JPH1050464A - Electric heating unit - Google Patents

Electric heating unit

Info

Publication number
JPH1050464A
JPH1050464A JP8201426A JP20142696A JPH1050464A JP H1050464 A JPH1050464 A JP H1050464A JP 8201426 A JP8201426 A JP 8201426A JP 20142696 A JP20142696 A JP 20142696A JP H1050464 A JPH1050464 A JP H1050464A
Authority
JP
Japan
Prior art keywords
heating element
electric heating
groove
transition portion
heating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8201426A
Other languages
Japanese (ja)
Other versions
JP3603171B2 (en
Inventor
Mitsuma Matsuda
光馬 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOYO RINDOBAAGU KK
Original Assignee
KOYO RINDOBAAGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOYO RINDOBAAGU KK filed Critical KOYO RINDOBAAGU KK
Priority to JP20142696A priority Critical patent/JP3603171B2/en
Publication of JPH1050464A publication Critical patent/JPH1050464A/en
Application granted granted Critical
Publication of JP3603171B2 publication Critical patent/JP3603171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate overheating and hanging generated in a transit part between waved heaters by setting the resistance per unit length of a transit part smaller than that of an element wire which forms the waved heater. SOLUTION: Both ends 4b of a waved heater 4 are extended outside in the cross direction and enter inside of a heat insulating main body 1 from a side wall 2b of a groove 2. Both ends of adjacent waved heaters 4 are overlapped with each other for welding. Both the adjacent waved heaters 4 are connected in series, and a transit part 5 between the adjacent waved heaters 4 is embedded in the heat insulating main body 1. In the transit part 5, two element wires 4b made of the same material and formed at the same diameter are connected in parallel with each other, and the resistance per unit length of the transit part 5 is set at a half of the resistance per unit length of the waved heater 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炉などの加熱装
置に用いられる電気加熱ユニットに関する。
The present invention relates to an electric heating unit used for a heating device such as a furnace.

【0002】[0002]

【従来の技術】図6に、従来の電気加熱ユニットの一例
を示す。同図に示すように、電気加熱ユニットは、断熱
材を主成分とする断熱主体(1) の表面に、複数の溝(2)
が並列状に設けられ、各溝(2) に、溝(2) の幅より大き
い振幅の波形に形成された面状抵抗発熱体(11)がそれぞ
れ一体的に支持され、隣り合う発熱体(11)同士が直列に
つながっているものである。波形発熱体(11)の幅方向両
側の湾曲部(11a) が、溝(2) の両側壁(2b)より断熱主体
(1) 内に埋設され、波形発熱体(11)の溝(2) 内にある部
分の全表面が断熱主体(1) の外に露出させられている。
2. Description of the Related Art FIG. 6 shows an example of a conventional electric heating unit. As shown in the figure, the electric heating unit has a plurality of grooves (2) on the surface of a heat insulating main body (1) mainly composed of a heat insulating material.
Are provided in parallel, and in each groove (2), a planar resistance heating element (11) formed in a waveform having an amplitude larger than the width of the groove (2) is integrally supported, and the adjacent heating element ( 11) They are connected in series. The curved portions (11a) on both sides in the width direction of the corrugated heating element (11) are mainly heat-insulated from both side walls (2b) of the groove (2).
The entire surface of the portion embedded in the groove (2) of the corrugated heating element (11) is exposed outside the heat insulating main body (1).

【0003】この従来の電気加熱ユニットでは、1本の
素線(10)が連続的に曲げられていくことによってすべて
の波形発熱体(11)が形成されているもので、隣り合う波
形発熱体(11)同士の間にある遷移部(12)は、断熱主体
(1) 内に埋設されている。その結果、発熱体(11)の単位
長さ当たりの抵抗は、断熱主体(1) 内に埋設された遷移
部(12)を含めてどこでも同じ値となっている。
[0003] In this conventional electric heating unit, all the corrugated heating elements (11) are formed by continuously bending one wire (10). (11) The transition (12) between the two
It is buried in (1). As a result, the resistance per unit length of the heating element (11) has the same value everywhere including the transition section (12) embedded in the heat insulating main body (1).

【0004】[0004]

【発明が解決しようとする課題】上記従来の電気加熱ユ
ニットによると、発熱体のうち断熱主体内に埋設された
遷移部は、溝内にある部分に比べて、放熱しにくいにも
かかわらず単位長さ当たりの抵抗は等しいものとなって
いるため、遷移部が過熱して断線しやすいという問題が
あった。
According to the above-mentioned conventional electric heating unit, the transition portion of the heating element buried in the heat insulating main body has a smaller unit than that of the portion in the groove, though it is difficult to radiate heat. Since the resistance per length is equal, there has been a problem that the transition portion is overheated and the disconnection is likely to occur.

【0005】そこで、断熱主体に、遷移部を露出させる
ための溝を設けることにより、過熱を防止することが考
えられるが、このような溝を設けた電気加熱ユニットに
よると、電気加熱ユニットを高温で長時間使用したと
き、遷移部における発熱体の断熱主体による支持間隔が
大きいため、遷移部の発熱体のクリープや溝内での垂れ
下がりによる線径の細りが発生し、これによって発熱体
がバーンアウトや断線を起こすことが分かった。
Therefore, it is conceivable to prevent the overheating by providing a groove for exposing the transition portion in the heat insulating body. However, according to the electric heating unit provided with such a groove, the electric heating unit is heated to a high temperature. When used for a long time in the transition area, the distance between the heating elements in the transition area due to the heat insulation main body is large, so that the heating element in the transition area creeps and the wire diameter becomes thin due to drooping in the groove, which causes the heating element to burn. It turned out to cause outs and disconnections.

