JPH1048069A - Residual stress measuring method - Google Patents

Residual stress measuring method

Info

Publication number
JPH1048069A
JPH1048069A JP20440296A JP20440296A JPH1048069A JP H1048069 A JPH1048069 A JP H1048069A JP 20440296 A JP20440296 A JP 20440296A JP 20440296 A JP20440296 A JP 20440296A JP H1048069 A JPH1048069 A JP H1048069A
Authority
JP
Japan
Prior art keywords
stress
measured
residual stress
strain
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20440296A
Other languages
Japanese (ja)
Inventor
Toru Goto
徹 後藤
Takashi Konishi
隆 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20440296A priority Critical patent/JPH1048069A/en
Publication of JPH1048069A publication Critical patent/JPH1048069A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the residual stress by sticking three elemental strain gauge on a measurement point, then thinly separating a surface layer on which the gauge is sticked, to release the stress. SOLUTION: A three elemental strain gauge 2 is sticked to a member to be measured 1, and is connected with a stress meter 4 through an electrical wire 5 for the calibration. Then a separating device 6 is installed by using an adsorbing plate in such manner that the area to which the strain gauge is sticked, properly becomes a separating part 3. Then an electrode 7 is rotated around a pivot 10 by a motor 11. On this occasion, the processing liquid is supplied through a processing liquid supplying hose, for continuously wetting the member to be measured by discharging the processing liquid from a processing water hole 8, and further the power is supplied to the electrode 7 from an electric discharge machining power source 16 while controlled by a constant-voltage controlling disc for electric discharge machining 17, thereby the electric discharge machining is performed on the separating part 3 by the rotation of the motor 11 of the electrode 7, to finally separate the same from the member to be measured 1. Then the strain is measured by the strain meter 4 to read the difference before and after the separation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、残留応力測定法に
関する。例えば、疲労、応力腐食割れ、経時変形など残
留応力の作用が顕著な寿命要因を持つことが危惧される
産業機械・構造物において、その製品管理、寿命管理の
基礎技術として利用されるものである。
[0001] The present invention relates to a method for measuring residual stress. For example, it is used as a basic technology for product management and life management of industrial machines and structures in which the effects of residual stress such as fatigue, stress corrosion cracking, and temporal deformation may have a significant life factor.

【0002】[0002]

【従来の技術】残留応力測定法としては、構造材料の構
成要素である原子面の間隔を測定することによるX線応
力測定法(日本材料学会編「X線応力測定法」養賢堂)
が知られている。
2. Description of the Related Art As a residual stress measuring method, an X-ray stress measuring method by measuring an interval between atomic planes, which are structural elements of a structural material ("X-ray stress measuring method", edited by the Japan Society for Materials Science, Yokendo).
It has been known.

【0003】この方法は、被測定物が均質(結晶粒径が
小さい)かつ等方(優勢方位がない)であることを条件
にしているため、溶接金属では精度が落ちる。また、そ
の装置の主要部はX線管球とゴニオメータ並びにX線検
出器からなり、装置として形状が大きく、例えば、20
0×200×200mm程度となり、被測定物へのセッ
ティングも厳密なものが要求されるので、一般に機械・
構造物への適用には制限がある。また、放射線環境下で
の使用は、その原理上、誤差が生じ易い。
[0003] This method is based on the condition that the object to be measured is homogeneous (having a small crystal grain size) and isotropic (having no dominant orientation). The main part of the device is composed of an X-ray tube, a goniometer and an X-ray detector, and has a large shape as a device.
It is about 0x200x200mm, and strict setting is required for the object to be measured.
There are limitations on application to structures. In addition, when used in a radiation environment, errors tend to occur in principle.

【0004】一方、応力と磁歪の関係を利用する磁気的
な測定法(古屋泰文、島田平八、非破壊検査、38(1
988)p426)は、強磁性体にしか使えず、また、
得られる残留応力情報は残留応力そのものの値ではな
く、主応力の方向及び主応力差である。
On the other hand, a magnetic measurement method using the relationship between stress and magnetostriction (Yasufumi Furuya, Heihachi Shimada, Nondestructive Inspection, 38 (1)
988) p426) can be used only for ferromagnetic materials,
The obtained residual stress information is not the value of the residual stress itself, but the direction of the main stress and the main stress difference.

