JPH105793A - Treatment of waste water and device therefor - Google Patents

Treatment of waste water and device therefor

Info

Publication number
JPH105793A
JPH105793A JP8159968A JP15996896A JPH105793A JP H105793 A JPH105793 A JP H105793A JP 8159968 A JP8159968 A JP 8159968A JP 15996896 A JP15996896 A JP 15996896A JP H105793 A JPH105793 A JP H105793A
Authority
JP
Japan
Prior art keywords
tank
wastewater
activated carbon
mixed solution
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8159968A
Other languages
Japanese (ja)
Inventor
Kazuhiro Uchino
和博 内野
Takayuki Yasui
孝行 安井
Isao Saito
功 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8159968A priority Critical patent/JPH105793A/en
Publication of JPH105793A publication Critical patent/JPH105793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase nitrifying and denitrifying speeds by circulating soln. mixtures contg. sludge-like reactive materials between an aeration tank and an non-oxygen tank to effect the decomposition reaction and nitrification and denitrification of the org. materials and nitrogen compds. and passing a DC current between the non-oxygen tank. and the soln. mixture in the aeration tank. SOLUTION: The soln. mixtures 17, 18 are circulated between the aeration tank 12 and the non-oxygen tank 16 installed on the upstream side thereof, by which the oxidative decomposition reaction and nitrification and denitrification of the org. materials and nitrogen compds. included in the original waste water are executed. Further, an anode 31 is immersed in the soln. mixture in the aeration tank 12 and a cathode 32 in the soln. mixture in the nonoxygen tank 16. DC voltage is then impressed between the anode 31 and the cathode 32 by a DC power source 30 to pass the DC current between the soln. mixtures 17 and 18 in both tanks 12 an 16, by which the biological reaction and electrochemical reaction are simultaneously effected. At this time, both electrodes 31, 32 are disposed in the packing material of active carbon. Active carbon made from org. sludge is used as the active carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や集落排
水などの生活排水、家畜のし尿排水、水産加工排水、農
産加工排水など有機性物質および窒素化合物を含む排水
を、曝気槽の前に設置した無酸素槽と曝気槽との間で循
環することにより、排水中に含有される有機性物質およ
び窒素化合物の分解反応および硝化・脱窒を行う排水の
処理方法および装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to wastewater containing organic substances and nitrogen compounds, such as domestic wastewater such as urban sewage and settlement wastewater, livestock human wastewater, fishery processing wastewater, and agricultural processing wastewater. The present invention relates to a method and an apparatus for treating wastewater, which circulates between an installed anoxic tank and an aeration tank to perform a decomposition reaction of an organic substance and a nitrogen compound contained in the wastewater and to perform nitrification and denitrification.

【0002】また、本発明は、さらに詳しくは、硝化お
よび脱窒速度を高めることが可能な排水の処理方法およ
び装置に関する。
[0002] The present invention also relates more particularly to a method and an apparatus for treating wastewater capable of increasing the rate of nitrification and denitrification.

【0003】[0003]

【従来の技術】近年、閉鎖性水域の富栄養化防止のた
め、都市下水や集落排水などの生活排水、家畜のし尿排
水、水産加工排水、農産加工排水など有機性物質および
窒素化合物を含む排水の処理において、活性汚泥法変法
などを利用して窒素化合物の硝化および脱窒を行うこと
が要請されるようになっている。
2. Description of the Related Art In recent years, in order to prevent eutrophication in closed water bodies, wastewater containing organic substances and nitrogen compounds, such as domestic wastewater such as urban sewage and settlement drainage, livestock night wastewater, fishery processing wastewater, agricultural processing wastewater, and the like. In the treatment of (1), it has been required to perform nitrification and denitrification of nitrogen compounds using a modified activated sludge method or the like.

【0004】図3に、有機性物質および窒素化合物を含
む排水の処理装置である従来の循環式硝化脱窒装置の構
成図を、側面図により示す。図3において、11は調整
槽、12は生物反応槽である曝気槽、13は送風機、14は散
気装置、15は固液分離装置、16は曝気槽12の上流側に付
設された無酸素槽、17、18は被処理液(原排水)と汚泥
状反応物質との混合溶液(いわゆる活性汚泥)(以下混
合溶液と記す)、19、20、21は送液ポンプ、22は蓋、23
は攪拌装置を示す。
FIG. 3 is a side view showing the configuration of a conventional circulating nitrification denitrification apparatus, which is an apparatus for treating wastewater containing organic substances and nitrogen compounds. In FIG. 3, 11 is an adjustment tank, 12 is an aeration tank which is a biological reaction tank, 13 is a blower, 14 is a diffuser, 15 is a solid-liquid separator, and 16 is an anoxic attached to the upstream side of the aeration tank 12. Tanks, 17 and 18 are mixed solutions (so-called activated sludge) of the liquid to be treated (raw effluent) and sludge-like reactants (hereinafter referred to as mixed solutions), 19, 20, 21 are liquid feed pumps, 22 is a lid, 23
Indicates a stirrer.

