JPH1047804A - Method for controlling absorption cold and hot water machine - Google Patents

Method for controlling absorption cold and hot water machine

Info

Publication number
JPH1047804A
JPH1047804A JP8202550A JP20255096A JPH1047804A JP H1047804 A JPH1047804 A JP H1047804A JP 8202550 A JP8202550 A JP 8202550A JP 20255096 A JP20255096 A JP 20255096A JP H1047804 A JPH1047804 A JP H1047804A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
cold
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8202550A
Other languages
Japanese (ja)
Other versions
JP3819485B2 (en
Inventor
Shinichi Uekago
伸一 上篭
Tomoyuki Murayama
智之 村山
Shuji Ishizaki
修司 石崎
Hideki Uchida
英樹 内田
Sumio Ikeda
澄雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20255096A priority Critical patent/JP3819485B2/en
Publication of JPH1047804A publication Critical patent/JPH1047804A/en
Application granted granted Critical
Publication of JP3819485B2 publication Critical patent/JP3819485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply cold water and hot water at stable temperature even at the time of the low load operation of a cold water and hot water simultaneous supply type absorption cold and hot water machine. SOLUTION: When the temperature t of cold water (temperature of circulating flow of hot water) which finishes a cooling operation and returns to an evaporator and the temperature T of hot water (temperature of circulating flow of hot water) which finishes a heating operation and returns to a hot water device are located in an area A, a main cold water operation is carried out. When they are located in an area B, a main hot water operation is carried out. Whem they shifts from the area A to an area C, the main cold water operation is kept. When they shifts from the area B to the area C, the main hot water operation is kept.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷房や暖房が同
時に行えるように、冷水と温水が同時に供給できる吸収
冷温水機の制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the control of an absorption chiller / heater capable of simultaneously supplying cold water and hot water so that cooling and heating can be performed simultaneously.

【0002】[0002]

