JPH1053820A - Treatment of metal compounds of steel dust, sludge and/ or ore - Google Patents

Treatment of metal compounds of steel dust, sludge and/ or ore

Info

Publication number
JPH1053820A
JPH1053820A JP21273496A JP21273496A JPH1053820A JP H1053820 A JPH1053820 A JP H1053820A JP 21273496 A JP21273496 A JP 21273496A JP 21273496 A JP21273496 A JP 21273496A JP H1053820 A JPH1053820 A JP H1053820A
Authority
JP
Japan
Prior art keywords
ore
sludge
aluminum
metal
metal compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21273496A
Other languages
Japanese (ja)
Inventor
Giichi Koshiba
義一 小柴
Yasuo Otani
康夫 大谷
Itaru Suyama
格 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI GIKEN HANBAI KK
Original Assignee
ASAHI GIKEN HANBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI GIKEN HANBAI KK filed Critical ASAHI GIKEN HANBAI KK
Priority to JP21273496A priority Critical patent/JPH1053820A/en
Publication of JPH1053820A publication Critical patent/JPH1053820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for steel making dust and sludge metal compds. which decreases the calorific value to be charged at the time of treating the steel making dust and sludge metal compds. by utilizing aluminum-containing aluminum residue ashes in particular as the treatment method for the steel making dust and sludge metal compds. SOLUTION: Carbon-contg. reducing agents and the aluminum-containing aluminum residue ashes and further, binders at need are added and mixed to and with the steel making dust and sludge metal compds. and/or metal compds. contg. ores of at least one among any of nickel ore, chromium ore, manganese ore, titanium ore and iron ore and the mixture is molded to form moldings. These moldings are ignited to be self burned by heating or electric discharging and thereafter, the moldings are charged into a melting furnace and are subjected to reduction melting. The moldings are otherwise charged directly into the melting furnace and are subjected to the reduction refining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は製鋼ダスト、スラッ
ジ及び/又は鉱石の金属化合物類の処理方法に関し、特
にアルミニウム含有アルミ残灰を利用して製鋼ダスト、
スラッジ金属化合物類の処理時における投入熱量を減少
させた製鋼ダスト、スラッジ金属化合物類の処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating metal compounds of steelmaking dust, sludge and / or ore, and more particularly to a method of treating steelmaking dust using aluminum residual ash containing aluminum.
The present invention relates to a method for treating steelmaking dust and sludge metal compounds in which the amount of heat input during the treatment of sludge metal compounds is reduced.

【0002】[0002]

【従来技術】従来より製鋼ダスト、スラッジ金属化合物
類の処理方法としては、それらに炭素系還元剤と粘結剤
とを加え混合してペレットやブリケットに成形し、得ら
れたペレットやブリケット状成形物を予熱乾燥後、高温
スラグ内に投入し加熱して有用金属を還元回収する技術
が知られており、例えば、特開昭60−43444号公
報には溶滓の顕熱を有効利用してNiやFeを回収する
ダストの無公害処理が開示されている。同じく溶滓の顕
熱を利用する方法であって、還元剤として炭素質を使用
し、これと種々の還元助剤と組合せることによる製鋼ダ
スト、スラッジ金属化合物類の処理方法が知られてい
る。例えば、特公昭60−159128号公報には、還
元助剤として、CaCl2またはNaClを、特公昭6
0−159133号公報には、CaCl2、NaCl及
び鋳鉄粉を、特公昭60−159129号公報にはCa
Cl2、NaClまたはソーダ灰を、特公昭60−15
9130号公報にはアルカリ金属炭酸塩(Na2CO3
2CO3)を使用する技術がそれぞれ開示されている。
2. Description of the Related Art Conventionally, as a method of treating steelmaking dust and sludge metal compounds, a carbon-based reducing agent and a binder are added thereto, mixed and formed into pellets or briquettes, and the resulting pellets or briquettes are formed. A technique is known in which a material is preheat-dried, then put into a high-temperature slag and heated to reduce and recover useful metals. For example, Japanese Patent Application Laid-Open No. Sho 60-43444 discloses a method for effectively utilizing the sensible heat of slag. Pollution-free treatment of dust for recovering Ni and Fe is disclosed. It is also a method utilizing sensible heat of slag, which uses carbonaceous material as a reducing agent and combines it with various reducing aids to treat steelmaking dust and sludge metal compounds. . For example, Japanese Patent Publication No. 60-159128 discloses CaCl 2 or NaCl as a reducing aid,
No. 0-159133 discloses CaCl 2 , NaCl and cast iron powder, and Japanese Patent Publication No. 60-159129 discloses Ca
Cl 2 , NaCl or soda ash can be obtained by
No. 9130 discloses an alkali metal carbonate (Na 2 CO 3 ,
Techniques using K 2 CO 3) is disclosed, respectively.

【0003】しかし、これらの方法は、何れも熱源とし
てスラグ顕熱を使う技術であるからスラグの発生量、発
生のタイミングによって処理量が制約される難点があ
る。また、還元剤に炭素質を用いるため1,400℃以
上の高温にしないと反応時間が長く、還元効率が低い。
また、スラグ中にダストやスラッジ金属化合物類を投入
するとスラグ温度が低下して反応が抑制され、更に溶滓
の粘度が急激に上昇し、揮発成分の揮化が不完全になる
という欠点もある。溶滓温度の低下抑制のため、塊状成
形物に予め燃焼剤、例えば液体燃料を混合して焙焼させ
る方法(特願昭59−136364号公報参照)や炭素
質燃料と燃焼助剤(例えば、鉄粉、アルミニウム粉、フ
ェロシリコン粉、KCl)を混合した塊状成形を焙焼さ
せて、溶滓と反応させる方法(特開昭60−18124
7号公報、特開昭60−218415号公報参照)や、
還元剤として炭素質、アルミニウム粉、フェロシリコン
粉、還元助剤としてNaCl、CaCl2、KClO3
鋳鉄粉を用いる方法(特開昭60−187632号公報
参照)が知られている。これらの方法は、炭素質還元剤
を使用するため塊状成形物の焙焼に3〜5時間もの長時
間を有すること、空気量のコントロールが難しく焼上り
が不均一になり易いという欠点がある。その結果、有価
メタルの回収率が劣化するという問題が生じる。
[0003] However, these methods are all technologies using slag sensible heat as a heat source, and thus have a drawback that the processing amount is restricted by the amount and timing of slag generation. In addition, since carbonaceous material is used as the reducing agent, the reaction time is long and the reduction efficiency is low unless the temperature is raised to 1,400 ° C. or higher.
In addition, when dust and sludge metal compounds are introduced into the slag, the slag temperature is lowered to suppress the reaction, and furthermore, the viscosity of the slag increases sharply, and the volatilization of volatile components becomes incomplete. . In order to suppress a decrease in the temperature of the slag, a method of preliminarily mixing and burning a combusting agent, for example, a liquid fuel, into the lump-shaped product (see Japanese Patent Application No. 59-136364) or a method of mixing a carbonaceous fuel and a combustion aid ( A method in which a block formed by mixing iron powder, aluminum powder, ferrosilicon powder, and KCl) is roasted and reacted with slag (Japanese Patent Application Laid-Open No. 60-18124).
No. 7, JP-A-60-218415),
Carbonaceous, aluminum powder, ferrosilicon powder as a reducing agent, NaCl, CaCl 2 , KClO 3 as a reducing aid,
A method using cast iron powder (see JP-A-60-187632) is known. These methods have drawbacks in that the roasting of a lump-shaped molded article requires a long time of 3 to 5 hours because a carbonaceous reducing agent is used, and the control of the amount of air is difficult and the baking tends to be uneven. As a result, there arises a problem that the recovery rate of the valuable metal is deteriorated.