【0005】なお、無酸素槽16は、その上部に取付けら
れた蓋22により、槽内の混合溶液18中への空気の混入が
防止される構造となっている。原排水は、まず調整槽11
から無酸素槽16を経て曝気槽12に供給され、原排水に含
まれる有機性物質は、送風機13から散気装置14を経て送
給される空気への曝気により活発に活動している好気性
細菌によって酸化分解され、汚泥状反応物質を含む混合
溶液17、すなわち活性汚泥が形成される。
[0005] The oxygen-free tank 16 has a structure in which air is prevented from being mixed into the mixed solution 18 in the tank by a lid 22 attached to the upper part of the tank. The raw wastewater first goes to the adjustment tank 11
Is supplied to the aeration tank 12 through the oxygen-free tank 16, and the organic substances contained in the raw wastewater are aerobically activated by the aeration of the air supplied from the blower 13 through the air diffuser 14. It is oxidatively decomposed by bacteria to form a mixed solution 17 containing a sludge-like reactant, ie, activated sludge.

【0006】なお、固液分離装置15出側の処理水の一部
は送液ポンプ20により、曝気槽12に再循環される。ま
た、曝気槽12と無酸素槽16とは送液ポンプ19により混合
溶液17、18が循環されるようになっており、混合溶液1
7、18の循環により、原排水に含まれる窒素化合物の硝
化・脱窒や脱りんが行われる。
A part of the treated water on the outlet side of the solid-liquid separator 15 is recirculated to the aeration tank 12 by the liquid feed pump 20. Further, the mixed solution 17, 18 is circulated between the aeration tank 12 and the oxygen-free tank 16 by the liquid sending pump 19, and the mixed solution 1
By the circulation of 7 and 18, nitrification, denitrification and dephosphorization of nitrogen compounds contained in raw wastewater are performed.

【0007】この場合、曝気槽12における硝化反応は次
式で表され、活性汚泥中に生育する好気性細菌により、
窒素化合物の酸化(硝化)が行われる。 NH4 + +2O2 →NO3 - +H2 O+2H+ ・・・・(1) また、無酸素槽16における脱窒反応は次式で表され、通
性嫌気性細菌(脱窒細菌)により脱窒が行われる。
In this case, the nitrification reaction in the aeration tank 12 is represented by the following formula, and is caused by aerobic bacteria growing in the activated sludge.
Oxidation (nitrification) of nitrogen compounds is performed. NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + (1) The denitrification reaction in the anoxic tank 16 is represented by the following formula, and is denitrified by facultative anaerobic bacteria (denitrifying bacteria). Is performed.

【0008】 2NO3 - +10H→N2 +4H2 O+2OH- ・・・・(2) しかるに、これら硝化反応や脱窒反応は排水中の窒素化
合物の含有量や排水量の変動、すなわち排水の負荷変動
や水温の影響を受け易く、窒素化合物の含有量が多い排
水の処理時や排水の温度が10℃以下の低水温期において
は窒素化合物の除去率が低下したり、処理水の窒素化合
物の濃度が上昇し、目標水質の達成が困難となる。
2NO 3 + 10H → N 2 + 4H 2 O + 2OH (2) However, these nitrification reactions and denitrification reactions are caused by fluctuations in the content of nitrogen compounds in the wastewater and the amount of wastewater, that is, fluctuations in the load of the wastewater. During the treatment of wastewater that is easily affected by water temperature and has a high content of nitrogen compounds, or during the low water temperature period when the temperature of the wastewater is 10 ° C or lower, the removal rate of nitrogen compounds decreases or the concentration of nitrogen compounds in the treated water decreases. And it will be difficult to achieve the target water quality.

【0009】このため、窒素化合物の含有量や水温の影
響を軽減可能で、常に十分な硝化および脱窒速度が得ら
れる排水処理方法およびその装置の開発が望まれてい
た。
Therefore, there has been a demand for the development of a wastewater treatment method and apparatus capable of reducing the effects of the nitrogen compound content and the water temperature, and of always obtaining sufficient nitrification and denitrification rates.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、硝化および脱窒速度を高める
ことが可能な排水処理方法およびその装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a wastewater treatment method and apparatus capable of increasing the rate of nitrification and denitrification.

【0011】[0011]

【課題を解決するための手段】第1の発明は、曝気槽
と、その上流側に設置された無酸素槽との間で汚泥状反
応物質を含む混合溶液を循環し、原排水中に含有される
有機性物質および窒素化合物の分解反応および硝化・脱
窒を行う排水の処理方法であって、前記無酸素槽の混合
溶液中に浸漬した陰極と前記曝気槽の混合溶液中に浸漬
した陽極の間に直流電圧を印加し、前記両槽内の混合溶
液間に直流電流を流すことにより、生物反応と電気化学
反応とを同時に行うことを特徴とする排水の処理方法で
ある。
According to a first aspect of the present invention, a mixed solution containing a sludge-like reactant is circulated between an aeration tank and an oxygen-free tank installed upstream thereof, and contained in raw wastewater. A method for treating wastewater for performing a decomposition reaction and nitrification and denitrification of an organic substance and a nitrogen compound, wherein the cathode is immersed in the mixed solution of the anoxic tank and the anode is immersed in the mixed solution of the aeration tank A wastewater treatment method characterized in that a biological reaction and an electrochemical reaction are performed simultaneously by applying a DC voltage between the mixed solutions and flowing a DC current between the mixed solutions in the two tanks.