【従来の技術】冷/温水同時供給型の吸収冷温水機にお
いては、一般に冷水供給を主、温水供給を従として制御
する冷主運転と、逆に温水供給を主、冷水供給を従とし
て制御する暖主運転とは、例えば図4に示したように、
冷媒の主に蒸発熱で冷却するために還流してきた冷水の
温度、すなわち還流冷水温度tと、冷媒の主に凝縮熱で
加熱するために還流してきた温水の温度、すなわち還流
温水温度Tに基づいて、その領域をはっきりと区分する
ようにしていた。
2. Description of the Related Art In a simultaneous cooling / hot water supply type absorption chiller / heater, a cooling main operation in which the supply of chilled water is controlled mainly and a supply of hot water is controlled in general, and a control in which the supply of hot water is controlled as a main and the supply of chilled water is controlled as a slave. The warm main operation to be performed is, for example, as shown in FIG.
Based on the temperature of the chilled water that has been circulated to cool mainly with the heat of evaporation of the refrigerant, ie, the temperature of the chilled chilled water, and the temperature of the hot water that has been circulated mainly to heat the refrigerant with the heat of condensation, ie, the temperature of the circulated hot water T The area was clearly divided.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の冷
/温水同時供給型の吸収冷温水機においては、冷却負荷
(例えば、冷房負荷)と、加熱負荷(例えば、暖房負
荷)が共に小さい低負荷状態、すなわち、例えば7.0
℃を目標に冷却した冷水が循環供給される冷却負荷から
は7.0℃より僅かに高い、例えば7.3℃以下の冷水
が還流し、例えば55.0℃を目標に加熱した温水が循
環供給される加熱負荷からは55.0より僅かに低い、
例えば54.7℃以上の温水が還流しているような負荷
状態では、高温再生器に設けたガスバーナなどの燃焼器
の燃焼をオン/オフして入熱制御することになるので、
冷水と温水を所定の目標温度に制御することが困難とな
る。特に、冷主運転と暖主運転の切換を、冷却/加熱作
用を終えて吸収冷温水機に還流してくる冷水と温水の温
度のみに基づいて行うため、ある条件下では冷主運転と
暖主運転とが頻繁に切換わり、冷水温度と温水温度の安
定制御が一層困難になると云った問題点があり、この点
の解決が課題とされていた。
However, in the conventional absorption chiller / heater of the simultaneous cooling / hot water supply type, both the cooling load (for example, cooling load) and the heating load (for example, heating load) are small. Load state, eg, 7.0
Cooling water slightly higher than 7.0 ° C., for example, 7.3 ° C. or less is recirculated from the cooling load to which the cold water cooled to the target of the temperature is circulated, and hot water heated to the target of 55.0 ° C. is circulated. Slightly less than 55.0 from the supplied heating load,
For example, in a load state in which hot water of 54.7 ° C. or more is refluxed, heat input is controlled by turning on / off combustion of a combustor such as a gas burner provided in a high-temperature regenerator.
It becomes difficult to control the cold water and the hot water to a predetermined target temperature. In particular, since the switching between the cold main operation and the warm main operation is performed based only on the temperatures of the cold water and the hot water that are returned to the absorption chiller / heater after the cooling / heating action, the cold main operation and the warm main operation are performed under certain conditions. There is a problem that the main operation is frequently switched, and it becomes more difficult to stably control the temperature of the cold water and the temperature of the hot water, and solving this point has been an issue.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、再生器・凝縮
器・蒸発器・吸収器などを配管接続して冷媒と吸収液の
循環サイクルを形成すると共に、蒸発器の内部に通水し
て第1の冷水所定温度t1を目標に冷却した冷水を冷却
負荷に循環供給する冷水供給経路と、再生器から冷媒蒸
気が流入し、熱交換して凝縮した冷媒液が再生器に還流
する容器内に通水して第1の温水所定温度T1を目標に
加熱した温水を加熱負荷に循環供給する温水供給経路と
を備え、冷水/温水同時供給運転時に、冷却のために前
記蒸発器に通水する水の温度(以下、還流冷水温度)t
または加熱のために前記容器に通水する水の温度(以
下、還流温水温度)Tに基づいて、冷水主、温水従(以
下、冷主運転)、若しくは温水主、冷水従(以下、暖主
運転)の何れかの制御が選択されて、前記再生器に供給
する熱量を制御する吸収冷温水機において、
According to the present invention, as a specific means for solving the above-mentioned problems of the prior art, a regenerator / condenser / evaporator / absorber is connected by piping to circulate a refrigerant and an absorbing liquid. A cycle is formed, a chilled water supply path for circulating chilled water cooled to a first chilled water predetermined temperature t1 as a target and flowing to the inside of the evaporator to a cooling load, and a refrigerant vapor flowing from the regenerator to generate heat. A hot water supply path for supplying hot water heated to a first hot water predetermined temperature T1 as a target and circulating the hot water to a heating load by passing water into a container in which the refrigerant liquid exchanged and condensed flows back to the regenerator; Temperature of water flowing through the evaporator for cooling during the simultaneous supply operation (hereinafter referred to as reflux cold water temperature) t
Alternatively, based on the temperature T (hereinafter referred to as a reflux hot water temperature) of water flowing through the container for heating, a cold water main, a hot water main (hereinafter, a cold main operation), or a hot water main, a cold water main (hereinafter, a warm main) Operation) is selected, and in the absorption chiller / heater controlling the amount of heat supplied to the regenerator,

【0005】還流冷水温度tが第1の冷水所定温度t1
より僅かに高い第2の冷水所定温度t2より低く、還流
温水温度Tが第1の温水所定温度T1より僅かに低い第
2の温水所定温度T2より高い、冷却/加熱負荷共に小
さい低負荷状態に、少なくとも還流冷水温度tが第2の
冷水所定温度t2より高いか、還流温水温度Tが第2の
温水所定温度T2より低い高負荷状態から移行するとき
に、冷主運転から移行するときには冷主運転を継続し、
暖主運転から移行するときには暖主運転を継続すること
を特徴とする運転制御方法、を提供することにより、前
記した従来技術の課題を解決するものである。
[0005] The reflux chilled water temperature t is equal to the first chilled water predetermined temperature t1.
In a low load state, which is lower than the second cold water predetermined temperature t2, which is slightly higher than the second cold water predetermined temperature T2, and whose reflux hot water temperature T is slightly higher than the second hot water predetermined temperature T2, which is slightly lower than the first hot water predetermined temperature T1. When at least the reflux chilled water temperature t is higher than the second chilled water predetermined temperature t2 or when the circulated hot water temperature T is shifted from the high load state lower than the second hot water predetermined temperature T2, when shifting from the cooling main operation, the cooling main Continue driving,
An object of the present invention is to solve the above-described problem in the related art by providing an operation control method characterized in that the warm main operation is continued when the operation shifts from the warm main operation.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0007】図1に例示したものは冷/温水を冷却負
荷、加熱負荷それぞれに循環供給することができる冷温
水機としての二重効用吸収式冷凍機であり、冷媒に水
を、吸収液に臭化リチウム(LiBr)水溶液を使用し
たものである。
FIG. 1 shows an example of a double-effect absorption refrigerator as a chiller / heater capable of circulating and supplying cold / hot water to a cooling load and a heating load. This uses an aqueous solution of lithium bromide (LiBr).