【0005】更に、音弾性を利用する超音波法(福岡秀
和、溶接学会誌、58(1989)p65)は、やはり
得られる残留応力情報は残留応力そのものの値ではな
く、主応力の方向及び主応力差である。
Further, in the ultrasonic method utilizing acoustic elasticity (Hidekazu Fukuoka, Journal of the Japan Welding Society, 58 (1989) p65), the obtained residual stress information is not the value of the residual stress itself, but the direction and principal stress of the main stress. The stress difference.

【0006】このような非破壊的な方法に対し、半破壊
的な方法として、ひずみゲージを測定したい表面位置に
貼付し、何らかの方法で表面の残留応力を開放させて、
その時に発生するひずみ変化を読み取り、残留応力に換
算する方法、即ち、応力解析法がある。
In contrast to such a non-destructive method, as a semi-destructive method, a strain gauge is attached to a surface position to be measured, and the residual stress on the surface is released by some method.
There is a method of reading a change in strain occurring at that time and converting it into residual stress, that is, a stress analysis method.

【0007】この方法は、場合によっては、実用的には
非破壊と見なし得る場合があり、表面残留応力を測定す
る最も基本的な方法と見なされている(日本材料学会編
「X線応力測定法」養賢堂)。応力解析法の代表例とし
て、Gunnert法が挙げられる(米谷茂、”残留応力の発
生と対策”、(1975)養賢堂)。
[0007] In some cases, this method can be regarded as non-destructive in practical use, and is considered to be the most basic method for measuring the surface residual stress (“X-ray stress measurement” edited by Japan Society for Materials Science). Law "Yokendo). A representative example of the stress analysis method is the Gunnert method (Shigeru Yoneya, "Generation and Countermeasures of Residual Stress", (1975) Yokendo).

【0008】その方法を図4に示す。この方法は、測定
点に3要素ひずみゲージ2を貼付し、その周辺に直径
d、深さzのリング状の切り込み18を入れ、リング内
のひずみが弛緩することを利用するものである。図5に
示すように、最大主応力σmaxから角度αをとると、そ
の方向の弛緩ひずみは次式で表せる。尚、σminは最小
主応力である。
FIG. 4 shows the method. This method utilizes the fact that a three-element strain gauge 2 is attached to a measurement point, a ring-shaped cut 18 having a diameter d and a depth z is made around the three-point strain gauge 2 and strain in the ring is relaxed. As shown in FIG. 5, when the angle α is taken from the maximum principal stress σ max , the relaxation strain in that direction can be expressed by the following equation. Note that σ min is the minimum principal stress.

【0009】 ε(α)=K(α)σmax+K(90°−α)σmin …(1) ここで、K(α)は実験定数であり、ひずみの弛緩程度
を示す。図5で、βをσmaxとx軸の間の角度とし、下
式に示すものとする。 θ=α+β …(2) また、K(α)は次式で近似し得るとする。
Ε (α) = K (α) σ max + K (90 ° −α) σ min (1) Here, K (α) is an experimental constant and indicates a degree of relaxation of strain. In FIG. 5, β is an angle between σ max and the x axis, and is represented by the following equation. θ = α + β (2) It is assumed that K (α) can be approximated by the following equation.

【0010】 K(α)=A+Bcos(2α) …(3) 従って、(1)式に(2)(3)式を代入すると下式の
通りとなる。 ε(α)={A+Bcos2(θ−β)}σmax +{A+Bcos2(90°−θ+β)}σmin …(4)
K (α) = A + Bcos (2α) (3) Therefore, the following equation is obtained by substituting equations (2) and (3) into equation (1). ε (α) = {A + Bcos2 (θ-β)} σ max + {A + Bcos2 (90 ° -θ + β)} σ min ... (4)

【0011】ここで、数式上簡便化するため、ひずみε
1,ε2,ε3がそれぞれθ=0°,45°,90°で計
測されたものとする。また、−2β=λとする。 σmax={ε1(A+Bsinλ)−ε2(A−Bcosλ)}/ 2AB(sinλ+cosλ) …(5) σmin={ε2(A+Bcosλ)−ε1(A−Bsinλ)}/ 2AB(sinλ+cosλ) …(6) λ=tan-1(ε1−2ε2+ε3)/(ε1−ε3) …(7)
Here, for the sake of simplicity, the strain ε
It is assumed that 1 , ε 2 and ε 3 are measured at θ = 0 °, 45 °, and 90 °, respectively. In addition, it is assumed that −2β = λ. σ max = {ε 1 (A + Bsinλ) -ε 2 (A-Bcosλ)} / 2AB (sinλ + cosλ) ... (5) σ min = {ε 2 (A + Bcosλ) -ε 1 (A-Bsinλ)} / 2AB (sinλ + cosλ) .. (6) λ = tan −11 −2ε 2 + ε 3 ) / (ε 1 −ε 3 ) (7)

