JPH1055818A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1055818A
JPH1055818A JP8209944A JP20994496A JPH1055818A JP H1055818 A JPH1055818 A JP H1055818A JP 8209944 A JP8209944 A JP 8209944A JP 20994496 A JP20994496 A JP 20994496A JP H1055818 A JPH1055818 A JP H1055818A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
electrolytic solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8209944A
Other languages
Japanese (ja)
Inventor
Hajime Nishino
肇 西野
Masaki Kitagawa
雅規 北川
Masaya Okochi
正也 大河内
Takashi Takeuchi
崇 竹内
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8209944A priority Critical patent/JPH1055818A/en
Publication of JPH1055818A publication Critical patent/JPH1055818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the electrical conductivity of electrolyte, and to secure high capacity at the time of efficient discharge by using the Li included oxide for positive electrode, and using the specified carbon material for negative electrode, and using the specified non-aqueous electrolyte. SOLUTION: A sealing plate 2 provided with a safety valve, an insulating packing 3, a plate group 4, a positive electrode and a negative electrode are spirally wound plural times through a separator, and housed in a battery case 1 having the organization resistant electrolyte characteristic, which is formed by working a stainless steel plate. A positive electrode lead 5 is drawn from the positive electrode, and a negative electrode 6 is drawn from the negative electrode, and they are connected to a bottom part of the battery case 1. An insulating ring 7 is provided in an upper and a lower part of the plate group 4. The positive electrode is obtained by mixing Li2 CO3 , and Co3 O4 . so as to synthesize the powder of LiCoO2 , and mixing acetylene black and fluororesin group binder in the powder of LiCoO2 , and suspending this mixture in the carboxymethylcellulose solution so as to obtain the paste, and coating an aluminium foil with this paste, and drying it, and rolling it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液を用い
た二次電池に関するものです。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。この中でリチ
ウムを活物質とする負極を用いた非水電解液二次電池は
とりわけ高電圧、高エネルギー密度を有する電池として
期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there has been a demand for a small, lightweight and high energy density secondary battery as a power supply for driving these devices. high. Among them, a non-aqueous electrolyte secondary battery using a negative electrode containing lithium as an active material is particularly expected as a battery having a high voltage and a high energy density.

【0003】この非水電解液二次電池では、正極活物質
にLiCoO2やLiNiO2、LiMn24等のリチウ
ムに対して4V級の電圧を示すリチウム含有金属酸化物
が用いられ、負極にはリチウムを吸蔵、放出することが
できる炭素材料等が用いられている。
In this non-aqueous electrolyte secondary battery, a lithium-containing metal oxide, such as LiCoO 2 , LiNiO 2 , or LiMn 2 O 4, which exhibits a voltage of 4V class with respect to lithium is used as a positive electrode active material, and a negative electrode is used as a negative electrode. For example, a carbon material capable of inserting and extracting lithium is used.

【0004】この非水電解液は高電圧においても電気分
解されない必要がある。一般に、有機溶媒は、水溶液に
比べ比誘電率が小さい。比誘電率の大きさは、溶媒中で
のイオン対の解離し易さに大きく関与しており、この値
が大きければ、多くのイオン対を溶解することができ
る。しかし、上記のように有機溶媒は比誘電率が小さ
く、水溶液に比べるとわずかのイオン対しか溶解できな
い。すなわち、非水系の有機電解液は電荷の担い手であ
るイオンが僅かしか溶解出来ないため、電解液としての
電気伝導度は水溶液系に比べ小さいといえる。
The non-aqueous electrolyte must not be electrolyzed even at a high voltage. In general, an organic solvent has a lower dielectric constant than an aqueous solution. The magnitude of the relative permittivity is greatly related to the ease of dissociation of ion pairs in a solvent, and if this value is large, many ion pairs can be dissolved. However, as described above, the organic solvent has a small relative dielectric constant, and can dissolve only a few ion pairs as compared with an aqueous solution. That is, since the non-aqueous organic electrolytic solution can dissolve only a small amount of ions that carry charges, the electric conductivity of the electrolytic solution can be said to be smaller than that of the aqueous solution type.