【0008】図において、1は加熱手段としてのガスバ
ーナ1Bを備えた高温再生器、2は低温再生器、3は凝
縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7
は高温熱交換器、8は温水器、9〜11は吸収液配管、
13は吸収液ポンプ、14〜19は冷媒配管、20は冷
媒ポンプ、22は図示しない冷房などの冷却負荷に冷水
を循環供給するための、途中に蒸発器熱交換器4Aを備
えた冷水配管、23は途中に吸収器熱交換器5Aおよび
凝縮器熱交換器3Aを備えた冷却水配管、24は図示し
ない暖房などの加熱負荷に温水を循環供給するための、
途中に温水器熱交換器8Aを備えた温水配管、25〜2
8は開閉弁、29と30は流量制御弁であり、これらの
機器はそれぞれ図1に示したように配管接続されてお
り、この構成自体は従来周知である。
In the figure, 1 is a high temperature regenerator provided with a gas burner 1B as a heating means, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7
Is a high-temperature heat exchanger, 8 is a water heater, 9 to 11 are absorbent pipes,
13 is an absorption liquid pump, 14 to 19 are refrigerant pipes, 20 is a refrigerant pump, 22 is a chilled water pipe provided with an evaporator heat exchanger 4A in the middle for circulating and supplying chilled water to a cooling load such as cooling. 23 is a cooling water pipe provided with an absorber heat exchanger 5A and a condenser heat exchanger 3A in the middle, and 24 is for circulating and supplying hot water to a heating load such as heating (not shown).
Hot water pipe with a water heater 8A on the way, 25-2
Reference numeral 8 denotes an on-off valve, and reference numerals 29 and 30 denote flow control valves. These devices are connected by piping as shown in FIG. 1, and the configuration itself is conventionally known.

【0009】すなわち、上記構成の吸収冷温水機におい
ては、開閉弁25・26・27を閉じると共に、冷却水
配管23への冷却水の供給を停止してガスバーナ1Bを
点火すると、高温再生器1では溶液が加熱され、この加
熱溶液から蒸発分離した冷媒蒸気が冷媒配管18を介し
て温水器8に入り、ここで温水器熱交換器8Aを流れる
水と熱交換して凝縮し、冷媒配管19を通って高温再生
器1に戻る循環が行われるので、温水器熱交換器8Aを
流れて冷媒蒸気と熱交換し、温度上昇した水、すなわち
温水を図示しない加熱負荷に循環供給することで暖房運
転などが行える。
That is, in the absorption chiller / heater of the above construction, when the on-off valves 25, 26 and 27 are closed, the supply of cooling water to the cooling water pipe 23 is stopped, and the gas burner 1B is ignited, the high-temperature regenerator 1 Then, the solution is heated, and the refrigerant vapor evaporated and separated from the heated solution enters the water heater 8 through the refrigerant pipe 18, where it exchanges heat with the water flowing through the water heater heat exchanger 8A to be condensed. Is returned to the high-temperature regenerator 1 through the heat exchanger 8A, and flows through the water heater heat exchanger 8A to exchange heat with refrigerant vapor, thereby circulating and supplying the temperature-raised water, that is, hot water, to a heating load (not shown). Driving can be performed.