【0006】この発明の目的は、波形発熱体同士の間に
ある遷移部で生じる過熱の問題および垂れ下がりの問題
を両方とも解消した電気加熱ユニットを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric heating unit in which both the problem of overheating and the problem of sag occurring at a transition portion between waveform heating elements are eliminated.

【0007】[0007]

【課題を解決するための手段および発明の効果】この発
明による電気加熱ユニットは、断熱材を主成分とする断
熱主体の表面に、複数の溝が並列状に設けられ、各溝
に、溝の幅より大きい振幅の波形に形成された発熱体が
それぞれ一体的に支持されており、少なくとも一対の隣
り合う波形発熱体が、隣り合う溝間にある遷移部で直列
につながっている電気加熱ユニットにおいて、遷移部が
断熱主体内に埋設されるとともに、遷移部の単位長さ当
たりの抵抗が、波形発熱体を形成する素線の単位長さ当
たりの抵抗よりも小さくなされていることを特徴とする
ものである。
In the electric heating unit according to the present invention, a plurality of grooves are provided in parallel on the surface of a heat-insulating body mainly composed of a heat-insulating material. In the electric heating unit, the heating elements formed in a waveform having an amplitude larger than the width are each integrally supported, and at least a pair of adjacent waveform heating elements are connected in series at a transition portion between adjacent grooves. The transition portion is embedded in the heat insulating main body, and the resistance per unit length of the transition portion is smaller than the resistance per unit length of the wire forming the waveform heating element. Things.

【0008】ここで、遷移部とは、隣り合う波形発熱体
の間にある発熱部のうち、溝と溝とに挟まれた部分をい
う。
[0008] Here, the transition portion refers to a portion of the heat generating portion between the adjacent wave-shaped heat generating members, which is sandwiched between the grooves.

【0009】この発明の電気加熱ユニットによると、遷
移部が断熱主体内に埋設されているので、遷移部が垂れ
下がることはない。また、遷移部における単位長さ当た
りの抵抗が波形発熱体の単位長さ当たりの抵抗よりも小
さくなされているので、断熱主体内に埋設されて放熱し
にくくなっている遷移部では、相対的に発熱量が少なく
なり、遷移部における過熱が防止される。したがって、
素線の溶断が防止される。
According to the electric heating unit of the present invention, since the transition portion is buried in the heat insulating main body, the transition portion does not hang down. Further, since the resistance per unit length in the transition portion is made smaller than the resistance per unit length of the waveform heating element, the transition portion buried in the heat insulation main body and hardly dissipating heat is relatively The amount of heat generated is reduced, and overheating at the transition portion is prevented. Therefore,
Fusing of the strand is prevented.

【0010】遷移部における単位長さ当たりの抵抗を波
形発熱体の単位長さ当たりの抵抗よりも小さくするに
は、例えば、各波形発熱体は、それぞれ1本の素線によ
り別々に形成されており、遷移部は、隣り合う波形発熱
体の端部の素線同士が重ねられて接合されることによっ
て形成されている構成とすればよい。これにより、遷移
部では、発熱素線の合計断面積が2倍となるため、抵抗
が半分となり、したがって発熱が半分となる。この電気
加熱ユニットを得るには、溝の数に応じた数だけ同じ形
状の波形発熱体を製作し、隣り合う波形発熱体の端部同
士を溶接すればよいので、1本の素線を連続的に曲げて
いくことにより発熱体を製作するのに比べて、電気加熱
ユニットの製作がしやすくなり、また、自動化も容易と
なる。また、遷移部は2本の素線により形成されること
になるので、遷移部の強度が上がり、応力による断線に
対する抵抗力も増強される。
In order to make the resistance per unit length at the transition portion smaller than the resistance per unit length of the waveform heating element, for example, each waveform heating element is formed separately by one strand. In this case, the transition portion may be formed by overlapping and joining the element wires at the ends of the adjacent waveform heating elements. Thus, in the transition portion, the total cross-sectional area of the heating element wire is doubled, so that the resistance is halved, and thus the heat generation is halved. In order to obtain this electric heating unit, it is only necessary to manufacture corrugated heating elements of the same shape by the number corresponding to the number of grooves and to weld the ends of adjacent corrugated heating elements, so that one wire is continuously connected. The bending makes it easier to manufacture the electric heating unit than to manufacture the heating element, and also facilitates automation. Further, since the transition portion is formed by two strands, the strength of the transition portion is increased, and the resistance to disconnection due to stress is also increased.

【0011】断熱材がセラミック・ファイバとされ、断
熱主体が真空成型によって形成されることが好ましい。
また、波形発熱体を断熱主体に支持させるには、波形発
熱体の幅方向両側の湾曲部が溝の両側壁より断熱主体内
に埋設されるようにし、これにより、波形発熱体の溝内
にある部分の全表面が断熱主体の外に露出させられるよ
うにすることが好ましい。これにより、加熱効率が上が
る。
Preferably, the heat insulating material is ceramic fiber, and the heat insulating main body is formed by vacuum molding.
Further, in order to support the corrugated heating element on the heat insulating main body, the curved portions on both sides in the width direction of the corrugated heating element are buried in the heat insulating main body from both side walls of the groove. It is preferable that the entire surface of a part is exposed outside the heat insulating main body. Thereby, the heating efficiency increases.