【0005】このため、水溶液系二次電池であるニッケ
ル−カドミウム電池や鉛蓄電池と比較して電解液による
内部抵抗が大きく、大電流で放電を行うと過電圧が大き
くなり容量が低下する原因となる。
[0005] For this reason, the internal resistance due to the electrolytic solution is larger than that of nickel-cadmium batteries and lead-acid batteries which are aqueous secondary batteries, and when a large current is discharged, the overvoltage increases and the capacity decreases. .

【0006】また、高い比誘電率を有する有機溶媒は一
般に粘度が高い。電解液の粘度は、イオンの移動抵抗に
直接関わるため、電解液の電気伝導度が溶液粘度によっ
てほぼ決定づけられることが多い。従って、低粘度の溶
媒を混合して電解液の電気伝導度を最適化し、大電流に
おける放電特性を確保している。
[0006] An organic solvent having a high relative dielectric constant generally has a high viscosity. Since the viscosity of the electrolytic solution is directly related to the ion migration resistance, the electric conductivity of the electrolytic solution is almost always determined by the solution viscosity. Therefore, the electric conductivity of the electrolytic solution is optimized by mixing a low-viscosity solvent, and the discharge characteristics at a large current are secured.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、現行の
非水電解液二次電池では、低粘度の有機溶媒を組み合わ
せて電解液の粘度を下げ、より高い電気伝導度を獲得し
てきた。しかし、低粘度の有機溶媒は、比誘電率が低い
ため電解液自身の比誘電率も低下し、溶質のイオン解離
が進まず、電解液の伝導度にほとんど関与しなくなる。
このため、低粘度の有機溶媒の添加量に比例して電気伝
導性の増加が期待できない。
However, in the current non-aqueous electrolyte secondary battery, a low viscosity organic solvent is used in combination to lower the viscosity of the electrolyte and obtain higher electric conductivity. However, since the low-viscosity organic solvent has a low relative dielectric constant, the relative dielectric constant of the electrolytic solution itself also decreases, so that the ionic dissociation of the solute does not proceed, and the organic solvent hardly contributes to the conductivity of the electrolytic solution.
Therefore, an increase in electric conductivity cannot be expected in proportion to the amount of the low-viscosity organic solvent added.

【0008】本発明はこのような課題を解決するもので
あり、電解液の電気伝導性を増加させ、高率放電時にお
いても高容量の非水電解液二次電池を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery which increases the electric conductivity of an electrolyte and has a high capacity even at a high rate of discharge.

【0009】[0009]

【課題を解決するための手段】本発明は、リチウム含有
酸化物を用いた正極と、リチウムを吸蔵、放出すること
ができる炭素材料を用いた負極と、非水電解液を備えて
おり、前記電解液には電子受容性、Accepter Number
(AN)が13.0以上の化学物質を添加することを特
徴とする。これによって、電解液の比誘電率が増加し電
気伝導度が向上する。
According to the present invention, there is provided a positive electrode using a lithium-containing oxide, a negative electrode using a carbon material capable of inserting and extracting lithium, and a non-aqueous electrolyte. Electrolyte is electron accepting, Accepter Number
(AN) is characterized by adding a chemical substance of 13.0 or more. As a result, the relative permittivity of the electrolytic solution increases, and the electric conductivity improves.

【0010】一般に溶媒の電子受容性を表すパラメータ
ーとして、Accepter Number(アクセプターナンバー
(AN))が用いられている。ここで、Accepter Num
berとは Gutmann によって導入されたものであ
り、対象とする溶媒中での(C253POの 31P N
MRの化学シフトから求められるもので、ヘキサン中で
の値を0と定義し、1,2-ジクロロエタン中での (C2
53PO・SbCl 5付加体の値を100としたときの
相対値で表せれられる。それ故、ANは溶媒の電子受容
性、すなわち親電子性の尺度となる。
Generally, a parameter representing the electron accepting property of a solvent
-Accepter Number (acceptor number
(AN)). Here, Acceptor Num
ber is introduced by Gutmann
(C) in the target solventTwoHFive)ThreePO's31P N
Calculated from MR chemical shift, in hexane
Is defined as 0, and (C) in 1,2-dichloroethaneTwoH
Five)ThreePO ・ SbCl FiveWhen the value of the adduct is 100
It is expressed as a relative value. Therefore, AN is the electron acceptor of the solvent.
Gender, a measure of electrophilicity.