【0010】一方、開閉弁25・26・27を開き、開
閉弁28を閉じると共に温水配管24による温水循環を
停止した状態で冷却水配管23に冷却水を通し、ガスバ
ーナ1Bを点火して高温再生器1で溶液を加熱すると、
高温再生器1で溶液から蒸発分離した冷媒蒸気は冷媒配
管14に流れ、低温再生器2で中間吸収液を加熱濃縮し
て凝縮器3に入り、低温再生器2で冷媒蒸気により加熱
されて中間吸収液から蒸発分離した冷媒蒸気は凝縮器3
へ入り、冷却水配管23から凝縮器熱交換器3Aへ流れ
た冷却水と熱交換して凝縮液化した後、冷媒配管14か
らの凝縮冷媒と一緒になって冷媒配管15を介して蒸発
器4へ入る。
On the other hand, in a state where the on-off valves 25, 26 and 27 are opened, the on-off valves 28 are closed, and the circulation of the hot water through the hot water pipe 24 is stopped, cooling water is passed through the cooling water pipe 23, and the gas burner 1B is ignited to regenerate the high temperature. When the solution is heated in vessel 1,
The refrigerant vapor evaporated and separated from the solution in the high-temperature regenerator 1 flows into the refrigerant pipe 14, heat-concentrates the intermediate absorption liquid in the low-temperature regenerator 2, enters the condenser 3, and is heated by the refrigerant vapor in the low-temperature regenerator 2, Refrigerant vapor evaporated and separated from the absorption liquid is supplied to the condenser 3
And condensed and liquefied by exchanging heat with the cooling water flowing from the cooling water pipe 23 to the condenser heat exchanger 3A, and then together with the condensed refrigerant from the refrigerant pipe 14 via the refrigerant pipe 15 to the evaporator 4. Enter.

【0011】蒸発器4では、冷媒ポンプ20によって蒸
発器熱交換器4Aの上に散布された冷媒液が冷水配管2
2からの水と熱交換して蒸発し、このときの気化熱によ
って蒸発器熱交換器4A内を流れる水が冷却される。そ
して、蒸発器4で蒸発した冷媒蒸気は吸収器5に入り、
上方から散布される吸収液に吸収される。
In the evaporator 4, the refrigerant liquid sprayed on the evaporator heat exchanger 4 A by the refrigerant pump 20 is supplied to the cold water pipe 2.
The water evaporates by exchanging heat with the water from the evaporator 2, and the water flowing in the evaporator heat exchanger 4A is cooled by the heat of vaporization at this time. Then, the refrigerant vapor evaporated in the evaporator 4 enters the absorber 5,
Absorbed by the absorbing liquid sprayed from above.

【0012】冷媒を吸収して濃度の薄くなった吸収器5
の吸収液は、吸収液ポンプ13の運転により低温熱交換
器6・高温熱交換器7を経て高温再生器1へ送られる。
高温再生器1に入った吸収液は、ガスバーナ1Bにより
加熱されて冷媒が蒸発し、中濃度の吸収液となって高温
熱交換器7を介し低温再生器2に入る。そして、ここで
吸収液は高温再生器1から冷媒配管14を流れて来た冷
媒蒸気によって加熱され、さらに冷媒が蒸発分離されて
濃度が高くなる。高濃度になった吸収液は低温熱交換器
6を経て吸収器5へ入り、上方から散布される。
Absorber 5 absorbing refrigerant and having a reduced concentration
Is sent to the high-temperature regenerator 1 through the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 by the operation of the absorption liquid pump 13.
The absorbing liquid that has entered the high-temperature regenerator 1 is heated by the gas burner 1B, evaporates the refrigerant, becomes a medium-concentration absorbing liquid, and enters the low-temperature regenerator 2 via the high-temperature heat exchanger 7. Then, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 1 through the refrigerant pipe 14, and the refrigerant is further evaporated and separated to have a high concentration. The highly concentrated absorbent enters the absorber 5 via the low-temperature heat exchanger 6 and is sprayed from above.

【0013】上記のように吸収冷温水機の運転が行われ
ると、蒸発器4において蒸発器熱交換器4Aの管壁を介
して冷媒の気化熱によって冷却された水が、冷水配管2
2を介して図示しない冷却負荷に循環供給できるので、
冷房運転などが行える。
When the absorption chiller / heater is operated as described above, the water cooled by the heat of vaporization of the refrigerant in the evaporator 4 through the pipe wall of the evaporator heat exchanger 4A is supplied to the chilled water pipe 2.
2 to a cooling load (not shown)
Cooling operation can be performed.