【0012】前記第1の発明においては、前記陽極の電
極が活性炭の充填物中に配設されることが好ましく、さ
らに好ましくは、前記陽極の電極および前記陰極の電極
の両者が、活性炭の充填物中に配設されることが好まし
い。また、この場合、前記活性炭が有機性汚泥を原料と
する活性炭であることが好ましい。
In the first invention, it is preferable that the anode electrode is disposed in a packing of activated carbon. More preferably, both of the anode electrode and the cathode electrode are filled with activated carbon. It is preferable to be disposed in the object. Further, in this case, it is preferable that the activated carbon is activated carbon using organic sludge as a raw material.

【0013】第2の発明は、原排水中に含有される有機
性物質および窒素化合物の分解反応および硝化・脱窒を
行う排水の処理装置であって、該処理装置が、曝気槽
と、曝気槽の上流側に設置された無酸素槽と、該無酸素
槽と前記曝気槽との間で両槽内の汚泥状反応物質を含む
混合溶液を循環させる循環手段とを有し、さらに、前記
曝気槽内の混合溶液中には金属電極の周りに活性炭粒子
の充填物を接触、配置してなる陽極が、前記無酸素槽内
の混合溶液中には金属電極である陰極がそれぞれ設けら
れ、前記両金属電極間に電圧を印加し直流電流を流す直
流電源が配設されたことを特徴とする排水の処理装置で
ある。
A second aspect of the present invention is a wastewater treatment apparatus for performing a decomposition reaction and nitrification and denitrification of organic substances and nitrogen compounds contained in raw wastewater, wherein the treatment apparatus comprises an aeration tank, An anoxic tank installed on the upstream side of the tank, and circulating means for circulating a mixed solution containing sludge-like reactants in both tanks between the anoxic tank and the aeration tank, further comprising: In the mixed solution in the aeration tank, an anode formed by contacting and arranging a filler of activated carbon particles around a metal electrode is provided, and in the mixed solution in the anoxic tank, a cathode as a metal electrode is provided, A wastewater treatment apparatus, wherein a DC power supply for applying a voltage and flowing a DC current between the two metal electrodes is provided.

【0014】前記第2の発明においては、前記金属電極
である陰極に代えて、金属電極の周りに活性炭粒子の充
填物を接触、配置してなる陰極を用いることが好まし
い。またこの場合、前記活性炭が有機性汚泥を原料とす
る活性炭であることが好ましい。
In the second aspect of the invention, it is preferable to use a cathode in which a packing of activated carbon particles is brought into contact with and arranged around the metal electrode, instead of the cathode as the metal electrode. In this case, it is preferable that the activated carbon is activated carbon made of organic sludge.

【0015】[0015]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。図1に、本発明に係わる排水処理装置の具体的構
成図の一例を、側面図により示す。図1において、30は
直流電源、31は陽極、32は陰極を示し、符号11〜24は図
3と同一の内容を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. FIG. 1 is a side view showing an example of a specific configuration diagram of a wastewater treatment apparatus according to the present invention. 1, reference numeral 30 denotes a DC power supply, 31 denotes an anode, 32 denotes a cathode, and reference numerals 11 to 24 denote the same contents as in FIG.

【0016】本発明においては、曝気槽12と、その上流
側に設置された無酸素槽16との間で混合溶液17、18を循
環することにより、原排水中に含有される有機性物質お
よび窒素化合物の酸化分解反応および硝化・脱窒を行
い、さらに硝化・脱窒を促進するために、曝気槽12の混
合溶液中に陽極31を、無酸素槽16の混合溶液中に陰極32
をそれぞれ浸漬し、直流電源30により、陽極31と陰極32
の間に直流電圧を印加して、前記両槽12、16内の混合溶
液17、18間に直流電流を流すことにより生物反応と電気
化学反応とを同時に行わせる。
In the present invention, by circulating the mixed solutions 17 and 18 between the aeration tank 12 and the oxygen-free tank 16 provided upstream thereof, the organic substances contained in the raw wastewater and In order to carry out the oxidative decomposition reaction and nitrification / denitrification of the nitrogen compound and further promote the nitrification / denitrification, the anode 31 is placed in the mixed solution of the aeration tank 12 and the cathode 32 is placed in the mixed solution of the oxygen-free tank 16.
Are respectively immersed, and an anode 31 and a cathode 32 are
A DC voltage is applied during the period, and a DC current is applied between the mixed solutions 17 and 18 in the two tanks 12 and 16, whereby a biological reaction and an electrochemical reaction are simultaneously performed.

【0017】なお、曝気槽12の混合溶液17と無酸素槽16
の混合溶液18の間の電流の導通は、混合溶液の循環経路
中の混合溶液で行うことができる。本発明における前記
無酸素槽16は、該槽内の混合溶液18中への空気の混入が
防止可能であればその方式、構造は特に制限されない。
また、無酸素槽16には攪拌装置23など攪拌手段を設け、
混合溶液18を攪拌し、脱窒反応を促進することが好まし
い。
The mixed solution 17 in the aeration tank 12 and the oxygen-free tank 16
The electric current can be conducted between the mixed solutions 18 in the mixed solution in the circulation path of the mixed solution. The type and structure of the oxygen-free tank 16 in the present invention are not particularly limited as long as air can be prevented from being mixed into the mixed solution 18 in the tank.
Further, the anoxic tank 16 is provided with a stirring means such as a stirring device 23,
It is preferable to stir the mixed solution 18 to promote the denitrification reaction.

