、誘導加熱によりキュリー点以上の温
度域に加熱するエッジ予熱を施したのち、さらに、誘導
加熱により1300℃以上、融点未満の温度域に加熱するエ
ッジ加熱を施し、該スクイズロールで圧接することを特
徴とするシーム品質および表面肌の優れた鋼管の製造方
法。
3. A method of manufacturing a steel pipe in which a steel strip is continuously formed by a forming roll into an open pipe, and both edges of the open pipe are heated and abutted and joined by a squeeze roll. After heating the edges of the open tube to the temperature range above the Curie point by induction heating, heat both ends to 1300 ° C or higher and lower than the melting point by induction heating. A method for producing a steel pipe having excellent seam quality and surface skin, wherein edge heating is performed and pressure welding is performed with the squeeze roll.
【請求項4】 前記エッジ予熱の温度域がキュリー点以
上1300℃未満である請求項3記載の鋼管の製造方法。
4. The method according to claim 3, wherein the temperature range of the edge preheating is equal to or higher than the Curie point and lower than 1300 ° C.
【請求項5】 前記帯鋼の予熱を800 ℃以下の温度で行
うことを特徴とする請求項3または4記載の鋼管の製造
方法。
5. The method for producing a steel pipe according to claim 3, wherein the preheating of the steel strip is performed at a temperature of 800 ° C. or less.
【請求項6】 前記エッジ予熱は、大気より低い酸素濃
度雰囲気中で行うことを特徴とする請求項3、4または
5記載の鋼管の製造方法。
6. The method according to claim 3, wherein the edge preheating is performed in an oxygen concentration atmosphere lower than the atmosphere.
【請求項7】 前記エッジ加熱および前記圧接は、大気
より低い酸素濃度雰囲気中で行うことを特徴とする請求
項3ないし6のいずれかに記載の鋼管の製造方法。
7. The method of manufacturing a steel pipe according to claim 3, wherein the edge heating and the pressure welding are performed in an oxygen concentration atmosphere lower than the atmosphere.
【請求項8】 前記エッジ予熱、前記エッジ加熱および
前記圧接は、露点が−10℃以下の雰囲気中で行うことを
特徴とする請求項3ないし7のいずれかに記載の鋼管の
製造方法。
8. The method according to claim 3, wherein the edge preheating, the edge heating, and the pressure welding are performed in an atmosphere having a dew point of −10 ° C. or less.
【請求項9】 前記圧接後、接合部が1300℃以上に保持
される時間tk (sec )が、0.03sec 以上または下記
(1)式を満足するtk であることを特徴とする請求項
3ないし8のいずれかに記載の鋼管の製造方法。 記 tk ≧a・exp{−b・〔O2 c } …… (1) ここに、O2 :雰囲気中の酸素濃度(vol %)、a=0.
079 、b=1.5 、c=-0.14 。
9. After the pressure, claim joint time t k which is held above 1300 ° C. (sec), which is a t k satisfying the above 0.03sec or below (1) 9. The method for producing a steel pipe according to any one of 3 to 8. Note that t k ≧ a · exp {−b · [O 2 ] c } (1) where, O 2 : oxygen concentration in the atmosphere (vol%), a = 0.
079, b = 1.5, c = -0.14.
【請求項10】 前記圧接時に、管内外面からシーム部管
材を拘束し、シーム部増肉を抑制することを特徴とする
請求項3ないし9のいずれかに記載の鋼管の製造方法。
10. The method of manufacturing a steel pipe according to claim 3, wherein at the time of pressing, the seam portion pipe is restrained from the inner and outer surfaces of the tube to suppress the increase in the thickness of the seam portion.
【請求項11】 前記圧接後、圧接シーム部近傍を圧延す
ることを特徴とする請求項3ないし10のいずれかに記載
の鋼管の製造方法。
11. The method for producing a steel pipe according to claim 3, wherein, after the pressing, the vicinity of the pressed seam portion is rolled.
【請求項12】 前記圧接後、圧接シーム部外面の微小凹
形状部分を除去して外面を平滑化することを特徴とする
請求項3ないし11のいずれかに記載の鋼管の製造方法。
12. The method of manufacturing a steel pipe according to claim 3, wherein after the pressure welding, a minute concave portion on the outer surface of the pressure welding seam is removed to smooth the outer surface.
【請求項13】 前記帯鋼は、エッジ部端面を平坦化し、
該エッジ部端面と該帯鋼表面のなす角度を所定の角度と
するエッジ処理を施されたものであることを特徴とする
請求項3ないし12のいずれかに記載の鋼管の製造方法。
13. The steel strip flattens an edge end face,
13. The method for producing a steel pipe according to claim 3, wherein an edge treatment is performed so that an angle between the end face of the edge portion and the surface of the steel strip is a predetermined angle.
【請求項14】 前記帯鋼端面のエッジ処理を成形ロール
による成形前または成形後行うことを特徴とする請求項
13記載の鋼管の製造方法。
14. The edge treatment of the end face of the steel strip is performed before or after forming by a forming roll.
13. The method for producing a steel pipe according to item 13.
JP11709197A 1996-06-10 1997-05-07 Welded steel pipe and its manufacturing method Expired - Fee Related JP3518247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11709197A JP3518247B2 (en) 1996-06-10 1997-05-07 Welded steel pipe and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14749896 1996-06-10
JP8-147498 1996-06-10
JP11709197A JP3518247B2 (en) 1996-06-10 1997-05-07 Welded steel pipe and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1058161A true JPH1058161A (en) 1998-03-03
JP3518247B2 JP3518247B2 (en) 2004-04-12