【0014】また、開閉弁25・26・27を開く一方
で開閉弁28を閉じ、温水配管24による温水循環を行
いながら冷却水配管23に冷却水を通してガスバーナ1
Bを点火し、高温再生器1で溶液を加熱すると、高温再
生器1で溶液から蒸発分離した冷媒蒸気は冷媒配管14
と18を介して低温再生器2と温水器8に同時に供給さ
れるので、冷水配管22から冷水を循環供給して行う冷
房運転などと、温水配管24から温水を循環供給して行
う暖房運転などが同時に行える。
On the other hand, while the on-off valves 25, 26 and 27 are opened, the on-off valve 28 is closed and the cooling water is passed through the cooling water pipe 23 while circulating hot water through the hot water pipe 24.
B is ignited and the high-temperature regenerator 1 heats the solution, and the refrigerant vapor evaporated and separated from the solution in the high-temperature regenerator 1
And 18 are supplied to the low-temperature regenerator 2 and the water heater 8 at the same time, such as a cooling operation by circulating and supplying cold water from the cold water pipe 22 and a heating operation by circulating and supplying hot water from the hot water pipe 24. Can be performed simultaneously.

【0015】31は、上記のような動作が可能な吸収冷
温水機に設けた制御装置であり、その具体的な一構成例
について説明すると、32は、冷水配管22の蒸発器4
出口部に設けられて、冷却作用を終えて蒸発器4に流入
する冷水の温度、すなわち還流冷水温度tを検出する温
度センサ40と、温水配管24の温水器8入口部に設け
られて、加熱作用を終えて温水器8に流入する温水の温
度、すなわち還流温水温度Tを検出する温度センサ41
が出力する温度信号を入力し、信号変換して中央演算処
理装置(以下、CPUと云う)33へ出力する入力イン
ターフェイス、34は所定の演算式や制御プログラムな
どを記憶している記憶装置(以下、ROMと云う)、3
5はCPU33からの信号を入力してガスバーナ1Bな
どへ所要の制御信号を出力する出力インターフェイス、
36は所定時間毎に信号を出力する信号発生器(以下、
CLOCKと云う)、37は温度センサ40・41が出
力した温度信号などを記憶する読込/消去可能な記憶装
置(以下、RAMと云う)である。
Reference numeral 31 denotes a control device provided in the absorption chiller / heater capable of operating as described above. One specific configuration example will be described. Reference numeral 32 denotes an evaporator 4 of the chilled water pipe 22.
A temperature sensor 40 is provided at the outlet to detect the temperature of the cold water flowing into the evaporator 4 after finishing the cooling action, that is, the temperature t of the reflux cold water. Temperature sensor 41 for detecting the temperature of the hot water flowing into the water heater 8 after the operation, that is, the temperature T of the reflux hot water
Is an input interface for inputting a temperature signal output from the CPU, converting the signal, and outputting the converted signal to a central processing unit (hereinafter referred to as a CPU) 33. A storage device (hereinafter referred to as a storage device) storing a predetermined arithmetic expression, a control program, and the like. , ROM), 3
5 is an output interface for inputting a signal from the CPU 33 and outputting a required control signal to the gas burner 1B or the like;
36 is a signal generator (hereinafter, referred to as a signal generator) that outputs a signal every predetermined time.
Reference numeral 37 denotes a readable / erasable storage device (hereinafter, referred to as a RAM) for storing the temperature signals output from the temperature sensors 40 and 41.

【0016】例えば、ROM34には、CLOCK36
が出力する信号に基づいて所定時間毎に、温度センサ4
0による還流冷水温度tと、温度センサ41による還流
温水温度Tとを検出し、この検出した還流冷水温度t・
還流温水温度Tに基づいて冷主運転を行うか、暖主運転
を行うかを判定して指示する図2の制御選択指示基準
や、所要の制御プログラムを記憶させてある。
For example, the ROM 34 has a CLOCK 36
Temperature sensor 4 at predetermined time intervals based on the signal
0, and the reflux hot water temperature T by the temperature sensor 41 are detected.
The control selection instruction criterion in FIG. 2 for determining and instructing whether to perform the cold main operation or the warm main operation based on the reflux hot water temperature T, and a required control program are stored.