【0018】なお、図1においては、曝気槽12と無酸素
槽16の間の混合溶液の循環方式として、送液ポンプ19に
よる曝気槽12から無酸素槽16への混合溶液の送液および
無酸素槽16から曝気槽12への排水のオーバーフローによ
る循環方式を示したが、本発明は、その循環方式に制限
されるものではない。曝気槽12内で生成される汚泥状物
質を含む混合溶液17をろ過して処理水を得るための固液
分離装置15としては、シックナ、浮上装置などの濃縮装
置、またはこれらと真空ろ過機、ベルトプレスろ過機、
遠心脱水機、加圧ろ過機とを組み合わせた設備列、膜モ
ジュールから構成される固液分離装置などが例示され
る。
In FIG. 1, as a method of circulating the mixed solution between the aeration tank 12 and the oxygen-free tank 16, a liquid sending pump 19 sends the mixed solution from the aeration tank 12 to the oxygen-free tank 16 and a non-oxygen tank 16. Although the circulation system by the overflow of the wastewater from the oxygen tank 16 to the aeration tank 12 is shown, the present invention is not limited to the circulation system. The solid-liquid separator 15 for filtering the mixed solution 17 containing the sludge-like substance generated in the aeration tank 12 to obtain treated water includes a thickener, a concentrator such as a flotation device, or a vacuum filter, Belt press filtration machine,
Examples thereof include a line of equipment in which a centrifugal dehydrator and a pressure filter are combined, and a solid-liquid separator composed of a membrane module.

【0019】なお、図1における固液分離装置15とし
て、膜モジュールから構成される固液分離装置を用いる
場合は、送液ポンプ21を固液分離装置15の出側に設置
し、膜モジュールの二次側を吸引する構成とすることが
好ましい。次に、図2(a) 、(b) に、本発明において好
ましく用いられる、金属電極と活性炭とから構成される
陽極31および陰極32の具体的構成図の一例を、側面図に
より示す。
When a solid-liquid separation device composed of a membrane module is used as the solid-liquid separation device 15 in FIG. 1, a liquid feed pump 21 is installed on the outlet side of the solid-liquid separation device 15, and It is preferable that the secondary side be sucked. Next, FIGS. 2 (a) and 2 (b) are side views showing an example of a specific configuration diagram of the anode 31 and the cathode 32 which are preferably used in the present invention and are composed of a metal electrode and activated carbon.

【0020】図2(a) 、(b) において、33、37は金属電
極、34、38は活性炭粒子充填物、35、39は金網、多孔板
などで構成される活性炭粒子囲繞・保持部材、36、40は
接続端子を示す。図2(a) 、(b) に示されるように、陽
極31、陰極32は、それぞれ金属電極33または37および活
性炭粒子充填物34または38から構成される。
2A and 2B, reference numerals 33 and 37 denote metal electrodes, reference numerals 34 and 38 denote activated carbon particle fillers, reference numerals 35 and 39 denote activated carbon particle surrounding / holding members composed of a wire mesh, a perforated plate, or the like. 36 and 40 indicate connection terminals. As shown in FIGS. 2A and 2B, the anode 31 and the cathode 32 are composed of a metal electrode 33 or 37 and an activated carbon particle filling 34 or 38, respectively.

【0021】このように、陽極31に活性炭を使用した場
合の反応は、下記式(3) のようになると考えられる。 陽極:C+2H2 O→CO2 +4H+ +4e- ・・・・・・(3) この結果、陰極32を付設した無酸素槽16の脱窒反応が促
進される一方、陽極31では活性炭が酸化され消耗する。
Thus, the reaction in the case where activated carbon is used for the anode 31 is considered to be as shown in the following formula (3). Anode: C + 2H 2 O → CO 2 + 4H + + 4e (3) As a result, the denitrification reaction of the anoxic tank 16 provided with the cathode 32 is promoted, while the activated carbon is oxidized at the anode 31. exhaust.

【0022】本発明において、陽極31、さらに好ましく
は陽極31と陰極32の両者に有機性汚泥を原料とする活性
炭を使用すると、この汚泥活性炭は、15〜50%の灰分を
含有し、その灰分は主として珪素、アルミニウム、カル
シウムおよび鉄の酸化物からなり、アンモニウムイオン
などの吸着能力を有するため、排水中のアンモニア態窒
素など窒素化合物の除去がより効果的に行われる。
In the present invention, when activated carbon made of organic sludge is used for the anode 31, and more preferably for both the anode 31 and the cathode 32, the activated sludge contains 15 to 50% ash. Is mainly composed of oxides of silicon, aluminum, calcium and iron, and has an ability to adsorb ammonium ions and the like, so that nitrogen compounds such as ammonia nitrogen in wastewater can be removed more effectively.