【0012】遷移部における単位長さ当たりの抵抗を波
形発熱体の単位長さ当たりの抵抗よりも小さくするに
は、ほかに、すべての波形発熱体は、1本の素線が連続
的に曲げられることにより形成されており、遷移部は、
この素線のうち隣り合う波形発熱体同士の境界部分にあ
ってかつ断熱主体内に埋設されている部分と、この素線
部分に重ねられて接合された発熱体素線片とよりなる構
成としてもよい。この場合に、発熱体素線片の線径は、
波形発熱体の線径と同じでもよいし、違っていてもよ
い。また、発熱体素線片を波形発熱体の材質とは違う材
質としてもよい。さらにまた、発熱体素線片の数を2以
上として、遷移部の抵抗の低減量を大きくすることもで
きる。
In order to make the resistance per unit length at the transition portion smaller than the resistance per unit length of the corrugated heating element, in addition, all the corrugated heating elements have one strand continuously bent. The transition is formed by
As a configuration comprising a portion which is located at a boundary portion between adjacent waveform heating elements of this element wire and is buried in the heat insulating main body, and a heating element element piece which is overlapped and joined to the element portion Is also good. In this case, the wire diameter of the heating element strand is
It may be the same as or different from the wire diameter of the corrugated heating element. Further, the heating element wire piece may be made of a material different from the material of the waveform heating element. Furthermore, the number of the heating element wire pieces can be set to two or more to increase the reduction amount of the resistance of the transition portion.

【0013】遷移部を形成する素線の接合は、通常、溶
接により行われる。溶接は、素線の重なり部の全体に施
してもよいし、素線の重なり部の両端部だけに施す局所
溶接であってもよい。また、素線が細い場合には、素線
と同材質の薄肉ストリップ材を加工してなる補助材(以
下カプラという)を使用して、カプラを遷移部の両端に
1回巻きして、カプラとそれぞれの素線とを溶接するよ
うにしてもよい。ここで、素線の重なり部の少なくとも
端部近傍では、溶接面積は発熱体の素線断面積よりも大
きくして、重なり部と1本線の部分との境界面での抵抗
の増加を防止することが必要である。なお、重なり部の
接合方法は、溶接に限られるものではなく、高温使用に
耐える接着性導電ペーストタイプの電気接合材料を使用
することもできる。
The joining of the wires forming the transition is usually performed by welding. The welding may be performed on the entire overlapping portion of the wires, or may be local welding performed only on both ends of the overlapping portion of the wires. If the strand is thin, use an auxiliary material (hereinafter referred to as a coupler) made by processing a thin strip of the same material as the strand, and wind the coupler once around both ends of the transition portion. And each element wire may be welded. Here, at least in the vicinity of the ends of the overlapping portions of the wires, the welding area is made larger than the cross-sectional area of the wires of the heating element to prevent an increase in resistance at the interface between the overlapping portion and the single wire portion. It is necessary. The method of joining the overlapping portions is not limited to welding, and an adhesive conductive paste-type electric joining material that can withstand high-temperature use can also be used.

【0014】[0014]

【発明の実施の形態】この発明の実施の形態を、以下図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1および図2は、この発明の電気加熱ユ
ニットの第1実施形態の一部を示しており、同図に示す
ように、電気加熱ユニットは、セラミックファイバーを
主成分とし表面に複数の横断面方形の溝(2) が並列状に
設けられている断熱主体(1)と、断熱主体(1) の各溝(2)
に設けられた複数の波形発熱体(4) とよりなる。
FIGS. 1 and 2 show a part of a first embodiment of an electric heating unit according to the present invention. As shown in FIG. 1 and FIG. The heat-insulating body (1) in which grooves (2) having a rectangular cross-section are provided in parallel, and the grooves (2) of the heat-insulating body (1)
And a plurality of corrugated heating elements (4).

【0016】波形発熱体(4) は、溝(2) の幅より大きい
振幅の波形に加工されており、溝(2) の底部(2a)から開
口側に離れた位置において、波形発熱体(4) の幅方向両
側の湾曲部(4a)が、溝(2) の両側壁(2b)より断熱主体
(1) 内に入って、断熱主体(1)に埋設支持され、溝(2)
内で波形発熱体(4) の全表面が断熱主体(1) の外に露出
している。
The waveform heating element (4) is processed into a waveform having an amplitude larger than the width of the groove (2), and at a position away from the bottom (2a) of the groove (2) to the opening side, the waveform heating element (4) is formed. The curved portions (4a) on both sides in the width direction of (4) are mainly insulated from both side walls (2b) of the groove (2).
(1) Enter inside, buried and supported by the heat insulation body (1), and the groove (2)
Inside, the entire surface of the corrugated heating element (4) is exposed outside the heat insulating main body (1).