【0011】[0011]

【発明の実施の形態】電解液の電気伝導性を大きくする
ためには、電解質を高濃度に溶解する必要がある。しか
し、電解液中に低粘度の溶媒を混合しているため電解液
の誘電率が低くなり、電解質のイオン解離が進まず電解
質の濃度に対して、電気伝導度の増加が期待できなかっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to increase the electric conductivity of an electrolytic solution, it is necessary to dissolve the electrolyte at a high concentration. However, since a low-viscosity solvent is mixed in the electrolytic solution, the dielectric constant of the electrolytic solution is lowered, and ion dissociation of the electrolyte does not proceed, and an increase in electric conductivity with respect to the concentration of the electrolyte cannot be expected.

【0012】そこで、本発明は電解液の添加剤として電
子受容性の化学物質、すなわちAccepter Number(A
N)が13.0以上の化学物質を非水電解液に添加し
た。電子受容性の化学物質は、主にアニオンの周りに配
位する。これによりアニオンとカチオンの間に働く相互
作用が弱まり、電解液の比誘電率が増加した。このよう
にして、溶質のイオン解離が促進され、同濃度において
も電解液の電気伝導性が上がった。
Therefore, the present invention provides an additive for an electrolytic solution, which is an electron-accepting chemical substance, that is, an acceptor number (A
A chemical substance having N) of 13.0 or more was added to the non-aqueous electrolyte. The electron-accepting chemical coordinates mainly around the anion. This weakened the interaction between anions and cations and increased the dielectric constant of the electrolyte. In this way, ion dissociation of the solute was promoted, and the electrical conductivity of the electrolytic solution was increased even at the same concentration.

【0013】高い比誘電率を示す溶媒は、様々に考え得
るが、この発明で特に優れている点は、溶媒の電子受容
性に注目した点にある。
Various solvents having a high relative dielectric constant can be considered, but the most excellent point of the present invention is that attention is paid to the electron accepting property of the solvent.

【0014】主にリチウムイオン二次電池の場合、電荷
移動はカチオンであるリチウムイオンによって行われ
る。そのためカチオンに対する溶媒和は、カチオンの移
動度を減少させ、電解液の電気伝導性に影響しかねな
い。そこでアニオンに対する溶媒和に注目し、電子受容
性の化学物質を添加剤として投入した。
[0014] In the case of a lithium ion secondary battery mainly, charge transfer is performed by lithium ions which are cations. Thus, solvation for the cations can reduce the mobility of the cations and affect the electrical conductivity of the electrolyte. Therefore, attention was paid to solvation for anions, and an electron-accepting chemical substance was added as an additive.

【0015】上記のような作用により、高い電気伝導性
を示す電解液を得て、充放電特性に優れた電池を提供す
ることができる。
By the above-described operation, an electrolyte having high electric conductivity can be obtained, and a battery having excellent charge / discharge characteristics can be provided.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)図1に本実施例で用いた円筒
形電池の縦断面図を示す。図において、1は耐有機電解
液性のステンレス鋼板を加工した電池ケ−ス、2は安全
弁を設けた封口板、3は絶縁パッキングを示す。4は極
板群であり、正極および負極がセパレ−タを介して複数
回渦巻状に巻回されてケース1内に収納されている。そ
して上記正極からは正極リ−ド5が引き出されて封口板
2に接続され、負極からは負極リ−ド6が引き出されて
電池ケ−ス1の底部に接続されている。7は絶縁リング
で極板群4の上下部にそれぞれ設けられている。以下
正、負極板等について詳しく説明する。
Embodiment 1 FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In the drawing, reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes a group of electrode plates. The positive electrode and the negative electrode are spirally wound a plurality of times via a separator and housed in the case 1. A positive electrode lead 5 is drawn from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the positive and negative electrode plates will be described in detail.