【0023】前記汚泥活性炭の原料である有機性汚泥と
しては、下水処理過程で得られる汚泥、活性汚泥、ビル
ピット汚泥(ビルの地下貯留槽の底部に堆積した泥状
物)、産業廃棄汚泥などが例示され、汚泥の全固形物(T
S)に対する強熱減量(VS)の比(%)が50〜85%である有
機汚泥を用いることが好ましい。なお、充填する活性炭
粒子の大きさは、平均粒径が3mm以上、1cm以下程度で
あることが好ましい。3mm未満では囲繞・保持部材35、
39による充填物である活性炭の保持が困難であり、1cm
超えでは金属電極との接触が不十分となり、電気化学的
反応効率低下の問題が生じる。
Examples of the organic sludge which is a raw material of the above-mentioned activated sludge include sludge obtained in a sewage treatment process, activated sludge, building pit sludge (sludge accumulated at the bottom of an underground storage tank of a building), and industrial waste sludge. Illustrated, the total solids of the sludge (T
It is preferable to use an organic sludge having a ratio (%) of loss on ignition (VS) to S) of 50 to 85%. The size of the activated carbon particles to be filled is preferably about 3 mm to 1 cm in average particle diameter. If it is less than 3 mm, the surrounding / holding member 35,
It is difficult to hold activated carbon as a filling by 39, 1cm
If it exceeds, the contact with the metal electrode becomes insufficient, and the problem of lowering the electrochemical reaction efficiency occurs.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 (実施例1)前記した図1に示す本発明に係わる排水処
理装置を用いて生活排水の処理を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Embodiment 1) The treatment of domestic wastewater was performed using the wastewater treatment device according to the present invention shown in FIG.

【0025】曝気槽12の容積は 45l、無酸素槽16の容積
は30l であり、原排水の処理量は 150l/日、原排水の曝
気槽滞留時間は7.2 時間とした。送風機13により空気を
2l/分の流量で散気装置14から供給し、曝気槽12内の混
合溶液17を曝気しながら、排水処理を連続的に行った。
なお、固液分離装置15出側の処理水の一部はポンプ20を
用い、曝気槽12に再循環した。
The volume of the aeration tank 12 was 45 liters, the capacity of the anoxic tank 16 was 30 liters, the throughput of the raw wastewater was 150 l / day, and the residence time of the raw wastewater in the aeration tank was 7.2 hours. Air was supplied from the air diffuser 14 at a flow rate of 2 l / min by the blower 13, and the mixed solution 17 in the aeration tank 12 was aerated to continuously perform drainage treatment.
A part of the treated water on the outlet side of the solid-liquid separator 15 was recirculated to the aeration tank 12 using the pump 20.

【0026】また、曝気槽12と無酸素槽16との間で混合
溶液を450l/ 日の循環量で循環し、原排水中の有機性物
質および窒素化合物の酸化分解、硝化・脱窒を行った。
なお、固液分離装置としては、孔径0.35μm、有効膜面
積0.1m2 の中空糸型のMF(精密ろ過)膜モジュールか
ら構成される膜分離装置を用い、送液ポンプ21は固液分
離装置15の出側に設置し、膜モジュール二次側を吸引す
ることにより、固液分離を行った。
Further, the mixed solution is circulated between the aeration tank 12 and the oxygen-free tank 16 at a circulation rate of 450 l / day to perform oxidative decomposition, nitrification and denitrification of organic substances and nitrogen compounds in the raw wastewater. Was.
As the solid-liquid separation device, a membrane separation device composed of a hollow fiber type MF (microfiltration) membrane module having a pore diameter of 0.35 μm and an effective membrane area of 0.1 m 2 was used. The solid-liquid separation was performed by setting the outlet side of No. 15 and sucking the secondary side of the membrane module.

【0027】また、陽極31、陰極32としてはいずれも金
属電極を用い、陽極31と陰極32の間に6Vの直流電圧を
印加して直流電流を流すことにより、生物反応と電気化
学反応とを同時に行った。なお、曝気槽12の混合溶液17
と無酸素槽16の混合溶液18の間の電流は、循環経路中の
混合溶液で導通した。
A metal electrode is used for each of the anode 31 and the cathode 32, and a biological reaction and an electrochemical reaction are performed by applying a DC voltage of 6 V between the anode 31 and the cathode 32 to flow a DC current. Went at the same time. The mixed solution 17 in the aeration tank 12
The electric current between the mixed solution 18 in the oxygen-free tank 16 and the mixed solution 18 in the circulation path was conducted.

【0028】上記した条件で排水処理装置の連続運転を
行った結果、原排水の平均BOD :192 mg/l、平均T−N
(全窒素)濃度:47mg/l、平均アンモニウムイオン濃
度:45mg(NH4−N)/lに対し、処理水の平均BOD : 1.1mg
/l、平均T−N(全窒素)濃度:5.3mg/l 、平均アンモ
ニウムイオン濃度: 0.1mg(NH4−N)/lであった。 (実施例2)実施例1において、陽極31として図2(a)
で示される陽極を用い、陰極として金属電極を用いた以
外は実施例1と同様にして排水処理を連続的に行った。
As a result of continuous operation of the wastewater treatment device under the above conditions, the average BOD of the raw wastewater was 192 mg / l and the average TN
(Total nitrogen) concentration: 47 mg / l, mean ammonium ion concentration: 45 mg (NH 4 -N) / l, mean BOD of treated water: 1.1 mg
/ l, average TN (total nitrogen) concentration: 5.3 mg / l, average ammonium ion concentration: 0.1 mg (NH 4 -N) / l. (Embodiment 2) FIG.
The wastewater treatment was continuously performed in the same manner as in Example 1 except that the anode shown in Table 1 was used and a metal electrode was used as the cathode.