【0012】AとBを求めるため、主応力方向は既知と
して、σmaxの方向をx軸に合わせる。即ち、β=0
°、ε1=εmax、そして、ε3=εminとなる。この条件
では、(5)式と(6)式は次式のように解ける。 εmax=(A+B)σmax+(A−B)σmin …(8) εmin=(A+B)σmin+(A−B)σmax …(9)
In order to obtain A and B, the principal stress direction is known and the direction of σ max is adjusted to the x-axis. That is, β = 0
°, ε 1 = ε max , and ε 3 = ε min . Under this condition, equations (5) and (6) can be solved as follows. ε max = (A + B) σ max + (A−B) σ min (8) ε min = (A + B) σ min + (A−B) σ max (9)

【0013】一方、次式も成立する。但し、Kは比例定
数、Eは縦弾性定数、νはポアッソン比である。 εmax=(K/E)σmax−(νK/E)σmin …(10) εmin=(K/E)σmin−(νK/E)σmax …(11)
On the other hand, the following equation also holds. Here, K is a proportional constant, E is a longitudinal elastic constant, and ν is a Poisson's ratio. ε max = (K / E) σ max − (νK / E) σ min (10) ε min = (K / E) σ min − (νK / E) σ max (11)

【0014】これらより、次式が導かれる。 A=K(1−ν)/2E …(12) B=K(1+ν)/2E …(13)From these, the following equation is derived. A = K (1−ν) / 2E (12) B = K (1 + ν) / 2E (13)

【0015】以上から、リング径、カット深さ、残留応
力分布の各々に対してKが決まれば、AとBが求めら
れ、更に主応力とその方向が求められることになる。K
の求め方については、被測定物の残留応力分布に近いモ
デルを準備し、それによって予め実験的に求めることが
必要である(米谷茂、”残留応力の発生と対策”、(1
975)養賢堂)。
From the above, if K is determined for each of the ring diameter, cut depth, and residual stress distribution, A and B are obtained, and the main stress and its direction are also obtained. K
It is necessary to prepare a model close to the residual stress distribution of the measured object, and to experimentally obtain it in advance by using a model (Shigeru Yoneya, "Generation and Countermeasures of Residual Stress", (1)
975) Yokendo).

【0016】ASTMで測定標準(ASTM E837
−81(1981))として採用されているCenter hol
e drilling法は、図6に示すように、3要素ひずみゲー
ジロゼット2の中心に小孔をあけることにより応力解放
する。但し、応力分布が表面上及び深さ方向に一様と見
なし得ることが条件とされる(ASTM E837−8
1(1981))。
Measurement standard by ASTM (ASTM E837)
Center hol adopted as -81 (1981))
In the e drilling method, as shown in FIG. 6, stress is released by making a small hole in the center of the three-element strain gauge rosette 2. However, the condition is that the stress distribution can be regarded as uniform on the surface and in the depth direction (ASTM E837-8).
1 (1981)).

【0017】また、Center hole drilling法等では、孔
等を明ける必要があるため、ドリル等が用いられる。現
有の装置では、その操作は人手によるので、測定物によ
ってはロボット化して接近性を良くする必要がある。し
かしながら、ドリルは不可欠であり、加工時に反力を吸
収する必要があるので、装置の小型化には制約がある。
In the center hole drilling method or the like, a drill or the like is used because it is necessary to make a hole or the like. In the existing device, since the operation is performed manually, it is necessary to improve the accessibility by using a robot depending on an object to be measured. However, a drill is indispensable, and it is necessary to absorb a reaction force at the time of processing, so that there is a limitation in downsizing the device.

【0018】[0018]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、次の2点である。 (1)表面上及び深さ方向に応力分布があっても、表面
残留応力が測定できること。 (2)測定に必要な装置が比較的小型で、測定物への接
近性が良いこと。
The problems to be solved by the present invention are the following two points. (1) The surface residual stress can be measured even if there is a stress distribution on the surface and in the depth direction. (2) The equipment required for measurement is relatively small and has good accessibility to the measured object.