【0004】また、ダスト、スラッジ金属化合物類を加
熱乾燥して粉体のまま、コークス、充填層堅型炉へ吹込
んで還元する方法が、特開平6−179905号公報に
開示されている。しかし、この方法は、設備が大掛りで
処理物が大量に供給されないと採用できる方法ではな
い。また、アルミニウム含有アルミニウム残灰(以下A
l残灰と記す)中のAlのテルミット反応を利用する技
術に関しては、製鋼ダスト、スラッジよりZnを回収す
る方法(特開平5−202436号公報)がある。この
方法は、製鋼ダスト、スラッジをロータリーキルン等で
還元焙焼し、Zn及びPbなどの揮発しやすい成分を粗
酸化亜鉛として補集する。この粗酸化亜鉛にAl残灰と
フラックス(CaO、Na2CO3、NaOHなど)を加
え塊成化し、AlとZnOのテルミット反応によりZn
を還元、揮発させる。揮発した金属Znをフィルターで
回収する技術である。この技術は、Znの回収を粗酸化
亜鉛−揮発還元と2段階で得るものであってそれぞれの
段階で多量の熱エネルギ−を消費するという難点があ
る。
Japanese Patent Application Laid-Open No. 6-179905 discloses a method in which dusts and sludge metal compounds are heated and dried to be blown into a coke or packed-bed hardened furnace as powder to reduce the same. However, this method is not a method that can be adopted unless a large amount of equipment and a large amount of processed material are supplied. In addition, aluminum-containing aluminum residual ash (hereinafter A)
With respect to the technology utilizing the thermite reaction of Al in 1 residual ash), there is a method of recovering Zn from steelmaking dust and sludge (JP-A-5-202436). In this method, steelmaking dust and sludge are reduced and roasted in a rotary kiln or the like, and volatile components such as Zn and Pb are collected as crude zinc oxide. Al residual ash and flux (CaO, Na 2 CO 3 , NaOH, etc.) are added to the crude zinc oxide to form an agglomerate, and Zn is formed by a thermite reaction between Al and ZnO.
Is reduced and volatilized. This is a technique for collecting volatile metal Zn with a filter. This technique obtains Zn in two stages, that is, crude zinc oxide and volatile reduction, and has the disadvantage that a large amount of heat energy is consumed in each stage.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記の
欠点を改良すべく種々検討した結果、炭素質還元剤と共
にAl23を含んだAl粉、特にAl溶解時の副産物で
あるAl残灰を使用することにより塊状成形体の成形性
が良く、焙焼性の向上した塊状成形体が得られることを
見出し、更にAlテルミット反応特有の速い反応速度
と、Al23生成熱量の大きいため、成形体自体が高温
になることが有効に作用し、金属の回収率が向上すると
の知見を得、この知見に基づいて更に検討した結果、本
発明を完成したもので、本発明の目的はアルミニウム含
有アルミ残灰を利用して製鋼ダスト、スラッジ金属化合
物類の処理時における外部から加える熱量を減少させた
製鋼ダスト、スラッジ金属化合物類の処理方法を提供す
る。
The present inventors have made various studies to improve the above-mentioned drawbacks, and as a result, have found that Al powder containing Al 2 O 3 together with a carbonaceous reducing agent, particularly a by-product when Al is dissolved. good moldability massive molded article by using the Al residual ash, found that massive molded article having improved roasting can be obtained, and high reaction rate further the specific Al thermit reaction, Al 2 O 3 generated heat Because of the fact that the temperature of the molded article itself is effectively increased and the recovery rate of the metal is improved, the present inventors have further studied based on this finding, and as a result, the present invention has been completed. An object of the present invention is to provide a method for treating steelmaking dust and sludge metal compounds in which the amount of heat applied from the outside during treatment of steelmaking dust and sludge metal compounds is reduced using aluminum-containing aluminum residual ash.

【0006】[0006]

【課題を解決するための手段】本願の請求項1の発明の
要旨は、製鋼ダスト、スラッジ金属化合物類及び/又は
ニッケル鉱石、クロム鉱石、マンガン鉱石、チタン鉱
石、鉄鉱石の何れか少なくとも一種の鉱石を含む金属化
合物に、炭素含有還元剤とアルミニウム含有アルミ残
灰、及び更に必要に応じ粘結剤を添加、混合、成形して
成形体とし、これを加熱、あるいは放電して着火させ自
焼させた後、溶融炉に装入して還元溶融することを特徴
とする製鋼ダスト、スラッジ金属化合物類の処理方法で
あり、請求項2の発明の要旨は、製鋼ダスト、スラッジ
金属化合物類及び/又はニッケル鉱石、クロム鉱石、マ
ンガン鉱石、チタン鉱石、鉄鉱石の何れか少なくとも一
種の鉱石を含む金属化合物に、炭素含有還元剤とアルミ
ニウム含有アルミ残灰、及び更に必要に応じ粘結剤を添
加、混合、成形して成形体とし、これを溶融炉内に装入
し、成形体を加熱又は放電し着火させて自焼させながら
還元溶融することを特徴とする製鋼ダスト、スラッジ金
属化合物類の処理方法である。そして、本発明では、還
元溶融する際、発生するAl23生成熱が金属酸化物の
還元に必要な熱量の大半を供給するので、省エネルギ−
効果の大きい製鋼ダスト、スラッジ金属化合物類の処理
方法である。
The gist of the invention of claim 1 of the present application is that steelmaking dust, sludge metal compounds and / or at least one of nickel ore, chromium ore, manganese ore, titanium ore, and iron ore To a metal compound containing ore, a carbon-containing reducing agent and aluminum-containing aluminum residual ash and, if necessary, a binder are added, mixed and formed into a molded body, which is heated or discharged to ignite and ignite. The method for treating steelmaking dust and sludge metal compounds is characterized in that the steelmaking dust and sludge metal compounds are charged into a melting furnace and then reduced and melted. The gist of the invention of claim 2 is that the steelmaking dust and sludge metal compounds and / or Or a metal compound containing at least one ore of nickel ore, chromium ore, manganese ore, titanium ore and iron ore, a carbon-containing reducing agent and an aluminum-containing aluminum ash And, if necessary, a binder is added, mixed and molded to form a molded body, which is charged into a melting furnace, and the molded body is heated or discharged, ignited and self-fired to reduce and melt. Steelmaking dust and sludge metal compounds. In the present invention, since the heat of formation of Al 2 O 3 generated during reduction melting supplies most of the heat required for reduction of the metal oxide, energy saving is achieved.
This is a method for treating steelmaking dust and sludge metal compounds that are highly effective.