Family

ID=26455272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11709197A Expired - Fee Related JP3518247B2 (en) 1996-06-10 1997-05-07 Welded steel pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3518247B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096624A1 (en) * 2000-06-14 2001-12-20 Kawasaki Steel Corporation High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
WO2002103070A1 (en) * 2001-06-14 2002-12-27 Kawasaki Steel Corporation Method for producing steel pipe having high ductility
WO2002103069A1 (en) * 2000-01-28 2002-12-27 Kawasaki Steel Corporation Steel pipe having high formability and method for production thereof
US7591914B2 (en) * 2000-01-28 2009-09-22 Jfe Steel Corporation High-workability steel pipe and method of producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103069A1 (en) * 2000-01-28 2002-12-27 Kawasaki Steel Corporation Steel pipe having high formability and method for production thereof
US7591914B2 (en) * 2000-01-28 2009-09-22 Jfe Steel Corporation High-workability steel pipe and method of producing same
WO2001096624A1 (en) * 2000-06-14 2001-12-20 Kawasaki Steel Corporation High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
WO2002103070A1 (en) * 2001-06-14 2002-12-27 Kawasaki Steel Corporation Method for producing steel pipe having high ductility

Also Published As

Publication number Publication date
JP3518247B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
JP2001170779A (en) Steel tube manufacturing method
JP3518247B2 (en) Welded steel pipe and its manufacturing method
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JPH1080718A (en) Manufacture of steel tube
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
JPH10277639A (en) Manufacture of steel tube
WO1996003249A1 (en) Method of manufacturing laser welded pipes and apparatus for manufacturing the same
JP3684684B2 (en) Steel pipe manufacturing method
JP3684683B2 (en) Steel pipe manufacturing method
JPH10296458A (en) Manufacture of welded steel tube
JP3288600B2 (en) Steel pipe manufacturing method
JP4013266B2 (en) Steel pipe manufacturing method
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
JPH10328730A (en) Production of steel pipe
JP3557813B2 (en) Steel pipe manufacturing method
US4376882A (en) Method of resistance flash butt welding
KR100293577B1 (en) Method of and apparatus for producing steel pipes
JPH1043873A (en) Manufacture of steel tube
JPH1080719A (en) Steel tube excellent in seam quality and surface skin and its manufacture
JP2002239751A (en) Method for producing steel tube
JPH1099984A (en) Manufacture of two-phase stainless steel welded tube
JP3596394B2 (en) Method for producing martensitic stainless laser welded steel pipe
JPH10305312A (en) Manufacturing method for steel pipe
JPH1024320A (en) Manufacture of steel tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

LAPS Cancellation because of no payment of annual fees