【0029】なお、活性炭としては、有機性汚泥である
下水汚泥を脱水し、乾燥、加熱炭化、水蒸気賦活して得
られた活性炭を使用した。この結果、原排水の平均BOD
:201mg/l 、平均T−N(全窒素)濃度:52mg/l、平
均アンモニウムイオン濃度:48mg(NH4−N)/lに対し、処
理水の平均BOD :1.3mg/l 、平均T−N(全窒素)濃
度:3.8mg/l 、平均アンモニウムイオン濃度:0.1 mg(N
H4−N)/lであった。
The activated carbon used was obtained by dewatering sewage sludge, which is an organic sludge, drying, heating and carbonizing, and activating steam. As a result, the average BOD of raw wastewater
: 201 mg / l, average TN (total nitrogen) concentration: 52 mg / l, average ammonium ion concentration: 48 mg (NH 4 -N) / l, mean BOD of treated water: 1.3 mg / l, average T- N (total nitrogen) concentration: 3.8 mg / l, average ammonium ion concentration: 0.1 mg (N
H 4 −N) / l.

【0030】(実施例3)実施例1において、陽極31、
陰極32として各々図2(a) 、図2(b) で示される陽極、
陰極を使用した以外は実施例1と同様にして排水処理を
連続的に行った。なお、活性炭としては、陽極31、陰極
32いずれにおいても実施例2と同じ下水汚泥を原料とし
た活性炭を使用した。
(Example 3) In Example 1, the anode 31,
2 (a) and 2 (b) as the cathode 32,
Drainage treatment was continuously performed in the same manner as in Example 1 except that the cathode was used. As the activated carbon, anode 31, cathode
In all 32, the same activated carbon as sewage sludge as in Example 2 was used.

【0031】この結果、原排水の平均BOD :206mg/l 、
平均T−N(全窒素)濃度:47mg/l、平均アンモニウム
イオン濃度:45mg(NH4−N)/lに対し、処理水の平均BOD
:1.2mg/l 、平均T−N(全窒素)濃度:3.6mg/l 、
平均アンモニウムイオン濃度:0.1 mg(NH4−N)/lであっ
た。 (比較例)実施例1において陽極31と陰極32の間の直流
電圧の印加を停止した以外は実施例1と同一条件で排水
処理装置の連続運転を行った。
As a result, the average BOD of the raw wastewater was 206 mg / l,
Average TN (total nitrogen) concentration: 47 mg / l, average ammonium ion concentration: 45 mg (NH 4 -N) / l, average BOD of treated water
: 1.2 mg / l, average TN (total nitrogen) concentration: 3.6 mg / l,
Average ammonium ion concentration: 0.1 mg (NH 4 -N) / l. (Comparative Example) The continuous operation of the wastewater treatment apparatus was performed under the same conditions as in Example 1 except that the application of the DC voltage between the anode 31 and the cathode 32 was stopped.

【0032】この結果、原排水の平均BOD :195mg/l 、
平均T−N(全窒素)濃度:50mg/l、平均アンモニウム
イオン濃度:48mg(NH4−N)/lに対し、処理水の平均BOD
:1.3 mg/l、平均T−N(全窒素)濃度:10.8mg/l、
平均アンモニウムイオン濃度:1.2 mg(NH4−N)/lであっ
た。以上詳細に説明したように、循環式硝化脱窒法によ
る有機性物質および窒素化合物含有排水の処理におい
て、電極を、陽極は曝気槽内の混合溶液(活性汚泥)中
に、陰極は無酸素槽内の混合溶液中に浸漬配置し、両電
極間に直流電圧を印加し、両槽内の混合溶液間に直流電
流を流し、電気化学反応を行わせることにより、本来の
生物反応と相まって窒素化合物の硝化および脱窒速度を
向上させることができる。
As a result, the average BOD of the raw wastewater was 195 mg / l,
Average TN (total nitrogen) concentration: 50 mg / l, average ammonium ion concentration: 48 mg (NH 4 -N) / l, average BOD of treated water
: 1.3 mg / l, average TN (total nitrogen) concentration: 10.8 mg / l,
Average ammonium ion concentration: 1.2 mg (NH 4 -N) / l. As described in detail above, in the treatment of wastewater containing organic substances and nitrogen compounds by the circulating nitrification denitrification method, the electrodes are placed in the mixed solution (activated sludge) in the aeration tank, and the cathode is placed in the oxygen-free tank. Immersed in the mixed solution of the above, apply a DC voltage between both electrodes, flow DC current between the mixed solutions in both tanks, and perform the electrochemical reaction. The rate of nitrification and denitrification can be improved.

【0033】そのため、原排水中の窒素化合物の含有量
や原排水量の変動、すなわち原排水の負荷変動や水温の
変動に対するプロセスの対応能力が向上する。また、少
なくとも陽極として、金属電極が活性炭充填物中に挿入
された陽極を使用することにより、さらに窒素化合物の
硝化および脱窒速度を向上させることができる。
For this reason, the capability of the process to respond to fluctuations in the content of the nitrogen compound in the raw wastewater and the raw wastewater amount, that is, fluctuations in the load of the raw wastewater and fluctuations in the water temperature is improved. Further, by using at least an anode in which a metal electrode is inserted into an activated carbon filling material, the nitrification and denitrification rates of nitrogen compounds can be further improved.