【0007】すなわち、本願の請求項1の発明は、先ず
ダスト、スラッジ金属化合物類に炭素質還元剤とAl残
灰を混合して、成形体を作製するものであるが、この
際、成形体に成形しにくい場合には粘結剤を添加して成
形体を形成する。次いで、得られた成形体を加熱、ある
いは放電させて着火し自焼させる。その際、塊状成形体
に含有されている水分や揮発性金属(Na、K、Zn、
Pbなど)が揮散する。焙焼後の塊状成形体は、溶融還
元炉へ装入して金属を炭素還元する。請求項2の発明
は、同様な方法で塊状成形体を得たら、それを自然乾燥
した後、溶融還元炉内へ直接装入し着火して自焼させ
る。その時塊状成形体内部で、金属Alと金属酸化物が
次式のように反応して金属とAl23が生成する。 3NiO+2Al=3Ni+Al23……(1) Fe23+2Al=2Fe+Al23……(2) Cr23+2Al=2Cr+Al23……(3) 3MnO+2Al=3Mn+Al23……(4) Al23生成熱は390Kcal/molと大きく、こ
の生成熱によって塊状成形体自体の温度が上昇するの
で、外部エネルギ−は余り供給しなくても金属を還元で
きる優れた溶融還元法である。
[0007] That is, the invention of claim 1 of the present application is to form a compact by first mixing a carbonaceous reducing agent and Al residual ash with dust and sludge metal compounds. When it is difficult to form a molded product, a binder is added to form a molded product. Next, the obtained molded body is heated or discharged to ignite and self-burn. At that time, the moisture and volatile metals (Na, K, Zn,
Pb) evaporates. After the roasting, the massive compact is charged into a smelting reduction furnace to reduce the metal to carbon. According to a second aspect of the present invention, after a bulk compact is obtained by a similar method, it is air-dried, then directly charged into a smelting reduction furnace, ignited, and self-burned. At that time, the metal Al and the metal oxide react as shown in the following formula inside the massive compact to generate metal and Al 2 O 3 . 3NiO + 2Al = 3Ni + Al 2 O 3 ...... (1) Fe 2 O 3 + 2Al = 2Fe + Al 2 O 3 ...... (2) Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 ...... (3) 3MnO + 2Al = 3Mn + Al 2 O 3 ...... ( 4) The heat of formation of Al 2 O 3 is as large as 390 Kcal / mol, and the heat of formation raises the temperature of the bulk compact itself. Therefore, it is an excellent smelting reduction method that can reduce metals without supplying much external energy. is there.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明における被処理物である製鋼
炉ダスト、スラッジ金属化合物類は、金属酸化物が主体
であるが、スラッジの処理に中和剤としてCaOを使用
した場合、CaSO4の如き硫酸塩、CaF2の如きふっ
化物、硝酸塩および金属水酸化物が含有されている。従
って、本発明ではこの金属酸化物の還元及び硫酸塩と金
属水酸化物等の分解を炭素含有還元剤及びアルミニウム
含有アルミ残灰(Al残灰とも記載する)によって行う
のである。
Embodiments of the present invention will be described below in detail. The steelmaking furnace dust and sludge metal compounds which are the objects to be treated in the present invention are mainly composed of metal oxides. However, when CaO is used as a neutralizing agent for sludge treatment, sulfates such as CaSO 4 , CaF 2 And nitrates and metal hydroxides. Therefore, in the present invention, the reduction of the metal oxide and the decomposition of the sulfate and the metal hydroxide are carried out by using a carbon-containing reducing agent and an aluminum-containing aluminum residual ash (also referred to as Al residual ash).

【0009】本発明で使用する炭素含有還元剤として
は、通常金属酸化物の還元に使用されるものならは何れ
でも良く、例えば、コ−クス、カーボンブリーズ、木
炭、石炭粉末等であり、その粒度としては0.1〜15
mmが適当である。また、本発明で使用するAl残灰と
しては、金属Alを30重量%以上含有する最大径2m
m以下の微粉末であることが好ましい。すなわち、本発
明におけるAl粉末としては粒径が小さく、かつ比較的
均一であって粒度分布が広すぎないものを用いることが
必要である。好ましくは平均粒径が0.01〜0.2m
mであり、最大粒径が2mm以下のものが用いられる。
The carbon-containing reducing agent used in the present invention may be any one which is usually used for reducing metal oxides, such as coke, carbon breath, charcoal, and coal powder. The particle size is 0.1 to 15
mm is appropriate. Further, as the residual ash used in the present invention, a maximum diameter of 2 m containing 30% by weight or more of metallic Al is used.
m or less. That is, it is necessary to use Al powder in the present invention that has a small particle size, is relatively uniform, and does not have a too wide particle size distribution. Preferably the average particle size is 0.01 to 0.2 m
m and a maximum particle size of 2 mm or less.

【0010】本発明におけるAl残灰中のアルミナ(A
23)粉末の役割はテルミット反応速度を調節するこ
とである。しかして、テルミット反応の反応速度を制御
するために、Al23粉末を30%以上70%以下含有
することが必要である。Al23粉末の含有率が70%
を超えると反応が抑制されて、反応時間が長くなり、ま
た、30%未満だと短時間に反応が進み、突沸現象が観
察される。好ましくはAl23:40〜55%の範囲で
ある。Al23の粒径分布はAl粉末のそれと同程度の
ものが好ましい。このようなAl23含有Al粉末とし
ては、Al溶解時に副産物として発生するAl残灰が適
合する。特に金属Alを回収した残りのAl残灰のう
ち、金属Al:10〜50%(好ましくは25〜40
%)、AlN:1〜20%(好ましくは5〜15%)、
Al23:30〜70%(好ましくは40〜55%)か
らなるものが使用可能である。
In the present invention, the alumina (A
The role of the l 2 O 3 ) powder is to regulate the rate of thermite reaction. Therefore, in order to control the reaction rate of the thermite reaction, it is necessary to contain 30% or more and 70% or less of Al 2 O 3 powder. 70% Al 2 O 3 powder content
If the amount exceeds 30%, the reaction is suppressed and the reaction time is prolonged. If the amount is less than 30%, the reaction proceeds in a short time, and a bumping phenomenon is observed. Preferably Al 2 O 3: in the range 40-55%. The particle size distribution of Al 2 O 3 is preferably the same as that of Al powder. As such an Al 2 O 3 -containing Al powder, Al residual ash generated as a by-product when Al is dissolved is suitable. In particular, metal Al: 10 to 50% (preferably 25 to 40%) of the remaining Al ash from which metal Al is recovered.
%), AlN: 1 to 20% (preferably 5 to 15%),
Al 2 O 3 : 30 to 70% (preferably 40 to 55%) can be used.