【0019】[0019]

【課題を解決するための手段】図2に示すように、測定
点に3要素ひずみゲージを貼付し、その後、そのゲージ
を貼付した表層を薄く剥離させることによって応力開放
する。その際のひずみ変化から残留応力を求める。
As shown in FIG. 2, a three-element strain gauge is attached to a measurement point, and then the stress is released by thinly peeling off the surface layer on which the gauge is attached. The residual stress is determined from the change in strain at that time.

【0020】この方法によると、ゲージに貼付した試料
が薄く且つ面積が小さければ、応力が完全に開放される
ので、表面上及び深さ方向に応力分布があってもそれら
の影響を無視できることになる。本発明における表面剥
離法としては、例えば、図3に示すような放電加工を利
用した剥離装置が使用できるので、加工時の反力は少な
く、装置の小型化が可能である。
According to this method, if the sample attached to the gauge is thin and the area is small, the stress is completely released, so that even if there is a stress distribution on the surface and in the depth direction, the influence can be ignored. Become. As the surface peeling method in the present invention, for example, a peeling device utilizing electric discharge machining as shown in FIG. 3 can be used, so that the reaction force at the time of machining is small and the device can be miniaturized.

【0021】[0021]

【発明の実施の形態】図2に示すように被測定物1の測
定点に3要素ひずみゲージ2を貼付し、その後、そのゲ
ージ2を貼付した表層を薄く剥離させて剥離部3とする
ことにより応力を開放する。その際のひずみ変化から残
留応力を求める。図2では、ひずみε1,ε2,ε3がそ
れぞれθ=0°,45°,90°で測定されたものとす
る。また、図5に準じて−2β=λとすると、同様に
(5)式から(13)式が成立する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 2, a three-element strain gauge 2 is attached to a measurement point of an object 1 to be measured, and then the surface layer on which the gauge 2 is attached is peeled thinly to form a peeled portion 3. To release the stress. The residual stress is determined from the change in strain at that time. In FIG. 2, it is assumed that the strains ε 1 , ε 2 , and ε 3 are measured at θ = 0 °, 45 °, and 90 °, respectively. Further, if −2β = λ according to FIG. 5, equations (13) to (13) hold similarly.

【0022】但し、(12)(13)式で、表面剥離法で
は、K=1である。もし、そうでないと懸念される場合
には、剥離した試料をゲージ貼付面の裏側を電解研磨し
て、更に、薄片にすることが可能である。そうすれば、
K=1となる。従って、AとBは次式で表される。 A=(1−ν)/2E …(14) B=(1+ν)/2E …(15)
However, in the equations (12) and (13), K = 1 in the surface peeling method. If there is a concern that this is not the case, the peeled sample can be further polished by electropolishing the back side of the gauge-attached surface to make it thinner. that way,
K = 1. Therefore, A and B are represented by the following equations. A = (1−ν) / 2E (14) B = (1 + ν) / 2E (15)

【0023】これらを、(5)(6)式に代入すれば、
測定したε1,ε2,ε3からσmax及びσminが下式のよ
うに求められる。 σmax=[ε1{(1−ν)+(1+ν)sinλ}−ε2{(1−ν)−(1+ν )cosλ}]/E(1−ν)(1+ν)(sinλ+cosλ) …(16) σmin=[ε2{(1−ν)+(1+ν)cosλ}−ε1{(1−ν)−(1+ν )sinλ}]/E(1−ν)(1+ν)(sinλ+cosλ) …(17)
By substituting these into equations (5) and (6),
From the measured ε 1 , ε 2 , ε 3 , σ max and σ min are obtained as in the following equations. σ max = [ε 1 {(1-ν) + (1 + ν) sinλ} −ε 2 {(1-ν)-(1 + ν) cosλ}] / E (1-ν) (1 + ν) (sinλ + cosλ) (16) ) Σ min = [ε 2 {(1-ν) + (1 + ν) cosλ} −ε 1 {(1-ν)-(1 + ν) sinλ}] / E (1-ν) (1 + ν) (sinλ + cosλ) 17)

【0024】ここで、λは(7)式で与えられる。放電
加工を利用した剥離装置を図3に示す。U字電極7が旋
回軸10を中心に低速モータ11で回転させられると、
U字電極7はひずみゲージの外側を包むようにして試料
内を通りひずみゲージ貼付部を剥離させる。
Here, λ is given by equation (7). FIG. 3 shows a peeling device using electric discharge machining. When the U-shaped electrode 7 is rotated by the low-speed motor 11 around the pivot axis 10,
The U-shaped electrode 7 wraps around the outside of the strain gauge, passes through the sample, and peels off the strain gauge attachment part.