【0017】波形発熱体(4) の両端部(4b)は、湾曲させ
られずに、幅方向外側に延長されており、溝(2) の側壁
(2b)より断熱主体(1) 内に入っている。そして、隣り合
う波形発熱体(4) の一端部(4b)同士が重ねられて溶接さ
れている。こうして、隣り合う波形発熱体(4) が直列に
つながり、隣り合う波形発熱体(4) 同士の間にある遷移
部(5) が、断熱主体(1) 内に埋設されている。遷移部
(5) においては、同材質・同線径の素線(4b)が2本並列
に接続されていることになり、遷移部(5) における単位
長さ当たりの抵抗は、波形発熱体(4) の単位長さ当たり
の抵抗の半分となっている。
Both ends (4b) of the corrugated heating element (4) extend outward in the width direction without being curved, and are formed on the side walls of the groove (2).
(2b) It is in the heat insulation main body (1). Then, one ends (4b) of the adjacent waveform heating elements (4) are overlapped and welded. In this way, the adjacent waveform heating elements (4) are connected in series, and the transition section (5) between the adjacent waveform heating elements (4) is embedded in the heat insulating main body (1). Transition part
In (5), two strands (4b) of the same material and diameter are connected in parallel, and the resistance per unit length at the transition part (5) is ) Is half of the resistance per unit length.

【0018】波形発熱体(4) は金属抵抗発熱体であり、
高温用としては、カンタルA1線やAPM線などの鉄−
クロム−アルミニウム系の金属が特に好適である。ま
た、波形発熱体(4) の線径としては、3.5mm以下で
1.0mm以上の比較的細い線材が適している。
The waveform heating element (4) is a metal resistance heating element,
For high temperature use, iron such as Kanthal A1 wire and APM wire
Chromium-aluminum based metals are particularly preferred. Also, as the wire diameter of the corrugated heating element (4), a relatively thin wire material of 3.5 mm or less and 1.0 mm or more is suitable.

【0019】この電気加熱ユニットは、次のようにし
て、真空成型によって得ることができる。まず、真空成
型型内に水平に配置されたスクリーン上に溝(2) の波形
発熱体(4) より開口側の部分を形成するための角棒状の
第1マスク部材を載せ、その上に波形発熱体(4) を載
せ、その上に溝(2) の波形発熱体(4) より底側の部分を
形成するための角棒状の第2マスク部材を載せる。そし
て、公知の真空成形を行い、スクリーンより上の波形発
熱体(4) およびマスク部材の周りに断熱主体(1) を形成
し、加熱乾燥硬化後に断熱主体(1) からマスク部材を除
去して溝(2) を形成する。
This electric heating unit can be obtained by vacuum molding as follows. First, a square bar-shaped first mask member for forming a portion of the groove (2) on the opening side from the corrugated heating element (4) is placed on a screen horizontally arranged in a vacuum molding die, and the waveform is placed thereon. The heating element (4) is placed, and a square bar-shaped second mask member for forming a portion of the groove (2) on the bottom side of the corrugated heating element (4) is placed thereon. Then, known vacuum forming is performed to form a heat insulating body (1) around the corrugated heating element (4) above the screen and the mask member, and after heating and drying and curing, the mask member is removed from the heat insulating body (1). A groove (2) is formed.

【0020】上記において、波形発熱体(4) は、溝(2)
の数に応じた数だけ同じ形状のものが製作され、それら
の端部(4b)同士が溶接されてから、第1マスク部材上に
載せられる。このさい、各波形発熱体(4) の大きさは製
造誤差によりばらつくが、端部(4b)同士の重なり長さを
変化させることにより、隣り合う波形発熱体(4) 同士の
間隔を一定に保つことができる。1本の素線を連続的に
曲げていくことにより発熱体を製作する場合には、広い
スペースを必要とし、曲げ加工もやりにくく、また、波
形発熱体同士の間隔の精度が出しにくいという問題があ
るが、これらの問題が一挙に解消される。
In the above, the corrugated heating element (4) is provided with the groove (2)
Are manufactured in the same number as the number corresponding to the number, and their ends (4b) are welded to each other, and then placed on the first mask member. At this time, the size of each waveform heating element (4) varies due to manufacturing errors, but by changing the overlapping length of the end portions (4b), the interval between adjacent waveform heating elements (4) is kept constant. Can be kept. When a heating element is manufactured by continuously bending one element wire, a large space is required, bending is difficult, and the accuracy of the interval between the waveform heating elements is difficult to obtain. However, these problems are solved at once.

【0021】遷移部(5) においては、単なる機械的接触
以上の金属組織的結合が図られていることが、発熱体
(3) が長時間の高温使用に耐えるために不可欠である。
このような電気的接続の一形態として、局部溶接を含む
溶接がある。局部溶接では、遷移部(5) の両端部がそれ
ぞれ溶接される。図4には、遷移部(5) の一端部におけ
る局部溶接の例を示す。
In the transition section (5), the fact that the metallographic bonding is achieved more than merely mechanical contact is caused by the heating element.
(3) is indispensable to withstand long-term high-temperature use.
One form of such electrical connection is welding, including local welding. In the local welding, both ends of the transition portion (5) are welded respectively. FIG. 4 shows an example of local welding at one end of the transition portion (5).