【0011】製鋼ダスト、スラッジ金属酸化物類に対す
るAl残灰の配合率は、金属Al含有率で1%〜10%
になるようにする。好ましくは2%〜6%である。金属
Alが原料に対して1%以下であると焙焼が不可能であ
り、10%以上では塊状物が急激な生成熱発生のため破
砕される。本発明では製鋼ダスト、スラッジ金属化合物
類と炭素含有還元剤及びAl残灰とより成形体に成形す
る。通常、これらのものは容易に成形しうるが、成形困
難な場合には粘結剤を添加する。粘結剤としては、ステ
アリン酸、ポリビニールアルコール、ポルトランドセメ
ント等が使用される。成形手段としては双ロール式ブリ
ケットマシン、ペレタイザーによって行う。成形物の形
状としては、ペレット状、ブリケット等何れの形態でも
良く、好ましくは径換算(直径換算)で20〜50mm
φ、重量100〜200g程度の大きさの塊状成形物で
ある。
The mixing ratio of Al residual ash to steelmaking dust and sludge metal oxides is 1% to 10% in terms of metal Al content.
So that Preferably it is 2% to 6%. If the content of metal Al is 1% or less with respect to the raw material, roasting is impossible, and if it is 10% or more, a lump is crushed due to rapid generation of heat generated. In the present invention, a compact is formed from steelmaking dust, sludge metal compounds, a carbon-containing reducing agent, and Al residual ash. Usually, these can be easily molded, but when molding is difficult, a binder is added. As the binder, stearic acid, polyvinyl alcohol, Portland cement or the like is used. The molding is performed by a twin roll briquette machine or a pelletizer. The shape of the molded article may be any form such as a pellet or briquette, and is preferably 20 to 50 mm in terms of diameter (diameter conversion).
It is a lump shaped product having a diameter of about 100 to 200 g.

【0012】塊状成形体を還元炉に直接投入する直接還
元処理方法では、その配合率(金属Al配合率として)
は、上記と同じく1〜10%である。Al10%を超え
るとAl23生成熱量が大きくなりすぎて、還元炉を破
損するおそれがある。そのため原料に含まれる金属酸化
物を還元するのにこのAl量で不足する場合には、炭素
質還元剤を添加する。焙焼しないで還元炉に直接装入さ
れた塊状成形体に加熱あるいは放電着火させるとテルミ
ット反応が始まり、塊状成形体の温度が急激に上昇す
る。温度上昇部分から揮発成分が揮発する。揮発成分は
ダクト内で冷却され回収される。
In the direct reduction treatment method in which a lump compact is directly charged into a reduction furnace, the mixing ratio (as the metal Al mixing ratio)
Is 1 to 10% as described above. If the Al content exceeds 10%, the heat of generation of Al 2 O 3 becomes too large, and the reduction furnace may be damaged. Therefore, if the amount of Al is insufficient to reduce the metal oxide contained in the raw material, a carbonaceous reducing agent is added. If the bulk compact directly charged to the reduction furnace is heated or discharged without being roasted, a thermite reaction starts, and the temperature of the bulk compact rapidly rises. Volatile components evaporate from the temperature rising portion. Volatile components are cooled and recovered in the duct.

【0013】前記のように金属Alが1〜10%配合さ
れているため、Al23生成熱によって炉内温度は上昇
する。金属Alの配合率が5%を超す時は、急激な発熱
のため炉が破損するおそれがあるので、塊状成形体の装
入は、少量ずつ数回に分けて行うことが必要である。金
属Alの配合率が3%を超える場合、自焼により炉内温
度は800℃以上に達するので、外部エネルギー(例え
ばアーク放電)を少し補えば還元反応が持続でき電力原
単位は大幅に下る。その上、反応時間が短くなるので、
原料処理量が大幅に増大する。本発明者らが得た実績で
は金属Al=3%配合で原料処理量を約2倍にすること
ができた。塊状成形体を予備焙焼する方法では、焙焼時
間が約1/2に短縮された。得られた焙焼体は一様で均
質な焼上りであり、内部に還元メタルが観察された(×
100顕微鏡による)。Al23粉末を含有しないAl
粉末を使用した場合は、予備焙焼では燃焼速度が早く爆
発的に燃焼し中心部の温度が上昇し、水蒸気などの生成
ガスの噴出により成形体が潰滅した。燃焼時間のコント
ロールは、Al粉と同程度の粒度分布をもつAl23
の混合で達成できた。その混合率は、金属Al量×
(1.5〜5)の範囲が好ましい。Al23の割合が大
きくなる程、燃焼時間は長くなる。
As described above, since the metal Al is blended in an amount of 1 to 10%, the furnace temperature rises due to the heat of formation of Al 2 O 3 . If the mixing ratio of metal Al exceeds 5%, the furnace may be damaged due to rapid heat generation, so it is necessary to charge the bulk compact several times at a time. When the mixing ratio of metal Al exceeds 3%, the temperature in the furnace reaches 800 ° C. or more by self-firing, so that if a small amount of external energy (for example, arc discharge) is supplemented, the reduction reaction can be continued and the power consumption can be greatly reduced. In addition, the reaction time is shorter,
Raw material throughput is greatly increased. According to the results obtained by the present inventors, it was possible to approximately double the raw material processing amount when the metal Al content was 3%. In the method of pre-roasting the massive compact, the roasting time was reduced to about 1/2. The obtained roasted body was uniformly and homogeneously baked, and reduced metal was observed inside (×
100 microscope). Al not containing Al 2 O 3 powder
When the powder was used, the pre-roasting burned rapidly and explosively, resulting in an increase in the temperature of the central portion, and the compact was crushed by the ejection of generated gas such as water vapor. The control of the burning time could be achieved by mixing Al 2 O 3 powder having the same particle size distribution as Al powder. The mixing ratio is the amount of metal Al ×
The range of (1.5 to 5) is preferable. The burning time becomes longer as the proportion of Al 2 O 3 increases.

【0014】[0014]

【実施例及び比較例】[Examples and Comparative Examples]

実施例1 焙焼助燃剤としての使用例 塊状成形体の焙焼を促進するため、スラッジ、電気炉ダ
スト金属化合物類及びニッケル鉱石粉末(10%配合)
に適量のカーボンブリーズを混合した調製原料にAl残
灰を10重量%添加し混合した。使用した調製原料の化
学成分を表1に示す。また、Al残灰の化学成分を表2
に示す。
Example 1 Example of Use as Roasting Auxiliary Agent Sludge, electric furnace dust metal compounds and nickel ore powder (10% blended) to promote the roasting of a lump compact.
10% by weight of Al residual ash was added to and mixed with a raw material prepared by mixing an appropriate amount of carbon breeze. Table 1 shows the chemical components of the raw materials used. Table 2 shows the chemical composition of the residual aluminum ash.
Shown in

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】(1)表1に示す調製原料5,000k
g、表2のAl残灰を550kgに水約300リットル
を加えロータリーミキサーで10分間混練した後、製団
機でブリケットを作製した。これを鋼製容器に約1,0
00kg入れて、100時間自然乾燥した。ブリケット
は良好に固化し破損、欠けなどの欠陥の発生は、従来品
(Al残灰無添加のもの)と同等であった。塊状成形体
(ブリケット)の圧縮強度(圧縮してブリケットが圧潰
する強度)は製団直後は従来法も本願発明の方法(Al
残灰添加)も約100Nと同じであったが、乾燥後の圧
縮強度は、本願発明の方法の方が約3〜4倍の強度を有
していた。ブリケットの特性について表3にまとめて示
す。
(1) Preparation materials 5,000 k shown in Table 1
g, about 300 liters of water was added to 550 kg of Al residual ash shown in Table 2, and the mixture was kneaded with a rotary mixer for 10 minutes. Put this in a steel container about 1,0
After adding 00 kg, it was air-dried for 100 hours. The briquette solidified well, and the occurrence of defects such as breakage and chipping was the same as that of the conventional product (with no residual aluminum ash). The compressive strength (strength at which the briquettes are crushed by compression) of the bulk compact (briquette) is determined by the conventional method (Al
(Addition of residual ash) was the same as about 100 N, but the compressive strength after drying was about 3 to 4 times that of the method of the present invention. Table 3 summarizes the properties of briquettes.