【0025】[0025]

【実施例】以下、本発明について、図面を示す実施例を
参照して詳細に説明する。本発明の一実施例に係る表面
剥離法に係る測定装置を図1に示す。同図に示すよう
に、先ず、被測定物1に3要素ひずみゲージ2を貼付
し、電線5でストレンメータ4に連結してキャリブレイ
ションをする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in the drawings. FIG. 1 shows a measuring apparatus according to the surface peeling method according to one embodiment of the present invention. As shown in the figure, first, a three-element strain gauge 2 is attached to a DUT 1 and connected to a strain meter 4 with an electric wire 5 to perform calibration.

【0026】次に、ひずみゲージ2を貼付した部分が適
正に剥離部3となるように、剥離装置6を吸着盤15を
用いて設置する。引き続き、電極7を旋回軸10のまわ
りにモータ11によって回転させる。モータ11の電力
は、モータ用ケーブル14から供給される。
Next, the peeling device 6 is installed using the suction disk 15 so that the portion where the strain gauge 2 is adhered becomes the peeling portion 3 properly. Subsequently, the electrode 7 is rotated around the pivot 10 by the motor 11. The electric power of the motor 11 is supplied from a motor cable 14.

【0027】その際、加工液供給ホース13を通じて加
工液9を供給し、加工水穴8から吐出して測定物を連続
的に濡らす一方、放電加工用定電圧制御盤17で制御し
ながら放電加工電源16から電極7へ通電し、電極7の
回転により剥離部3を放電加工して最終的に被測定物1
から剥離させる。
At this time, the machining fluid 9 is supplied through the machining fluid supply hose 13 and is discharged from the machining water hole 8 to continuously wet the object to be measured. Electric power is supplied from the power source 16 to the electrode 7, and the peeled portion 3 is subjected to electric discharge machining by the rotation of the electrode 7, and finally the DUT 1
Peeled off.

【0028】その後、ストレンメータ4でひずみを計測
して、剥離前後の差を読み取る。剥離部3の形状は電極
7の形で決めることができるし、特に、厚さは吸着盤1
5の高さで制御できる。厚さは、1mm以下に十分薄く
することができるので、極力、実際の機械・構造物に悪
影響を与えないようにできる。
Thereafter, the strain is measured by the strain meter 4, and the difference between before and after peeling is read. The shape of the peeling part 3 can be determined by the shape of the electrode 7, and in particular, the thickness is determined by the suction disk 1.
It can be controlled at a height of 5. Since the thickness can be sufficiently reduced to 1 mm or less, it is possible to minimize the adverse effect on actual machines and structures.

【0029】本発明における表面剥離法とCenter hole
drilling法及びX線回折法で、板表面の残留応力を測定
した例を挙げる。試験片として規定熱処理ずみの12C
r鋼板(厚さ50mm)を、熱処理炉に入れ750℃に
保持後、油に投入した。この処理により出来た表面残留
応力を測定した。その結果を次に示す。
The surface peeling method and the center hole in the present invention
An example in which the residual stress on the plate surface is measured by the drilling method and the X-ray diffraction method will be described. 12C with specified heat treatment as test specimen
r A steel plate (thickness: 50 mm) was put into a heat treatment furnace, kept at 750 ° C., and then poured into oil. The surface residual stress produced by this treatment was measured. The results are shown below.

【0030】 表面剥離法 −350Mpa Center hole drilling法 −270Mpa X線回折法 −355MpaSurface peeling method -350 Mpa Center hole drilling method -270 Mpa X-ray diffraction method -355 Mpa

【0031】これにより、表面剥離法の結果は、X線回
折法のそれと極めて近いことが判る。一方、Center hol
e drilling法の値は絶対値が他の2法に比べて小さい。
これは、Center hole drilling法では、表面直下に残留
応力の分布がある本試料を、十分に応力解放ができなか
ったためであると推定される。
This indicates that the result of the surface peeling method is very close to that of the X-ray diffraction method. On the other hand, Center hol
The value of the e drilling method is smaller in absolute value than the other two methods.
This is presumably because the center hole drilling method was unable to sufficiently release the stress of the present sample having a distribution of residual stress directly below the surface.