【0018】正極はLi2CO3とCo34とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末の重量に対して、アセチレンブラック3%、フッ素樹
脂系結着剤7%を混合し、カルボキシメチルセルロ−ス
水溶液に懸濁させて正極合剤ペ−ストとした。厚さ30
μmのアルミ箔に正極合剤ペーストを塗工し、乾燥後圧
延して厚さ0.18mm、幅37mm、長さ390mm
の正極板とした。
The cathode mixes Li 2 CO 3 and Co 3 O 4 ,
3% of acetylene black and 7% of a fluororesin binder are mixed with the weight of the LiCoO 2 powder synthesized by baking at 900 ° C. for 10 hours, and suspended in an aqueous solution of carboxymethyl cellulose to form a positive electrode. An agent paste was used. Thickness 30
A positive electrode mixture paste is applied to an aluminum foil of μm, dried and rolled, and is 0.18 mm thick, 37 mm wide and 390 mm long.
Of the positive electrode plate.

【0019】負極はメソフェ−ズ小球体を2800℃の
高温で黒鉛化したもの(以下メソフェ−ズ黒鉛と称す)
を用いた。このメソフェ−ズ黒鉛の重量に対して、スチ
レン/ブタジエンゴム5%を混合した後、カルボキシメ
チルセルロ−ス水溶液に懸濁させてペ−スト状にした。
そしてこの負極合剤ペーストを厚さ0.02mmのCu
箔の両面に塗工し、乾燥後圧延して、厚さ0.20m
m、幅39mm、長さ420mmの負極板とした。
The negative electrode is obtained by graphitizing mesophase small spheres at a high temperature of 2800 ° C. (hereinafter referred to as mesophase graphite).
Was used. After mixing 5% of styrene / butadiene rubber with respect to the weight of the mesophase graphite, the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste.
Then, this negative electrode mixture paste was coated with 0.02 mm thick Cu.
Coated on both sides of foil, rolled after drying, thickness 0.20m
m, a width of 39 mm, and a length of 420 mm.

【0020】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリ−ドをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ950mmのポリプ
ロピレン製セパレ−タを介して渦巻状に巻回し、直径1
7.0mm、高さ50.0mmの電池ケ−スに納入し
た。電解液にはエチレンカーボネート(EC)とジエチ
ルカーボネート(DEC)とプロピオン酸メチル(M
P)とを30:50:20の体積比で混合した溶媒に1
モル/リットルのLiPF6を溶解したものを用い、電
解液の添加剤として、2容量%のN,N−ジメチルホル
ムアミド(DMF)を用いこれを注液した後封口し、本発明
の電池Aとした。
A lead made of aluminum is attached to the positive electrode plate, and a lead made of nickel is attached to the negative electrode plate, and is spirally formed through a polypropylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 950 mm. Wound, diameter 1
It was delivered to a 7.0 mm, 50.0 mm height battery case. The electrolytes include ethylene carbonate (EC), diethyl carbonate (DEC) and methyl propionate (M
P) and 30:50:20 in a volume ratio of 1:
A solution in which mol / l of LiPF6 was dissolved was used, and 2% by volume of N, N-dimethylformamide (DMF) was used as an additive for the electrolytic solution. .

【0021】(実施例2)電解液の添加剤として、2容
量%のアセトニトリル(ACN)を用いた以外は(実施
例1)と同様の電池を構成した。これを本発明の電池B
とした。
Example 2 A battery was constructed in the same manner as in Example 1 except that 2% by volume of acetonitrile (ACN) was used as an additive for the electrolytic solution. This is called Battery B of the present invention.
And

【0022】(実施例3)電解液の添加剤として、2容
量%のジメチルスルホキシド(DMSO)を用いた以外
は(実施例1)と同様の電池を構成した。これを本発明
の電池Cとした。
Example 3 A battery was constructed in the same manner as in Example 1 except that 2% by volume of dimethyl sulfoxide (DMSO) was used as an additive for the electrolytic solution. This was designated as Battery C of the present invention.