【0018】[0018]

【表3】 [Table 3]

【0019】(2)乾燥後のブリケットを焙焼ボックス
(1.2m×1.2m×0.8mH)に約1,500k
g装入し、プロパンガスバーナで30分間底部を加熱し
着火した。その結果を表4に示す。従来法に比し本願法
は、着火性、着火の保持に優れ、燃焼時間が約1/2に
短縮され、焼上り結果も良好であった。
(2) The dried briquettes are put in a roasting box (1.2 m × 1.2 m × 0.8 mH) for about 1,500 k
g and the bottom was heated with a propane gas burner for 30 minutes to ignite. Table 4 shows the results. Compared with the conventional method, the method of the present application was superior in ignitability and retention of ignition, the burning time was reduced to about 1/2, and the burning result was also good.

【0020】[0020]

【表4】 [Table 4]

【0021】実施例2 焙焼助燃剤としての使用例 表1に示す調製原料に、金属Al含有率が各々10.5
%、21.3%、30.6%のAl残灰と、金属Al粉
末(Al含有率82%Al−残Al23)を用いて、ブ
リケット中の金属Al含有率と着火性の関係を調べた結
果を表5に示す。調製原料に対し、金属Al含有率が
1.5%以上あれば自焼するのでアルミ残灰中の金属A
l含有率は、10%以上あれば実用に供することができ
る。また、金属Al含有率が50%以上になると燃焼速
度が早くなりすぎ取扱いが困難となるし、Al含有率が
高くなるとコスト高になる。従ってAl残灰の金属Al
含有率は10〜50重量%が適している。なかでもAl
含有率30%前後のものがコストパフォーマンが高い。
Example 2 Example of Use as a Roasting Auxiliary Agent The prepared raw materials shown in Table 1 had a metal Al content of 10.5.
%, 21.3%, 30.6% Al residual ash, and metal Al powder (Al content 82% Al-remaining Al 2 O 3 ), relation between metal Al content in briquette and ignitability Are shown in Table 5. If the metal Al content of the prepared raw material is 1.5% or more, self-burning occurs, so that metal A in aluminum residual ash
If the l content is 10% or more, it can be put to practical use. Further, when the metal Al content is 50% or more, the burning rate becomes too fast and handling becomes difficult, and when the Al content is high, the cost increases. Therefore, metal Al in the residual ash
The content is suitably from 10 to 50% by weight. Above all, Al
Those with a content of around 30% have higher cost performance.

【0022】[0022]

【表5】 [Table 5]

【0023】実施例3 Al残灰を添加した成形体を直
接装入の例 調製原料にAl残灰を10%配合して成形した成形体
(以下、α−10−Ptと表記する)を還元炉に直接装
入した。α−10−Ptは原料層中で自動着火し、Al
テルミット反応で、揮散性アルカリ金属ガスを放出させ
た。天蓋下雰囲気温度は空気吹込み量の調節で700〜
800℃に保つことができた。上記空気吹込みでアルカ
リ金属ガスも酸化され、ダストとして炉外へ集塵除去し
た。焙焼の目的は揮散性アルカリ金属の蓄積による還元
炉の原料吹上げ障害の除去にあるが、空気吹込みで吹上
げ障害は防止できた。表6に示すように700℃あれば
蒸気圧の最も低い亜鉛(Zn)でも61mmHg=0.
08atmの飽和蒸気圧となる。一方α−10−Pt中
の揮散性アルカリ金属の濃度は表7の如くいずれも4%
以下であるから原料層が650℃以上に保たれればアル
カリ蒸気の析出濃縮は起きない。α−10−Ptを焙焼
しないまま、還元材・造滓材と混合し常温で還元炉に直
接装入した。天蓋下の空気流入量を調節し、雰囲気温度
を700〜800℃に保つと、装入後数分でα−10−
Ptは自動的に着火し、原料全面が700℃を超えた。
開放炉のままでは空気流入量が多く、雰囲気温度は40
0℃以下になり、α−10−Ptの着火は大幅に遅れ
た。原料層下部の炭素還元層からの700℃以上のCO
ガスが高温のままα−10−Ptに接触するまで、即ち
投入原料が遂次消化され、下層へ移行し着火温度に達す
るまでの遅れと判断できる。天蓋下雰囲気を還元性のま
ま700℃以上に保てれば、アルカリ金属蒸気を酸化さ
せることなく蒸着回収も可能である。ただし原料中の水
分を十分除去する必要がある。原料水分が、僅か0.6
%でも全金属蒸気を酸化させる。水分が0でも原料中の
各種水酸化物は400℃以上で遂次水蒸気を放出し金属
蒸気を酸化する。天蓋化の雰囲気を十分に還元性にする
為、温度を高く保ち、LPGなどの吹込みが必要にな
る。
Example 3 Example of Directly Loading a Molded Body Added with Al Residual Ash A molded body (hereinafter referred to as α-10-Pt) formed by blending 10% of Al residual ash with the prepared raw material was reduced. The furnace was charged directly. α-10-Pt automatically ignites in the raw material layer,
A volatile alkali metal gas was released in the thermite reaction. The atmosphere temperature under the canopy is 700 ~
It could be kept at 800 ° C. The alkali metal gas was also oxidized by the air blowing, and was collected and removed as dust outside the furnace. The purpose of the roasting was to remove the feed-up obstruction of the reduction furnace due to the accumulation of volatile alkali metals, but the blow-up obstruction could be prevented by blowing air. As shown in Table 6, if the temperature is 700 ° C., even zinc (Zn) having the lowest vapor pressure has a pressure of 61 mmHg = 0.
The saturated vapor pressure becomes 08 atm. On the other hand, the concentration of volatile alkali metal in α-10-Pt was 4% as shown in Table 7.
From the following, if the raw material layer is kept at 650 ° C. or higher, precipitation and concentration of alkali vapor does not occur. Without roasting, α-10-Pt was mixed with a reducing material and a slag-making material, and was directly charged into a reducing furnace at room temperature. By adjusting the inflow of air under the canopy and keeping the ambient temperature at 700-800 ° C, α-10-
Pt was automatically ignited, and the entire raw material exceeded 700 ° C.
The open furnace has a large air inflow and the ambient temperature is 40
The temperature became 0 ° C. or lower, and the ignition of α-10-Pt was greatly delayed. CO of 700 ° C or more from the carbon reduction layer below the raw material layer
It can be determined that there is a delay until the gas comes into contact with α-10-Pt at a high temperature, that is, until the input raw material is successively digested, moves to the lower layer, and reaches the ignition temperature. If the atmosphere under the canopy is kept at 700 ° C. or higher while reducing, vapor deposition and recovery can be performed without oxidizing the alkali metal vapor. However, it is necessary to sufficiently remove water in the raw material. Raw material moisture is only 0.6
% Oxidizes all metal vapors. Even when the water content is zero, various hydroxides in the raw material successively release water vapor at 400 ° C. or higher to oxidize metal vapor. In order to make the atmosphere of the canopy sufficiently reducible, it is necessary to keep the temperature high and to blow in LPG or the like.