【0022】図4(a)および(b)に示すものは、カ
プラ(21)を使用するもので、カプラを波形発熱体(4) の
端部(4b)同士が重ねられた遷移部(5) の両端部にそれぞ
れ1回巻きして、カプラ(21)とそれぞれの波形発熱体
(4) の端部(4b)とが溶接されている。カプラ(21)は、波
形発熱体(4) と同材質の薄肉ストリップ材を加工したも
のである。ここで、破線で示す溶接部(22)の面積は、波
形発熱体(4) の断面積よりも大きくされており、また、
カプラ(21)自体の断面積も溶接部(22)の面積より大きく
なされており、これにより、一方の波形発熱体(4) の端
部(4b)と他方の波形発熱体(4) の端部(4b)との間の電気
通路が、一方の溶接部(22)、カプラ(21)および他方の溶
接部(22)により形成され、2本の素線(4b)(4b)が重ねら
れた遷移部(5) と1本線部分(4) との境界面での抵抗が
増加しないようになされている。
FIGS. 4 (a) and 4 (b) show the use of a coupler (21). The coupler is a transitional portion (5) in which the end portions (4b) of a waveform heating element (4) are overlapped with each other. ) Is wound once around each end of the coupler (21) and each corrugated heating element.
The end (4b) of (4) is welded. The coupler (21) is formed by processing a thin strip of the same material as the corrugated heating element (4). Here, the area of the welded portion (22) indicated by the broken line is larger than the cross-sectional area of the corrugated heating element (4).
The cross-sectional area of the coupler (21) itself is also larger than the area of the weld (22), so that the end (4b) of one corrugated heating element (4) and the end of the other corrugated heating element (4). An electric passage between the two wires (4b) and (4b) is formed by one of the welds (22), the coupler (21) and the other weld (22). The resistance at the boundary between the transition portion (5) and the single-line portion (4) is prevented from increasing.

【0023】図4(c)および(d)に示すものは、カ
プラ(21)を使用しないもので、遷移部(5) の両端部にお
いて波形発熱体(4) の端部(4b)同士が溶接されている。
ここで、溶接部(23)の面積は、波形発熱体(4) の断面積
よりも大きくされており、これにより、2本の素線(4b)
(4b)が重ねられた遷移部(5) と1本線部分(4) との境界
面での抵抗が増加しないようになされている。カプラ(2
1)を使用しない場合の波形発熱体(4) の線径は、2.0
mm以上とされる。線径がこれより細いと、素線だけで
は溶接に耐えられないため、素線の線径が2.0mmよ
り細い場合は、カプラ(21)を使用する必要がある。
FIGS. 4 (c) and 4 (d) do not use the coupler (21), and the ends (4b) of the waveform heating element (4) are connected to each other at both ends of the transition section (5). Welded.
Here, the area of the welded portion (23) is made larger than the cross-sectional area of the corrugated heating element (4), whereby the two wires (4b)
The resistance at the interface between the transition portion (5) where the portion (4b) is superimposed and the single-line portion (4) does not increase. Coupler (2
The wire diameter of the waveform heating element (4) when not using (1) is 2.0
mm or more. If the wire diameter is smaller than this, the wire alone cannot withstand welding, so if the wire diameter is smaller than 2.0 mm, it is necessary to use a coupler (21).

【0024】なお、図4(c)および(d)では、溶接
は片面だけで行われているが、溶接面積および溶接強度
を上げるために、両面から施してももちろんよいし、ま
た、遷移部(5) の両端部だけでなく、遷移部(5) の端か
ら端までを溶接してももちろんよい。
In FIGS. 4 (c) and 4 (d), the welding is performed only on one side. However, in order to increase the welding area and the welding strength, the welding may be performed on both sides. Of course, not only the both ends of (5) but also the ends of the transition part (5) may be welded.

【0025】(比較テスト)第1実施形態の加熱ユニッ
トと図6に示す従来の加熱ユニットとを製作し、それぞ
れのユニットによりテスト用の炉を組み立てて、110
0℃に昇温させて保持させたときの炉制御温度a、溝内
の波形発熱体の表面温度bおよび断熱主体(1) 内に埋設
されている遷移部の波形発熱体の表面温度cを測定し比
較した。その結果を図5、図7および表1に示す。図5
および図7は、時間と温度との関係を示し、表1は、昇
温完了後1時間経過時における温度を示している。
(Comparative Test) The heating unit of the first embodiment and the conventional heating unit shown in FIG. 6 were manufactured, and a test furnace was assembled by each unit.
The furnace control temperature a when the temperature was raised to 0 ° C. and held, the surface temperature b of the corrugated heating element in the groove, and the surface temperature c of the corrugated heating element in the transition portion embedded in the heat insulation main body (1) Measured and compared. The results are shown in FIGS. 5, 7 and Table 1. FIG.
7 shows the relationship between time and temperature, and Table 1 shows the temperature one hour after the completion of the temperature rise.

【0026】[0026]

【表1】 表1より、炉温度が1100℃の場合において、本発明
の加熱ユニットにおける遷移部(5) の表面温度cが、従
来の加熱ユニットでは1135℃であったものが107
5℃となり、約60℃下がっていること、および、溝内
の波形発熱体の表面温度bの1125℃に比べても約5
0℃低くなっていることが分かる。また、昇温過程から
均熱状態へ変わるときの遷移部(5) の表面温度cが、従
来の加熱ユニットでは、一旦上昇してから下降して均熱
状態になるのに対して(図7参照)、本発明の加熱ユニ
ットでは、緩やかに上昇して均熱状態になっており(図
5参照)、本発明の加熱ユニットにおいては、無駄な発
熱が防止されていることも分かる。
[Table 1] According to Table 1, when the furnace temperature is 1100 ° C., the surface temperature c of the transition part (5) in the heating unit of the present invention is 1135 ° C. in the heating unit of the related art.
5 ° C., which is about 60 ° C. lower, and about 5 ° C. lower than the surface temperature b of the waveform heating element in the groove, 1125 ° C.
It can be seen that the temperature is lower by 0 ° C. Also, in the conventional heating unit, the surface temperature c of the transition section (5) when changing from the temperature rising process to the soaking state is once increased and then decreased to be in the soaking state (FIG. 7). (See FIG. 5), the heating unit of the present invention gradually rises to a uniform temperature state (see FIG. 5), and it can be seen that in the heating unit of the present invention, wasteful heat generation is prevented.