【0032】念のため、表面にひずみゲージを貼り、そ
の面と反対側面を研削、研磨してひずみゲージ貼付部を
薄片にする、いわゆる伝統的方法で残留応力を測定する
と、−352Mpaであった。これにより、表面剥離法
は、十分に精度のある残留応力測定法であることが判
る。
As a precautionary measure, the residual stress was measured to be -352 Mpa by a so-called traditional method in which a strain gauge was attached to the surface, and the side opposite to the surface was ground and polished to form a thin section where the strain gauge was attached. . This indicates that the surface peeling method is a sufficiently accurate residual stress measurement method.

【0033】[0033]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、ひずみゲージを用いる残留応力測定法である
本発明では、ゲージを貼付した部分を薄く剥離させるた
め、応力を完全に解放しうる。そのため、表面上及び深
さ方向に応力分布があってもそれらの影響を無視でき
る。
As described above in detail with reference to the embodiments, in the present invention, which is a residual stress measuring method using a strain gauge, the stress is completely released in order to peel off the portion where the gauge is attached thinly. Can. Therefore, even if there is a stress distribution on the surface and in the depth direction, their influence can be ignored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る残留応力測定法に使用
される構成要素を示す説明図である。
FIG. 1 is an explanatory diagram showing components used in a residual stress measurement method according to one embodiment of the present invention.

【図2】本発明の基本となる応力解放の原理図である。FIG. 2 is a principle diagram of stress release which is the basis of the present invention.

【図3】表面剥離装置の一例を示す説明図である。FIG. 3 is an explanatory view showing an example of a surface peeling device.

【図4】Gunnert法の説明図である。FIG. 4 is an explanatory diagram of the Gunnert method.

【図5】Gunnert法におけるリング溝内の主残留応力の
方向の説明図である。
FIG. 5 is an explanatory diagram of a direction of main residual stress in a ring groove in the Gunnert method.

【図6】Center hole drilling法のひずみ3要素ゲージ
ロゼットと中心にあける小孔の説明図である。
FIG. 6 is an explanatory view of a strain three-element gauge rosette of a center hole drilling method and a small hole formed at the center.

【符号の説明】[Explanation of symbols]

1 被測定物 2 3要素ひずみゲージ 3 剥離部 4 ストレインメータ 5 電線 6 剥離装置 7 電極 8 加工水穴 9 加工水 10 旋回軸 11 モータ 12 通電ケーブル 13 加工液供給ホース 14 モータ用ケーブル 15 吸着盤 16 放電加工用電源 17 放電加工用定電圧制御盤 18 リング溝 19 中心孔 REFERENCE SIGNS LIST 1 object to be measured 2 3 element strain gauge 3 peeling part 4 strain meter 5 electric wire 6 peeling device 7 electrode 8 processing water hole 9 processing water 10 rotation axis 11 motor 12 power supply cable 13 processing liquid supply hose 14 motor cable 15 suction disk 16 Power supply for electric discharge machining 17 Constant voltage control panel for electric discharge machining 18 Ring groove 19 Center hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 残留応力を測定したい部材の測定したい
表面位置に3要素ひずみゲージを貼付し、その後、前記
ゲージを貼付した表層を薄く剥離させることによって、
前記ゲージに現れるひずみ変化から残留応力を求めるこ
とを特徴とする残留応力測定法。
1. A three-element strain gauge is attached to a surface position of a member whose residual stress is to be measured, and then the surface layer on which the gauge is attached is thinly peeled off.
A residual stress measurement method, wherein a residual stress is obtained from a change in strain appearing on the gauge.
【請求項2】 前記ゲージを貼付した表層は、放電加工
を利用した剥離装置より薄く剥離されることを特徴とす
る請求項1記載の残留応力測定法。
2. The residual stress measuring method according to claim 1, wherein the surface layer to which the gauge is attached is peeled thinner by a peeling device using electric discharge machining.
JP20440296A 1996-08-02 1996-08-02 Residual stress measuring method Withdrawn JPH1048069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20440296A JPH1048069A (en) 1996-08-02 1996-08-02 Residual stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20440296A JPH1048069A (en) 1996-08-02 1996-08-02 Residual stress measuring method

Publications (1)