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】実施例4 Al残灰入り成形体+混合粉を
直接装入 原料配合が変わると、例えば、スラッジが少なく、スケ
ール、ダストが多いと、α−10−Ptだけでは原料層
の温度上昇が大きく、部分的な融着も発生し、別の操炉
困難が起きた。この困難を解消するため、Al残灰添加
率を9%に減らし、成形体と成形する前の混合粉とを約
3:1で配合して直接装入した。天蓋温度は実施例3よ
りやや高く、720〜830℃であった。ダスト中のア
ルカリ濃度は実施例3より低いが、吹上げ障害も無く、
ほぼ全量を炉外へ除去出来た。スラッジは弗素、塩素を
多く含み、スラグ融点を大幅に引下げ、溶湯温度の低下
による溶湯排出困難を招いて来たが、Al23添加によ
りスラグ融点が上昇し、この困難も解消した。Al残灰
添加は、電力原単位引下げ効果があり、生産量増加を可
能にした。同時にAl灰添加は、スラグのAl23濃度
を高め、融点上昇により、Cr収率向上・溶湯排出容易
の効果もある。調製原料中のスラッジが減り、スケー
ル、ダストが増えると、成形体の金属水酸化物が減り、
着火後の温度上昇が大きく、そのことが反応速度を速
め、温度上昇速度を大きくさせる。スラッジの少ない原
料は弗素・塩素が減りスラグ融点がやや高い。したがっ
てAl残灰添加を減らし、スラグ融点を調節することが
望ましい。状況を検討し、Al残灰添加を9%に下げ、
スラグ融点の過度上昇を制御すると共に成形体:調製原
料比率を2:1、3:1として直装した。調製原料の少
ない3:1の方が炉況が安定していた。即ち、天蓋下温
度の変動が小さくダスト成分も変動率(標準偏差/平均
値)が少なかった(表10参照)。Al灰添加前の調製
原料組成を表8に、実施例3、4の平均的なスラグを表
9に示す。
Example 4 Direct charging of molded product containing Al residual ash + mixed powder If the raw material composition is changed, for example, if the amount of sludge is small, and if the amount of scale and dust is large, the temperature rise of the raw material layer is caused only by α-10-Pt. However, partial fusion occurred, and another difficulty in furnace operation occurred. In order to solve this difficulty, the residual ratio of Al ashes was reduced to 9%, and the molded body and the mixed powder before molding were blended at about 3: 1 and directly charged. The canopy temperature was slightly higher than in Example 3 and was 720-830 ° C. Although the alkali concentration in the dust is lower than that in Example 3, there is no blowing failure,
Almost the entire amount could be removed outside the furnace. Sludge contains many fluorine, chlorine, cuts significantly slag melting point, but came invited molten metal discharge difficulties due to the decrease of the melt temperature, the slag melting point is increased by Al 2 O 3 added and also eliminates this difficulty. The addition of Al residual ash has an effect of reducing the power consumption unit, and has enabled an increase in production. At the same time, the addition of Al ash increases the concentration of Al 2 O 3 in the slag, increases the melting point, and has the effects of improving the Cr yield and facilitating the discharge of molten metal. When the sludge in the raw material decreases, scale and dust increase, the metal hydroxide of the molded body decreases,
The temperature rise after ignition is large, which speeds up the reaction rate and increases the temperature rise rate. Raw materials with less sludge have less fluorine and chlorine and a slightly higher slag melting point. Therefore, it is desirable to reduce the addition of residual aluminum ash and adjust the slag melting point. Considering the situation, the addition of Al residual ash was reduced to 9%,
The slag was excessively increased in melting point and was directly mounted at a molded body: prepared raw material ratio of 2: 1, 3: 1. Furnace conditions were more stable in 3: 1 with less raw materials. That is, the fluctuation of the temperature under the canopy was small, and the fluctuation rate (standard deviation / average value) of the dust component was also small (see Table 10). Table 8 shows the raw material composition before the addition of Al ash, and Table 9 shows the average slag of Examples 3 and 4.

【0027】[0027]

【表8】 [Table 8]

【0028】[0028]

【表9】 [Table 9]

【0029】[0029]

【表10】 [Table 10]

【0030】アルカリ金属蒸気は天蓋下で酸化されダス
トとして補集される。原料層温度が低くなると、凝縮
し、濃縮効果を引起こす。実施例3、4では飽和温度が
最も高い亜鉛で14mmHg以下と想定され、原料層温
度は610℃以上であれば完全と判断された。テスト期
間中、原料層温度は常に650℃以上であった。念のた
め、原料層のサンプルを採取し、析出の有無を検査し
た。成形体表面に析出物が観測され、X線解析による
と、SiO2,MgO,Al23,CaO,が主な成分
で、Zn,Na,K,は弱かった。
The alkali metal vapor is oxidized under the canopy and collected as dust. When the temperature of the raw material layer is lowered, it condenses and causes a concentration effect. In Examples 3 and 4, zinc was assumed to have a maximum saturation temperature of 14 mmHg or less, and if the raw material layer temperature was 610 ° C or more, it was determined to be complete. During the test period, the raw material layer temperature was always 650 ° C. or higher. As a precautionary measure, a sample of the raw material layer was collected and inspected for the presence or absence of precipitation. Precipitates were observed on the surface of the molded product. According to X-ray analysis, SiO 2 , MgO, Al 2 O 3 , and CaO were the main components, and Zn, Na, and K were weak.

【0031】実施例5 乾燥原料とAl残灰の成形体 スラッジ比率の多い原料ではAl残灰を増加させ、スラ
グの融点低下を防がねばならない。その結果炭素還元率
が減り、Alテルミット率が増える。その結果、アルカ
リ金属蒸気濃度が高くなる。即ち、析出障害が起こり易
くなる。Al灰の配合比率が増えると同じ電力負荷でも
生産量が増加する。表11にあるように、スラッジの多
い原料は水分が多く、集塵機での潮解障害が起きる。原
料を乾燥すれば良いが、成形性が弱まる欠点がある。然
しAl残灰の配合比の増加は前述の通り電力原単位の低
減、生産量の増加があると共に、高Al23スラグが得
られ、このスラグが造滓材としての用途もある。
Example 5 Molding of Dry Raw Material and Al Residual Ash With raw materials having a high sludge ratio, the amount of Al residual ash must be increased to prevent the melting point of slag from lowering. As a result, the carbon reduction rate decreases and the Al thermite rate increases. As a result, the alkali metal vapor concentration increases. That is, precipitation trouble is likely to occur. As the mixing ratio of Al ash increases, the production increases even with the same power load. As shown in Table 11, the raw material having a large amount of sludge has a high moisture content, and causes deliquescent trouble in the dust collector. Although the raw material may be dried, there is a disadvantage that the moldability is weakened. However, as described above, the increase in the mixing ratio of the residual aluminum ash results in a reduction in the power consumption and an increase in the production amount, and a high Al 2 O 3 slag is obtained. This slag is also used as a slag-making material.