【0023】(実施例4)電解液の添加剤として、2容
量%のスルホラン(SL)を用いた以外は(実施例1)
と同様の電池を構成した。これを本発明の電池Dとし
た。
(Example 4) Except that 2% by volume of sulfolane (SL) was used as an additive for the electrolytic solution (Example 1)
A battery similar to the above was constructed. This was designated as Battery D of the present invention.

【0024】(実施例5)電解液の添加剤として、2容
量%のニトロメタン(NM)を用いた以外は(実施例
1)と同様の電池を構成した。これを本発明の電池Eと
した。
Example 5 A battery was constructed in the same manner as in Example 1 except that 2% by volume of nitromethane (NM) was used as an additive for the electrolytic solution. This was designated as Battery E of the present invention.

【0025】(実施例6)電解液の添加剤として、2容
量%のN−メチルピロリジノン(NMP)を用いた以外
は(実施例1)と同様の電池を構成した。これを本発明
の電池Fとした。
Example 6 A battery was constructed in the same manner as in Example 1 except that 2% by volume of N-methylpyrrolidinone (NMP) was used as an additive for the electrolytic solution. This was designated as Battery F of the present invention.

【0026】(実施例7)電解液の添加剤として、2容
量%のピリジンを用いた以外は(実施例1)と同様の電
池を構成した。これを本発明の電池Gとした。
Example 7 A battery was constructed in the same manner as in Example 1 except that 2% by volume of pyridine was used as an additive for the electrolytic solution. This was designated as Battery G of the present invention.

【0027】(実施例8)電解液の添加剤として、2容
量%のニトロベンゼン(NB)を用いた以外は(実施例
1)と同様の電池を構成した。これを本発明の電池Hと
した。
Example 8 A battery was constructed in the same manner as in Example 1 except that 2% by volume of nitrobenzene (NB) was used as an additive for the electrolytic solution. This was designated as Battery H of the present invention.

【0028】(実施例9)電解液の添加剤として、2容
量%のベンゾニトリル(BN)を用いた以外は(実施例
1)と同様の電池を構成した。これを本発明の電池Iと
した。
Example 9 A battery was constructed in the same manner as in Example 1 except that 2% by volume of benzonitrile (BN) was used as an additive for the electrolytic solution. This was designated as Battery I of the present invention.

【0029】(実施例10)電解液の添加剤として、2
容量%のジクロロメタン(DCM)を用いた以外は(実
施例1)と同様の電池を構成した。これを本発明の電池
Jとした。
Example 10 As an additive for an electrolytic solution, 2
A battery was constructed in the same manner as in (Example 1) except that dichloromethane (DCM) was used at a capacity of%. This was designated as Battery J of the present invention.

【0030】(実施例11)電解液の添加剤として、2
容量%のトリクロロメタン(TCM)を用いた以外は
(実施例1)と同様の電池を構成した。これを本発明の
電池Kとした。
(Example 11) As an additive of an electrolytic solution, 2
A battery was constructed in the same manner as in (Example 1) except that a volume% of trichloromethane (TCM) was used. This was designated as Battery K of the present invention.

【0031】(実施例12)電解液の添加剤として、2
容量%のホルムアミド(FA)を用いた以外は(実施例
1)と同様の電池を構成した。これを本発明の電池Lと
した。
(Example 12) As an additive of an electrolytic solution, 2
A battery was constructed in the same manner as in (Example 1) except that a volume% of formamide (FA) was used. This was designated as Battery L of the present invention.

【0032】(比較例1)添加剤を加えていない電解液
を用いた以外は、(実施例1)と同様の電池を構成し、
これを比較の電池Mとした。
(Comparative Example 1) A battery similar to that of (Example 1) was constructed except that an electrolytic solution containing no additive was used.
This was designated as Comparative Battery M.

【0033】(比較例2)電解液の添加剤として、2容
量%のヘキサンを用いた以外は(実施例1)と同様の電
池を構成した。これを比較の電池Nとした。
Comparative Example 2 A battery was constructed in the same manner as in Example 1 except that 2% by volume of hexane was used as an additive for the electrolytic solution. This was designated as Comparative Battery N.