【0027】上記の比較テストの結果より、本発明の加
熱ユニットによると、波形発熱体(4) 同士の遷移部(5)
で生じる過熱の問題が解消されたことがわかる。しか
も、断熱主体(1) 内に埋設されている遷移部(5) は、曲
げ強度の点からも補強されていることになり、応力によ
る断線の問題に対しても有利となっている。
According to the result of the above-mentioned comparison test, according to the heating unit of the present invention, the transition part (5) between the waveform heating elements (4)
It can be seen that the problem of overheating caused by the above has been solved. In addition, the transition portion (5) buried in the heat insulating main body (1) is reinforced in terms of bending strength, which is advantageous against the problem of disconnection due to stress.

【0028】図3は、この発明の電気加熱ユニットの第
2実施形態の一部を示しており、電気加熱ユニットは、
セラミックファイバーを主成分とし表面に複数の溝(2)
が並列状に設けられている断熱主体(1) と、断熱主体
(1) の各溝(2) に設けられた複数の波形発熱体(7) とを
備えている。
FIG. 3 shows a part of a second embodiment of the electric heating unit according to the present invention.
Mainly composed of ceramic fiber and multiple grooves on the surface (2)
Are provided in parallel with the heat insulation body (1) and the heat insulation body
And a plurality of corrugated heating elements (7) provided in each groove (2) of (1).

【0029】波形発熱体(7) は、溝(2) の幅より大きい
振幅の波形に加工されており、波形発熱体(7) の幅方向
両側の湾曲部(7a)が、溝(2) の両側壁(2b)より断熱主体
(1)内に入ることによって、断熱主体(1) に一体的に支
持されている。したがって、溝(2) 内では波形発熱体
(7) の全表面が断熱主体(1) の外に露出させられてい
る。
The waveform heating element (7) is processed into a waveform having an amplitude larger than the width of the groove (2), and the curved portions (7a) on both sides in the width direction of the waveform heating element (7) are formed. Heat insulation from both side walls (2b)
By entering inside (1), it is integrally supported by the heat insulating body (1). Therefore, in the groove (2), the corrugated heating element
The entire surface of (7) is exposed outside the heat insulating main body (1).

【0030】複数の波形発熱体(7) は、1本の素線(6)
を連続的に曲げていくことによってまず1つ目の波形発
熱体(7) を作り、そのまま引き続いて隣の波形発熱体
(7) を作るという従来と同じ方法により、1本の素線
(6) によってすべての波形発熱体(7) が形成されてい
る。
The plurality of corrugated heating elements (7) are connected to a single wire (6).
The first corrugated heating element (7) is made by continuously bending the
(7) One strand by the same method as before
By (6), all the corrugated heating elements (7) are formed.

【0031】遷移部(8) は、この素線(6) のうち隣り合
う波形発熱体(7) 同士の境界部分にあってかつ断熱主体
(1) 内に埋設されている部分(6a)と、この素線部分(6a)
に重ねられて接合された短い直線状の発熱体素線片(9)
とによって形成されている。発熱体素線片(9) は、波形
発熱体(7) と同材質・同線径とされている。したがっ
て、遷移部(8) においては、同じ素線(6a)(9) が2本並
列に接続されていることになり、遷移部(8) における単
位長さ当たりの抵抗は、波形発熱線(7) の単位長さ当た
りの抵抗の半分となっている。
The transition portion (8) is located at the boundary between the adjacent waveform heating elements (7) of the strands (6), and
(1) The part buried inside (6a) and this wire part (6a)
Short linear heating element pieces (9) overlapped and joined
And is formed by. The heating element wire piece (9) is made of the same material and the same diameter as the corrugated heating element (7). Therefore, in the transition portion (8), two identical wires (6a) and (9) are connected in parallel, and the resistance per unit length in the transition portion (8) is represented by the waveform heating wire ( 7) Half of the resistance per unit length.

【0032】遷移部の構成は、第1および第2実施形態
のもの限られるものではなく、種々の変形が可能であ
る。例えば、第1実施形態において、発熱体素線と同材
質または発熱体素線よりも抵抗の小さい筒状発熱体を別
途用意し、波形発熱体(4) の端部(4b)同士を溶接する代
わりに、一方の波形発熱体(4) の端部(4b)と筒状発熱体
の一端部とを溶接し、他方の波形発熱体(4) の端部(4b)
と筒状発熱体の他端部とを溶接するようにしてもよい。
The configuration of the transition section is not limited to those of the first and second embodiments, but can be variously modified. For example, in the first embodiment, a cylindrical heating element having the same material as the heating element wire or having a lower resistance than the heating element wire is separately prepared, and the end portions (4b) of the waveform heating element (4) are welded to each other. Instead, the end (4b) of one corrugated heating element (4) is welded to one end of the cylindrical heating element, and the end (4b) of the other corrugated heating element (4) is welded.
And the other end of the cylindrical heating element may be welded.