【0032】[0032]

【表11】 [Table 11]

【0033】乾燥原料に微量のステアリン酸と灯油を加
え、粉末に潤滑性を付与し、粒子間距離を近づけ、成形
強度を確保する手段とした。表7にあるように、Al残
灰が増えると、追加すべき炭材(小塊Coke)量が急
速に減り、調製原料としては無炭素が扱い易かった。表
11の原料を乾燥し、更に無炭素にして、Alテルミッ
トのみで還元するには、化学量論的には30%Al、6
%AlNのAl残灰が約0.585kg/kg−B必要
であるが、生成スラグのAl23が高く、且つCaF2
は低くなる為、融点が高くなり過ぎ、操炉困難が予想さ
れた(表12参照)。勿論スラッジのみの原料を高Al
のAl残灰で還元すれば、上記困難は解決出来るが、経
済的な困難が起きる。
A small amount of stearic acid and kerosene were added to the dry raw material to impart lubricity to the powder, shorten the distance between particles, and secure molding strength. As shown in Table 7, when Al residual ash increased, the amount of carbon material (small lump Coke) to be added rapidly decreased, and carbon-free was easy to handle as a preparation raw material. To dry the raw materials shown in Table 11 and further reduce the carbon content and reduce them only with Al thermite, stoichiometrically 30% Al, 6%
% AlN, about 0.585 kg / kg-B of Al ash is required, but the produced slag has a high Al 2 O 3 and CaF 2
, The melting point was too high, and it was expected that furnace operation would be difficult (see Table 12). Of course, the raw material of only sludge is made of high Al
Although the above-mentioned difficulties can be solved by reducing with Al residual ash, economic difficulties arise.

【0034】[0034]

【表12】 [Table 12]

【0035】[0035]

【発明の効果】【The invention's effect】

(1)スラッジ、ダストに含まれる、金属酸化物とAl
残灰に含まれる金属アルミのテルミット反応により、原
料ブリケットを容易に焙焼することができる。すなわ
ち、ブリケットの着火性、着火の保持が良好で、焼上り
も均一で焼結することも無い。Al残灰無添加のブリケ
ットに比べ燃焼時間は約1/2に短縮される。 (2)アルミ残灰を添加することでブリケットの圧縮強
度を大きくすることができる。Al残灰10%配合で、
ブリケットの圧縮強度はAl残灰無添加に比して約3倍
となった。 (3)原料のスラッジ、ダストに含まれる金属酸化物と
Alが反応して生じるAl23生成熱を原料ブリケット
自体の加熱に利用することで還元に必要な外部エネルギ
ーの大幅な節約が可能である。電気炉で還元した場合、
Al残灰10%配合(金属Al=3%)で電力原単位は
約1/2に低減した。 (4)テルミット反応は、反応速度が速いのでその制御
が必要となる。Al残灰中のAl23粉の粒度分布及び
含有量を調節することで反応速度を実用的な範囲にコン
トロールすることが可能である。Al23生成熱量と反
応速度のコントロールで還元時間を約1/2に短縮する
ことができ、生産性を向上させることができる。原料の
処理能力が2倍と大きくなったので、Ni鉱石やクロム
鉱石を粉砕して、スラッジ、製鋼ダストに配合使用する
ことができる。 (5)スラッジ中にCaF2が多い場合、スラグ融点が
低下し、CrやMnの還元率が悪くなる。しかし、Al
残灰を使用することでスラグにAl23が含有される結
果、スラグ融点が上昇し、上記有効メタルの回収が良好
になる。
(1) Metal oxide and Al contained in sludge and dust
The raw material briquette can be easily roasted by thermite reaction of metallic aluminum contained in the residual ash. In other words, the ignitability and retention of ignition of the briquette are good, and the briquette is uniform and does not sinter. The burning time is shortened to about 1/2 compared to the briquette without the addition of Al residual ash. (2) The compressive strength of the briquette can be increased by adding aluminum ash. With 10% Al residual ash,
The compressive strength of the briquette was about three times that of the case where no residual aluminum ash was added. (3) By utilizing the heat of formation of Al 2 O 3 generated by the reaction of Al with the metal oxides contained in the sludge and dust of the raw material for heating the raw briquette itself, it is possible to greatly reduce the external energy required for reduction. It is. When reduced in an electric furnace,
The power consumption per unit was reduced to about で when 10% of Al residual ash was mixed (metallic Al = 3%). (4) The thermite reaction requires a control because the reaction rate is high. The reaction rate can be controlled in a practical range by adjusting the particle size distribution and content of the Al 2 O 3 powder in the Al residual ash. The reduction time can be reduced to about で by controlling the heat quantity of the Al 2 O 3 generation and the reaction rate, and the productivity can be improved. Since the raw material processing capacity has doubled, Ni ore and chromium ore can be pulverized and used in sludge and steelmaking dust. (5) When the amount of CaF 2 is large in the sludge, the melting point of the slag decreases, and the reduction ratio of Cr and Mn deteriorates. However, Al
By using the residual ash, the slag contains Al 2 O 3 , and as a result, the melting point of the slag increases, and the recovery of the effective metal is improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 製鋼ダスト、スラッジ金属化合物類及び
/又はニッケル鉱石、クロム鉱石、マンガン鉱石、チタ
ン鉱石、鉄鉱石の何れか少なくとも一種の鉱石を含む金
属化合物に、炭素含有還元剤とアルミニウム含有アルミ
残灰、及び更に必要に応じ粘結剤を添加、混合、成形し
て成形体とし、これを加熱、あるいは放電して着火させ
自焼させた後、溶融炉に装入して還元溶融することを特
徴とする製鋼ダスト、スラッジ及び/又は鉱石の金属化
合物類の処理方法。
1. A carbon-containing reducing agent and an aluminum-containing aluminum in a steel compound dust, a sludge metal compound and / or a metal compound containing at least one ore of nickel ore, chromium ore, manganese ore, titanium ore and iron ore. Add residual ash and, if necessary, a binder, mix and mold to form a compact, heat it or discharge it to ignite and burn it. A method for treating metal compounds of steelmaking dust, sludge and / or ore, characterized by the following.
【請求項2】 製鋼ダスト、スラッジ金属化合物類及び
/又はニッケル鉱石、クロム鉱石、マンガン鉱石、チタ
ン鉱石、鉄鉱石の何れか少なくとも一種の鉱石を含む金
属化合物に、炭素含有還元剤とアルミニウム含有アルミ
残灰、及び更に必要に応じ粘結剤を添加、混合、成形し
て成形体とし、これを溶融炉内に装入し、成形体を加熱
又は放電し着火させて自焼させながら還元溶融すること
を特徴とする製鋼ダスト、スラッジ及び/又は鉱石の金
属化合物類の処理方法。
2. A metal compound containing at least one of steelmaking dust, sludge metal compounds and / or at least one of nickel ore, chromium ore, manganese ore, titanium ore and iron ore, a carbon-containing reducing agent and an aluminum-containing aluminum Residual ash and, if necessary, a binder are added, mixed, and molded to form a molded body, which is charged into a melting furnace, and the molded body is heated or discharged, ignited, and reduced and melted while self-burning. A method for treating metal compounds of steelmaking dust, sludge and / or ore, characterized in that:
【請求項3】 前記アルミニウム含有アルミ残灰は、金
属Al:10〜50重量%、AlN:1〜20重量%、
Al23:30〜70重量%含有することを特徴とする
請求項1及び2記載の製鋼ダスト、スラッジ金属化合物
類の処理方法。
3. The aluminum-containing aluminum residual ash contains metal: 10 to 50% by weight, AlN: 1 to 20% by weight,
Al 2 O 3: claims 1 and 2 steelmaking dust according characterized in that it contains 30 to 70 wt%, processing method of sludge metal compounds.
【請求項4】 前記アルミニウム含有アルミ残灰の最大
粒経が2mm以下で、且つ、平均粒経が0.01〜0.
2mmであることを特徴とする請求項1及び2記載の製
鋼ダスト、スラッジ及び/又は鉱石の金属化合物類の処
理方法。
4. The aluminum-containing aluminum residual ash has a maximum particle size of 2 mm or less and an average particle size of 0.01 to 0.5 mm.
3. The method for treating metal compounds of steelmaking dust, sludge and / or ore according to claim 1, wherein the diameter is 2 mm.
JP21273496A 1996-08-12 1996-08-12 Treatment of metal compounds of steel dust, sludge and/ or ore Pending JPH1053820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21273496A JPH1053820A (en) 1996-08-12 1996-08-12 Treatment of metal compounds of steel dust, sludge and/ or ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21273496A JPH1053820A (en) 1996-08-12 1996-08-12 Treatment of metal compounds of steel dust, sludge and/ or ore