【0034】(比較例3)電解液の添加剤として、2容
量%のジエチルエーテル(DEE)を用いた以外は(実
施例1)と同様の電池を構成した。これを比較の電池O
とした。
Comparative Example 3 A battery was constructed in the same manner as in Example 1 except that 2% by volume of diethyl ether (DEE) was used as an additive for the electrolytic solution. Compare this with battery O
And

【0035】(比較例4)電解液の添加剤として、2容
量%のテトラヒドロフラン(THF)を用いた以外は
(実施例1)と同様の電池を構成した。これを比較の電
池Pとした。
Comparative Example 4 A battery was constructed in the same manner as in (Example 1) except that 2% by volume of tetrahydrofuran (THF) was used as an additive for the electrolytic solution. This was designated as Comparative Battery P.

【0036】(比較例5)電解液の添加剤として、2容
量%のベンゼンを用いた以外は(実施例1)と同様の電
池を構成した。これを比較の電池Qとした。
(Comparative Example 5) A battery similar to (Example 1) was constructed except that 2% by volume of benzene was used as an additive for the electrolytic solution. This was designated as Comparative Battery Q.

【0037】(比較例6)電解液の添加剤として、2容
量%のアセトンを用いた以外は(実施例1)と同様の電
池を構成した。これを比較の電池Rとした。
Comparative Example 6 A battery was constructed in the same manner as in Example 1 except that 2% by volume of acetone was used as an additive for the electrolytic solution. This was designated as Comparative Battery R.

【0038】次に、本発明の電池A〜Lと比較の電池M
〜Rを各5セルずつ準備して、環境温度20℃で、充電
電圧4.1V、充電時間2時間の制限電流500mAの
定電圧充電を行った充電状態の電池の放電特性を調べ
た。
Next, battery M in comparison with batteries A to L of the present invention
RR were prepared for each 5 cells, and the discharge characteristics of the battery in a charged state in which constant voltage charging was performed at an ambient temperature of 20 ° C., a charging voltage of 4.1 V, and a charging current of 500 mA for a charging time of 2 hours, were examined.

【0039】この充電状態の電池を0.2A,1A,2
Aで放電し、容量を測定した。0.2Aでの放電容量を
100%として、1A,2Aの放電容量の維持率を(表
1)に示す。
The batteries in this charged state were charged at 0.2 A, 1 A, 2
A was discharged and the capacity was measured. Assuming that the discharge capacity at 0.2 A is 100%, the maintenance rates of the discharge capacities at 1 A and 2 A are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】以上のように、明らかに本発明の添加剤の
効果が有ることがわかった。さらにAccepter Number
(AN)が13.0以上の時に、2A/0.2Aの放電
容量の維持率が向上することがわかった。
As described above, it was apparent that the additive of the present invention had an effect. Further Acceptor Number
It was found that when (AN) was 13.0 or more, the maintenance ratio of the discharge capacity of 2 A / 0.2 A was improved.

【0042】また、各添加剤の濃度に対する検討を行っ
た結果、添加量が0.1容量%以上で電池の放電特性の
向上に効果が現れだし、20容量%を越えると逆に放電
特性が悪くなり始めた。これは、電解液自身の電気伝導
率が減少したためと考えられる。
Investigations on the concentration of each additive revealed that an effect of improving the discharge characteristics of the battery was obtained when the additive amount was 0.1% by volume or more, and conversely, when the amount exceeded 20% by volume, the discharge characteristics deteriorated. It started to get worse. This is considered to be because the electric conductivity of the electrolytic solution itself decreased.

【0043】以上のような効果は、Accepter Number
(AN)が13.0以上の他の有機化合物、または、無
機化合物についても同様の結果が得られた。
The above effects are obtained by using the Accepter Number.
Similar results were obtained for other organic compounds or inorganic compounds having (AN) of 13.0 or more.