【0033】なお、上記の実施形態では、断熱主体(1)
を平板状として図示しているが、断熱主体は円筒状とさ
れて、その内周面に発熱体が設けられて使用される場合
もある。波形発熱体(4)(7)の数は任意であり、少なくと
も一対の隣り合う波形発熱体が、隣り合う溝間にある遷
移部で直列につながっている部分を有している電気加熱
ユニットであれば、適用可能である。
In the above embodiment, the heat insulating body (1)
Is illustrated in the form of a flat plate, but the heat-insulating main body is formed in a cylindrical shape, and the heat-generating body may be provided on the inner peripheral surface in some cases. The number of the corrugated heating elements (4) and (7) is arbitrary, and at least a pair of adjacent corrugated heating elements is an electric heating unit having a portion connected in series at a transition portion between adjacent grooves. If applicable, it is applicable.

【0034】また、上記実施形態では、波形発熱体(4)
(7)の溝(2) 内にある部分の全表面が断熱主体(1) の外
に露出させられているが、湾曲部(4a)(7a)以外の部分が
溝(2)の底部に埋め込まれ、その一部分だけが溝(2) の
底面から溝内に露出している電気加熱ユニットにおいて
も、同様の過熱防止効果が得られる。
In the above embodiment, the waveform heating element (4)
The entire surface of the part inside the groove (2) of (7) is exposed outside the heat insulating main body (1), but the part other than the curved parts (4a) and (7a) is at the bottom of the groove (2). The same overheating prevention effect can be obtained in an electric heating unit which is embedded and only a part of the electric heating unit is exposed in the groove from the bottom of the groove (2).

【0035】また、図示省略したが、電気加熱ユニット
は、断熱主体(1) と別に作られかつ断熱主体(1) に一体
的に支持された耐火物製溝底形成部材によって、溝の底
部を覆って、溝開口側の面が断熱主体(1) より露出する
ようにし、発熱体が、溝底形成部材より溝開口側に配置
されて、溝底形成部材の表面の一部と接触するように断
熱主体(1) に一体的に支持され、かつ溝内で断熱主体
(1) の外に露出するような構成としてもよい。
Although not shown, the electric heating unit has a groove bottom formed by a refractory groove bottom forming member which is formed separately from the heat insulating main body (1) and integrally supported by the heat insulating main body (1). Cover, so that the surface on the groove opening side is exposed from the heat insulating main body (1), and the heating element is arranged on the groove opening side with respect to the groove bottom forming member so that it contacts a part of the surface of the groove bottom forming member. Insulated body (1) and heat-insulated body in the groove
It may be configured to be exposed outside of (1).

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施形態を示す電気加熱ユニッ
トの主要部の斜視図である。
FIG. 1 is a perspective view of a main part of an electric heating unit according to a first embodiment of the present invention.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】この発明の第1実施形態を示す電気加熱ユニッ
トの主要部の斜視図である。
FIG. 3 is a perspective view of a main part of the electric heating unit according to the first embodiment of the present invention.

【図4】この発明で用いられている接合方法を示すもの
で、(a)は、カプラを使用する場合の接合部の正面
図、(b)はそのb-b 線に沿う断面図、(c)は、カプ
ラを使用しない場合の接合部の正面図、(d)はそのd-
d 線に沿う断面図をそれぞれ示している。
4A and 4B show a joining method used in the present invention, wherein FIG. 4A is a front view of a joined portion when a coupler is used, FIG. 4B is a sectional view taken along the line bb, and FIG. Is the front view of the joint when no coupler is used, and (d) is the d-
Cross-sectional views along line d are shown.

【図5】この発明の電気加熱ユニット内における温度変
化を示すグラフである。
FIG. 5 is a graph showing a temperature change in the electric heating unit of the present invention.

【図6】従来の電気加熱ユニットの主要部の斜視図であ
る。
FIG. 6 is a perspective view of a main part of a conventional electric heating unit.

【図7】従来の電気加熱ユニット内における温度変化を
示すグラフである。
FIG. 7 is a graph showing a temperature change in a conventional electric heating unit.

【符号の説明】[Explanation of symbols]

(1) 断熱主体 (2) 溝 (4)(7) 波形発熱体 (4b) 端部 (5)(8) 遷移部 (1) Main heat insulation (2) Groove (4) (7) Corrugated heating element (4b) End (5) (8) Transition