【0034】さらに、前記活性炭として有機性汚泥を原
料とする汚泥活性炭を使用することにより、汚泥活性炭
が含有する灰分の作用により、アンモニウムイオンなど
の吸着が行われ、窒素化合物含有排水に対する処理性が
さらに向上する。
Further, by using sludge activated carbon made from organic sludge as the activated carbon, adsorption of ammonium ions and the like is performed by the action of ash contained in the activated sludge, thereby improving the processability of wastewater containing nitrogen compounds. Further improve.

【0035】[0035]

【発明の効果】本発明によれば、循環式硝化脱窒法によ
る有機性物質および窒素化合物含有排水の処理におい
て、硝化および脱窒速度を高めることが可能となった。
本発明は、都市下水や集落排水などの生活排水、家畜の
し尿排水、水産加工排水、農産加工排水など有機性物質
および窒素化合物を含む排水の処理を、従来の処理技術
より格段に効率的に実施することを可能にするものであ
る。
According to the present invention, the rate of nitrification and denitrification can be increased in the treatment of wastewater containing organic substances and nitrogen compounds by the circulating nitrification denitrification method.
The present invention makes it possible to treat wastewater containing organic substances and nitrogen compounds, such as domestic wastewater such as municipal sewage and settlement wastewater, livestock wastewater, fishery processing wastewater, and agricultural processing wastewater, much more efficiently than conventional treatment technologies. It is possible to implement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる排水処理装置の一例を示す具体
的構成図(側面図)である。
FIG. 1 is a specific configuration diagram (side view) showing an example of a wastewater treatment device according to the present invention.

【図2】本発明に係わる陽極(a) および陰極(b) の一例
を示す具体的構成図(側面図)である。
FIG. 2 is a specific configuration diagram (side view) showing an example of an anode (a) and a cathode (b) according to the present invention.

【図3】従来の循環式硝化脱窒装置を示す具体的構成図
(側面図)である。
FIG. 3 is a specific configuration diagram (side view) showing a conventional circulation type nitrification and denitrification device.

【符号の説明】[Explanation of symbols]

11 調整槽 12 曝気槽 13 送風機 14 散気装置 15 固液分離装置 16 無酸素槽 17、18 混合溶液(活性汚泥) 19、20、21 送液ポンプ 22 蓋 23 攪拌装置 30 直流電源 31 陽極 32 陰極 33、37 金属電極 34、38 活性炭粒子充填物 35、39 活性炭粒子囲繞・保持部材 36、40 接続端子 11 Regulating tank 12 Aeration tank 13 Blower 14 Aerator 15 Solid-liquid separator 16 Anoxic tank 17, 18 Mixed solution (activated sludge) 19, 20, 21 Liquid pump 22 Lid 23 Stirrer 30 DC power supply 31 Anode 32 Cathode 33, 37 Metal electrode 34, 38 Filled activated carbon particles 35, 39 Activated carbon particle surrounding / holding member 36, 40 Connection terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/46 C02F 1/46 Z 3/34 101 3/34 101Z ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C02F 1/46 C02F 1/46 Z 3/34 101 3/34 101Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 曝気槽と、その上流側に設置された無酸
素槽との間で、汚泥状反応物質を含む混合溶液を循環
し、原排水中に含有される有機性物質および窒素化合物
の分解反応および硝化・脱窒を行う排水の処理方法であ
って、前記無酸素槽の混合溶液中に浸漬した陰極と前記
曝気槽の混合溶液中に浸漬した陽極の間に直流電圧を印
加し、前記両槽内の混合溶液間に直流電流を流すことに
より、生物反応と電気化学反応とを同時に行うことを特
徴とする排水の処理方法。
1. A mixed solution containing a sludge-like reactant is circulated between an aeration tank and an oxygen-free tank installed upstream thereof to remove organic substances and nitrogen compounds contained in raw wastewater. A method for treating wastewater that performs a decomposition reaction and nitrification and denitrification, wherein a DC voltage is applied between a cathode immersed in the mixed solution of the anoxic tank and an anode immersed in the mixed solution of the aeration tank, A method for treating wastewater, wherein a biological reaction and an electrochemical reaction are simultaneously performed by flowing a direct current between the mixed solutions in the two tanks.
【請求項2】 前記陽極の電極が活性炭の充填物中に配
設されてなる請求項1記載の排水の処理方法。
2. The method for treating wastewater according to claim 1, wherein the anode electrode is disposed in a packing of activated carbon.
【請求項3】 前記陰極の電極が活性炭の充填物中に配
設されてなる請求項1または2記載の排水の処理方法。
3. The method for treating wastewater according to claim 1, wherein the cathode electrode is disposed in a packing of activated carbon.
【請求項4】 前記活性炭が有機性汚泥を原料とする活
性炭である請求項2または3記載の排水の処理方法。
4. The method for treating wastewater according to claim 2, wherein the activated carbon is activated carbon using organic sludge as a raw material.
【請求項5】 原排水中に含有される有機性物質および
窒素化合物の分解反応および硝化・脱窒を行う排水の処
理装置であって、該処理装置が、曝気槽と、曝気槽の上
流側に設置された無酸素槽と、該無酸素槽と前記曝気槽
との間で両槽内の汚泥状反応物質を含む混合溶液を循環
させる循環手段とを有し、さらに、前記曝気槽内の混合
溶液中には金属電極の周りに活性炭粒子の充填物を接
触、配置してなる陽極が、前記無酸素槽内の混合溶液中
には金属電極である陰極がそれぞれ設けられ、前記両金
属電極間に電圧を印加し直流電流を流す直流電源が配設
されたことを特徴とする排水の処理装置。
5. A wastewater treatment apparatus for performing a decomposition reaction and nitrification / denitrification of an organic substance and a nitrogen compound contained in raw wastewater, comprising: an aeration tank; and an upstream side of the aeration tank. An anoxic tank, and a circulating means for circulating a mixed solution containing sludge-like reactants in both tanks between the anoxic tank and the aeration tank, further comprising: The mixed solution is provided with an anode formed by contacting and arranging a packing of activated carbon particles around a metal electrode, and the mixed solution in the oxygen-free tank is provided with a cathode serving as a metal electrode. An apparatus for treating wastewater, comprising a DC power supply for applying a voltage therebetween and flowing a DC current.
【請求項6】 前記金属電極である陰極に代えて、金属
電極の周りに活性炭粒子の充填物を接触、配置してなる
陰極とする、請求項5記載の排水の処理装置。
6. The wastewater treatment apparatus according to claim 5, wherein a cathode formed by contacting and arranging a packing of activated carbon particles around the metal electrode is used instead of the cathode serving as the metal electrode.
【請求項7】 前記活性炭が有機性汚泥を原料とする活
性炭である請求項5または6記載の排水の処理装置。
7. The wastewater treatment apparatus according to claim 5, wherein the activated carbon is activated carbon using organic sludge as a raw material.
JP8159968A 1996-06-20 1996-06-20 Treatment of waste water and device therefor Pending JPH105793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8159968A JPH105793A (en) 1996-06-20 1996-06-20 Treatment of waste water and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8159968A JPH105793A (en) 1996-06-20 1996-06-20 Treatment of waste water and device therefor