【0044】[0044]

【発明の効果】以上のように本発明では、Accepter
Numberの高い物質を非水電解液に添加するので、電解
液の電気伝導率を向上させることができ、電池の放電特
性の向上させることができる。
As described above, according to the present invention, the Acceptor
Since a substance having a high Number is added to the non-aqueous electrolyte, the electric conductivity of the electrolyte can be improved, and the discharge characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒形非水電解液二次電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケ−ス 2 封口板 3 絶縁パッキング 4 極板群 5 正極リ−ド 6 負極リ−ド 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 崇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takashi Takeuchi 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウム含有酸化物を用いた正極と、リチ
ウムを吸蔵、放出することができる炭素材料を用いた負
極と、非水電解液とを備えており、非水電解液に、Acc
epter Number(AN)が13.0以上の化学物質を添
加した非水電解液二次電池。
1. A non-aqueous electrolyte comprising a positive electrode using a lithium-containing oxide, a negative electrode using a carbon material capable of inserting and extracting lithium, and a non-aqueous electrolyte.
Non-aqueous electrolyte secondary battery to which a chemical substance having an epter number (AN) of 13.0 or more is added.
【請求項2】Accepter Number(AN)が13.0以
上の化学物質を、非水電解液に対して0.1〜20容量
%添加する請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a chemical substance having an acceptor number (AN) of 13.0 or more is added in an amount of 0.1 to 20% by volume based on the non-aqueous electrolyte.
JP8209944A 1996-08-08 1996-08-08 Nonaqueous electrolyte secondary battery Pending JPH1055818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8209944A JPH1055818A (en) 1996-08-08 1996-08-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209944A JPH1055818A (en) 1996-08-08 1996-08-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1055818A true JPH1055818A (en) 1998-02-24

Family

ID=16581257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209944A Pending JPH1055818A (en) 1996-08-08 1996-08-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1055818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222531A (en) * 2001-02-02 2011-11-04 Daikin Ind Ltd Electrode surface coating film forming agent
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
JP2016526803A (en) * 2013-07-12 2016-09-05 イオクサス, インコーポレイテッド Stability enhancing additives for electrochemical devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222531A (en) * 2001-02-02 2011-11-04 Daikin Ind Ltd Electrode surface coating film forming agent
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
US9742033B2 (en) 2002-07-15 2017-08-22 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
US10050307B2 (en) 2002-07-15 2018-08-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP2016526803A (en) * 2013-07-12 2016-09-05 イオクサス, インコーポレイテッド Stability enhancing additives for electrochemical devices
JP2019179931A (en) * 2013-07-12 2019-10-17 イオクサス, インコーポレイテッド Stability enhancing additive for electrochemical device

Similar Documents

Publication Publication Date Title
CN101595582B (en) Cathode active material and secondary battery comprising the same
US6919143B2 (en) Positive active material composition for lithium-sulfur battery and lithium-sulfur battery fabricated using same
JP4604460B2 (en) Nonaqueous electrolyte secondary battery and battery charge / discharge system
CN104170120B (en) Lithium secondary battery and employ its electronic equipment, charging system and charging method
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP2004103560A (en) Electrolytic solution for lithium-sulfur battery and lithium-sulfur battery containing electrolytic solution
JP2005100770A (en) Nonaqueous electrolytic solution battery
JP5082198B2 (en) Lithium ion secondary battery
JPH10312811A (en) Nonaqeous electrolyte secondary battery
WO2020124742A1 (en) Application of polymer containing hindered amine structure in secondary lithium battery
Liu et al. Molten salt electrolyte based on alkali bis (fluorosulfonyl) imides for lithium batteries
KR101356393B1 (en) A positive electrode for lithium-sulfur battery, and lithium-sulfur battery comprising the same
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JPH08138649A (en) Non-aqueous secondary battery
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
JP2005294028A (en) Lithium secondary battery
JP4638453B2 (en) Nonaqueous electrolyte secondary battery operation method
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH1055818A (en) Nonaqueous electrolyte secondary battery
JP2008234851A (en) Nonaqueous electrolyte secondary battery
JP4274663B2 (en) Nonaqueous electrolyte secondary battery
JP2009252431A (en) Nonaqueous electrolyte secondary battery
US20220006124A1 (en) Methods of improving performance of ionic liquid electrolytes in lithium-ion batteries
JPH1079262A (en) Non-aqueous electrolyte secondary battery
KR101225893B1 (en) Electrochemical device with high safety