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 断熱材を主成分とする断熱主体の表面
に、複数の溝が並列状に設けられ、各溝に、溝の幅より
大きい振幅の波形に形成された発熱体がそれぞれ一体的
に支持されており、少なくとも一対の隣り合う波形発熱
体が、隣り合う溝間にある遷移部で直列につながってい
る電気加熱ユニットにおいて、遷移部が断熱主体内に埋
設されるとともに、遷移部の単位長さ当たりの抵抗が、
波形発熱体を形成する素線の単位長さ当たりの抵抗より
も小さくなされていることを特徴とする電気加熱ユニッ
ト。
1. A plurality of grooves are provided in parallel on the surface of a heat-insulating body mainly composed of a heat-insulating material, and each groove is integrally formed with a heating element formed in a waveform having an amplitude larger than the width of the groove. In an electric heating unit in which at least a pair of adjacent corrugated heating elements are connected in series at a transition portion between adjacent grooves, the transition portion is embedded in the heat insulating main body, and the transition portion is The resistance per unit length is
An electric heating unit characterized in that the resistance per unit length of a wire forming a corrugated heating element is made smaller.
【請求項2】 各波形発熱体は、それぞれ1本の素線に
より別々に形成されており、遷移部は、隣り合う波形発
熱体の端部の素線同士が重ねられて接合されることによ
って形成されていることを特徴とする請求項1の電気加
熱ユニット。
2. Each of the waveform heating elements is separately formed by one element wire, and the transition portion is formed by overlapping and joining the element wires at the ends of the adjacent waveform heating elements. The electric heating unit according to claim 1, wherein the electric heating unit is formed.
【請求項3】 断熱材がセラミック・ファイバとされ、
断熱主体が真空成型によって形成されており、波形発熱
体の幅方向両側の湾曲部が溝の両側壁より断熱主体内に
埋設され、波形発熱体の溝内にある部分の全表面が断熱
主体の外に露出させられていることを特徴とする請求項
1または2の電気加熱ユニット。
3. The heat insulating material is a ceramic fiber,
The heat insulation main body is formed by vacuum molding, and the curved portions on both sides in the width direction of the corrugated heating element are buried in the heat insulation main body from both side walls of the groove, and the entire surface of the portion inside the groove of the corrugated heating element is made of the heat insulation main body. 3. The electric heating unit according to claim 1, wherein the electric heating unit is exposed outside.
【請求項4】 遷移部の両端部に、波形発熱体と同材質
の薄肉ストリップ材を加工してなるカプラが巻かれて、
カプラと遷移部を形成する素線とがそれぞれ溶接されて
おり、溶接面積は素線の断面積よりも大きくなされてい
ることを特徴とする請求項1または2の電気加熱ユニッ
ト。
4. A coupler formed by processing a thin strip of the same material as the corrugated heating element is wound around both ends of the transition portion,
3. The electric heating unit according to claim 1, wherein the coupler and the wire forming the transition portion are welded to each other, and a welding area is larger than a cross-sectional area of the wire.
JP20142696A 1996-07-31 1996-07-31 Electric heating unit Expired - Lifetime JP3603171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20142696A JP3603171B2 (en) 1996-07-31 1996-07-31 Electric heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20142696A JP3603171B2 (en) 1996-07-31 1996-07-31 Electric heating unit

Publications (2)

Publication Number Publication Date
JPH1050464A true JPH1050464A (en) 1998-02-20
JP3603171B2 JP3603171B2 (en) 2004-12-22

Family

ID=16440894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20142696A Expired - Lifetime JP3603171B2 (en) 1996-07-31 1996-07-31 Electric heating unit

Country Status (1)

Country Link
JP (1) JP3603171B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078910A1 (en) * 2002-03-19 2003-09-25 Koyo Thermo Systems Co., Ltd. Electric heater for thermal treatment furnace
CN101876510A (en) * 2010-03-31 2010-11-03 李锦桥 Combined heating mould
KR102139886B1 (en) * 2019-07-05 2020-07-30 (주)세린요업 Electric heat wall with good thermal efficiency and electric heat furnace thereof
KR102499000B1 (en) * 2021-08-09 2023-02-16 김승호 Mlcc manufacturing process, heat treatment equipment and heat module used therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278015A (en) * 2004-03-26 2005-10-06 Star Micronics Co Ltd Earphone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278015A (en) * 2004-03-26 2005-10-06 Star Micronics Co Ltd Earphone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078910A1 (en) * 2002-03-19 2003-09-25 Koyo Thermo Systems Co., Ltd. Electric heater for thermal treatment furnace
US7003014B2 (en) 2002-03-19 2006-02-21 Koyo Thermo Systems Co., Ltd Electric heater for thermal treatment furnace
CN100359277C (en) * 2002-03-19 2008-01-02 光洋热***株式会社 Electric heater for heat processing furnace
CN101876510A (en) * 2010-03-31 2010-11-03 李锦桥 Combined heating mould
KR102139886B1 (en) * 2019-07-05 2020-07-30 (주)세린요업 Electric heat wall with good thermal efficiency and electric heat furnace thereof
KR102499000B1 (en) * 2021-08-09 2023-02-16 김승호 Mlcc manufacturing process, heat treatment equipment and heat module used therefor

Also Published As

Publication number Publication date
JP3603171B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US7003014B2 (en) Electric heater for thermal treatment furnace
JPH1050464A (en) Electric heating unit
US6596974B2 (en) Support apparatus for resistive coils and insulators in electric heaters
US4142062A (en) Material heating furnace and heating element
JPH0367484A (en) High-temperature flat heating element
US5977524A (en) Microwire staple for holding the resistive member of a heating element in place
JP2002372381A (en) Heating furnace and method for producing heater thereof
GB1561913A (en) Electrical resistance heating element with heat tgransferring characteristics
US5935469A (en) Insulating staple for holding the resistive member of a heating element in place
JP2002043030A (en) Joining structure of sheath heater and sheath terminal part, joining method therefor and casting metal plate heater using the joining structure
US8923690B2 (en) Close quarter electric resistance heater and method of use
JPH0668965A (en) Sheath heater
JPH07113586A (en) Material testing furnace
JP3780574B2 (en) Planar heating element
JP2861577B2 (en) Electric heater
JPS61264697A (en) Heater
JP3002174U (en) Electric heater
JP3183136B2 (en) Positive characteristic thermistor heating element
JPH0451485A (en) Sheet form heat emitting element
US1142862A (en) Electrical heating unit.
JPH0414790A (en) Plane heating element
JPH07226287A (en) Heater board for electric heater
JPH0620763A (en) Electric heater
JPH10241845A (en) Coupling structure for sheath heater
JPS62110289A (en) Cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term