Publication Number Publication Date
JPH1048069A true JPH1048069A (en) 1998-02-20

Family

ID=16489958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20440296A Withdrawn JPH1048069A (en) 1996-08-02 1996-08-02 Residual stress measuring method

Country Status (1)

Country Link
JP (1) JPH1048069A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330950C (en) * 2004-02-26 2007-08-08 现代自动车株式会社 Method for measuring residual stress in a siamese region of a cylinder block
JP2007303916A (en) * 2006-05-10 2007-11-22 K & T Consultant:Kk Method for measuring stress of structure
JP2008058179A (en) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology Method of evaluating residual stress
JP2009168562A (en) * 2008-01-15 2009-07-30 Fujitsu Ltd Stress evaluating method using raman spectroscopy, and method of manufacturing semiconductor device
JP2010060490A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Services Co Ltd Stress measurement method of concrete structure
CN103090999A (en) * 2013-01-11 2013-05-08 北京工业大学 Heating device used for through silicon via (TSV) fill copper residual stress measurement
CN103743500A (en) * 2013-12-24 2014-04-23 广西科技大学 Automotive covering parts' assembling stress measuring method
CN109596250A (en) * 2018-12-14 2019-04-09 东风商用车有限公司 A kind of detection method of workpiece residual stress
CN111006812A (en) * 2019-12-13 2020-04-14 北京航天控制仪器研究所 Stress test precision calibration method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330950C (en) * 2004-02-26 2007-08-08 现代自动车株式会社 Method for measuring residual stress in a siamese region of a cylinder block
JP2007303916A (en) * 2006-05-10 2007-11-22 K & T Consultant:Kk Method for measuring stress of structure
JP2008058179A (en) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology Method of evaluating residual stress
JP2009168562A (en) * 2008-01-15 2009-07-30 Fujitsu Ltd Stress evaluating method using raman spectroscopy, and method of manufacturing semiconductor device
JP2010060490A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Services Co Ltd Stress measurement method of concrete structure
CN103090999A (en) * 2013-01-11 2013-05-08 北京工业大学 Heating device used for through silicon via (TSV) fill copper residual stress measurement
CN103743500A (en) * 2013-12-24 2014-04-23 广西科技大学 Automotive covering parts' assembling stress measuring method
CN109596250A (en) * 2018-12-14 2019-04-09 东风商用车有限公司 A kind of detection method of workpiece residual stress
CN111006812A (en) * 2019-12-13 2020-04-14 北京航天控制仪器研究所 Stress test precision calibration method and device

Similar Documents

Publication Publication Date Title
JPH1048069A (en) Residual stress measuring method
EP3093646A1 (en) Method for automated parameter and selection testing based on known characteristics of the sample being tested
EP3076153B1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
TW201502480A (en) Measuring device and method for determining a pressure map
CN108982275B (en) Ultrasonic-assisted high-speed single-point scratch test device and test method
JPH0579959A (en) Material strength measuring device
US6026680A (en) Paint and adhesive test system
Jeandrau Intrinsic mechanical characterization of structural adhesives
Hansson et al. Plasticity due to superimposed macrosonic and static strains
US20070229812A1 (en) Method and instrument for measuring semiconductor wafers
Wycherley et al. A method for uniform shear stress-strain analysis of adhesives
US7150200B1 (en) Miniature axisymmetric streamline tensile (MAST) specimen
FR2393266A1 (en) METHOD AND APPARATUS FOR MEASURING THE THICKNESS OF THIN LAYERS BY X-RAY FLUORESCENCE
Wong et al. Piezoelectricity in structural adhesives and application for monitoring joint integrity via guided ultrasonic waves
JPH05142067A (en) Measuring method for distribution of concentrated stress
US4918711A (en) Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys
US5193395A (en) Method and apparatus for determination of material residual stress
RU2750424C1 (en) Method for determining stresses in the material during thermal fatigue testing
Briggs et al. Acoustic microscopy for imaging and characterization
JPS63228062A (en) Predicting method for remaining life of metallic material
CN111238358B (en) Resistance value test-based cutter coating thickness measuring electrode, device and method
JPH06763Y2 (en) Cable jacket tensile tester
Kline et al. Ultrasonic modulus determination in composite media
SU808919A1 (en) Device for measuring layer adhesion in a composite material
JPH06229845A (en) Method and device for evaluating stress of steel pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007