Publications (1)

Publication Number Publication Date
JPH1053820A true JPH1053820A (en) 1998-02-24

Family

ID=16627556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21273496A Pending JPH1053820A (en) 1996-08-12 1996-08-12 Treatment of metal compounds of steel dust, sludge and/ or ore

Country Status (1)

Country Link
JP (1) JPH1053820A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239074A (en) * 2006-03-10 2007-09-20 Ricoh Co Ltd Complex reducing agent
JP2010513715A (en) * 2006-12-20 2010-04-30 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing stainless steel melting raw material using iron nickel (FeNi) -containing sludge
US8529658B2 (en) * 2007-05-15 2013-09-10 Research Institute Of Industrial Science & Technology Method of manufacturing Fe and Ni containing material, ferronickel mass using the Fe and Ni containing material and method for manufacturing the ferronickel mass
CN104164566A (en) * 2014-07-24 2014-11-26 泰州明锋资源再生科技有限公司 Technology for treating nickel ore by use of sludge as matrix
CN104561525A (en) * 2015-01-30 2015-04-29 福建绿能资源再生科技有限公司 Heavy metal sludge recycling and comprehensive utilization method
CN109097588A (en) * 2018-10-26 2018-12-28 宝钢工程技术集团有限公司 A kind of device and method that iron content solid wastes recycling containing zinc utilizes
CN114150098A (en) * 2021-11-24 2022-03-08 北京科技大学 Method for preparing premelted calcium aluminate and metallic iron by reducing iron ore with secondary aluminum ash
CN114686639A (en) * 2022-03-31 2022-07-01 芜湖县天海耐火炉料有限公司 Semisteel steelmaking slagging agent
WO2023054553A1 (en) * 2021-09-30 2023-04-06 株式会社クボタ Method for operating melting furnace, and melting furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239074A (en) * 2006-03-10 2007-09-20 Ricoh Co Ltd Complex reducing agent
JP2010513715A (en) * 2006-12-20 2010-04-30 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing stainless steel melting raw material using iron nickel (FeNi) -containing sludge
US8529658B2 (en) * 2007-05-15 2013-09-10 Research Institute Of Industrial Science & Technology Method of manufacturing Fe and Ni containing material, ferronickel mass using the Fe and Ni containing material and method for manufacturing the ferronickel mass
CN104164566A (en) * 2014-07-24 2014-11-26 泰州明锋资源再生科技有限公司 Technology for treating nickel ore by use of sludge as matrix
CN104561525A (en) * 2015-01-30 2015-04-29 福建绿能资源再生科技有限公司 Heavy metal sludge recycling and comprehensive utilization method
CN109097588A (en) * 2018-10-26 2018-12-28 宝钢工程技术集团有限公司 A kind of device and method that iron content solid wastes recycling containing zinc utilizes
WO2023054553A1 (en) * 2021-09-30 2023-04-06 株式会社クボタ Method for operating melting furnace, and melting furnace
CN114150098A (en) * 2021-11-24 2022-03-08 北京科技大学 Method for preparing premelted calcium aluminate and metallic iron by reducing iron ore with secondary aluminum ash
CN114686639A (en) * 2022-03-31 2022-07-01 芜湖县天海耐火炉料有限公司 Semisteel steelmaking slagging agent

Similar Documents

Publication Publication Date Title
EP0924304B1 (en) Method of producing reduced iron pellets
AU2003261814B2 (en) Method for producing titanium oxide containing slag
AU2009234752B2 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JPH11310832A (en) Treatement of metal oxide of steel making waste
EP2949765B1 (en) Composite briquette and method for making a steelmaking furnace charge
US3313617A (en) Iron-containing flux material for steel-making process
TWI396749B (en) Producing method of reduced iron
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
JPH1053820A (en) Treatment of metal compounds of steel dust, sludge and/ or ore
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
US3311465A (en) Iron-containing flux material for steel making process
JP3043325B2 (en) Method for producing reduced iron pellets and reduced iron pellets produced by this method
KR0165858B1 (en) Process for recovering valuable metals from an iron dust
JP3779009B2 (en) Method for producing high-quality reduced iron from steelmaking dust
CA1106619A (en) Waelz process of volatilizing zinc and lead from iron oxide containing materials
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
KR20080112818A (en) Method for recovering high value metals from waste materials of steel making process
KR101017628B1 (en) Reduced iron from mill scale and manufacturing method thereof
US2684296A (en) Reduction of iron ores
GB1572566A (en) Process for producing reduced iron pellets from iron-containing dust
RU2154680C1 (en) Method of preparation of charge material in form of briquettes for melting
RU2497953C2 (en) Method for obtaining granulated metallic iron
JPS61231134A (en) Production of ferroalloy
JP2000119722A (en) Production of reduced iron pellet