Publications (1)

Publication Number Publication Date
JPH105793A true JPH105793A (en) 1998-01-13

Family

ID=15705112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8159968A Pending JPH105793A (en) 1996-06-20 1996-06-20 Treatment of waste water and device therefor

Country Status (1)

Country Link
JP (1) JPH105793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509197A (en) * 1999-09-20 2003-03-11 デル ウェインハールト,アドリアーン ヨハネス ヒューベルツス ファン Wastewater purification in livestock raising systems
CN107746164A (en) * 2017-11-23 2018-03-02 沈阳建筑大学 Reduce the electrochemistry AAO devices and its processing method of Sludge in Sewage Treatment amount
CN112830629A (en) * 2020-12-31 2021-05-25 江西挺进环保科技有限公司 Villages and small towns sewage treatment unit
CN114105290A (en) * 2021-11-24 2022-03-01 江苏泰源环保科技股份有限公司 Preparation method and application of modified blue algae biochar loaded nano zero-valent iron material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509197A (en) * 1999-09-20 2003-03-11 デル ウェインハールト,アドリアーン ヨハネス ヒューベルツス ファン Wastewater purification in livestock raising systems
CN107746164A (en) * 2017-11-23 2018-03-02 沈阳建筑大学 Reduce the electrochemistry AAO devices and its processing method of Sludge in Sewage Treatment amount
CN107746164B (en) * 2017-11-23 2023-06-09 沈阳建筑大学 electrochemical-AAO device for reducing sludge amount in sewage treatment and treatment method thereof
CN112830629A (en) * 2020-12-31 2021-05-25 江西挺进环保科技有限公司 Villages and small towns sewage treatment unit
CN114105290A (en) * 2021-11-24 2022-03-01 江苏泰源环保科技股份有限公司 Preparation method and application of modified blue algae biochar loaded nano zero-valent iron material
CN114105290B (en) * 2021-11-24 2023-11-17 江苏泰源环保科技股份有限公司 Preparation method and application of modified blue algae biochar loaded nano zero-valent iron material

Similar Documents

Publication Publication Date Title
KR100767724B1 (en) A method and an apparatus for waste water treatment through biological system combined with flotation separation of activated sluge
KR100906742B1 (en) Treatment method and the apparatus including ultasonic-electrolysis-precipitator and complexed upper filter isolator for domestic sewage or wasted water
JP2004330182A (en) Treating method of water to be treated containing organic material and nitrogen compound
KR20170010679A (en) Treatnent system for organic livestock wastewater by electrolytic oxidation and treatment method thereof
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
KR100291065B1 (en) Waster water and foul water for froth secession disposal process
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
JP2006110482A (en) Method and system for treating liquid organic waste
JPH105793A (en) Treatment of waste water and device therefor
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP2796909B2 (en) Wastewater treatment method
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
CN111547954B (en) Coal chemical wastewater treatment system
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
JPH10258285A (en) Waste water treatment equipment
JP3181521B2 (en) Water treatment method and water treatment device
JPH07323297A (en) Biological treatment of organic sewage
JPS6261700A (en) Apparatus for treating sewage of excretion system
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JPH09108692A (en) Treatment of organic waste water and device therefor
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP3285754B2 (en) Sewage treatment apparatus and operation method thereof
JPH0649197B2 (en) Organic wastewater treatment method
CN211946710U (en) Old landfill leachate treatment device