【0017】すなわち、CPU33は、ROM34に記
憶してある制御プログラムに基づいて動作し、還流冷水
温度tと還流温水温度Tとが領域Aにあるときには、無
条件で冷主運転を選択し、還流冷水温度tと還流温水温
度Tとが領域Bにあるときも、無条件で暖主運転を選択
し、還流冷水温度tと還流温水温度Tとが領域Cにある
ときには、RAM37に記憶してある還流冷水温度t・
還流温水温度Tに基づいて、領域A・Bの何れから領域
Cに移行したのかを確認し、領域Aから移行したときに
は冷主運転の継続を選択し、領域Bから移行したときに
は暖主運転の継続を選択して、ガスバーナ1Bに所要の
制御信号を出力してオン/オフ制御したり、その燃焼量
を制御する。
That is, the CPU 33 operates based on the control program stored in the ROM 34, and when the reflux cold water temperature t and the reflux hot water temperature T are in the region A, unconditionally selects the cooling main operation, and When the cold water temperature t and the reflux hot water temperature T are in the region B, the warm-up main operation is unconditionally selected. When the reflux cold water temperature t and the reflux hot water temperature T are in the region C, the warm main operation is stored in the RAM 37. Reflux cold water temperature t
Based on the reflux hot water temperature T, it is confirmed which of the areas A and B has shifted to the area C. When the area has shifted from the area A, the continuation of the cold main operation is selected. By selecting continuation, a required control signal is output to the gas burner 1B to perform on / off control and control the amount of combustion.

【0018】上記機能を有する制御装置31を備えた吸
収冷温水機においては、冷水と温水を同時に供給してい
て冷/暖房の負荷が急減したような場合にも、冷主運転
の状態から低負荷運転に移行したときには冷主運転を継
続し、暖主運転の状態から低負荷運転に移行したときに
は暖主運転が継続されるので、ガスバーナ1Bの燃焼を
オン/オフすることで生じる、冷水と温水の温度がハン
チングすることによる冷主運転/暖主運転の頻繁な切換
がなくなり、これにより安定した温度の冷/温水同時供
給運転が可能になった。
In the absorption chiller / heater provided with the control device 31 having the above function, even if the cooling / heating load is rapidly reduced due to the simultaneous supply of the chilled water and the hot water, the cooling chiller operation state is reduced. When the operation shifts to the load operation, the cold main operation is continued. When the operation shifts from the warm main operation to the low load operation, the warm main operation is continued. Therefore, the cold water generated by turning on / off the combustion of the gas burner 1B is used. Frequent switching between the cold main operation and the warm main operation due to the hunting of the temperature of the hot water is eliminated, thereby enabling a simultaneous cold / hot water supply operation at a stable temperature.

【0019】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲でさらに各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the appended claims.

【0020】例えば、ROM34には、図2の制御選択
指示基準に代えて、図3のような制御選択指示基準を記
憶させておいても良い。
For example, the ROM 34 may store a control selection instruction criterion as shown in FIG. 3 instead of the control selection instruction criterion shown in FIG.

【0021】この場合も、還流冷水温度tと還流温水温
度Tとが領域Aにあるときには、冷主運転を選択し、還
流冷水温度tと還流温水温度Tとが領域Bにあるときに
は、暖主運転を選択し、還流冷水温度tと還流温水温度
Tとが領域Cにあるときには、領域Aから領域Cに入っ
たときには冷主運転を継続し、領域Bから領域Cに入っ
たときには暖主運転を継続する制御プログラムを記憶さ
せておく。
In this case as well, when the reflux cold water temperature t and the reflux hot water temperature T are in the region A, the cooling main operation is selected, and when the reflux cold water temperature t and the reflux hot water temperature T are in the region B, the warm main operation is selected. When the operation is selected and the reflux cold water temperature t and the reflux hot water temperature T are in the region C, the cold main operation is continued when the vehicle enters the region C from the region A, and the warm main operation is performed when the vehicle enters the region C from the region B. Is stored in advance.

【0022】また、還流冷水温度tと還流温水温度Tと
が、領域A・Bの何れにあるのかをRAM37に所定時
間毎に記憶しておき、還流冷水温度tと還流温水温度T
とが領域Cに移行したときに、領域A・Bの何れから移
行したのかをRAM37の記憶内容から直接判定できる
ように構成することもできる。
In the RAM 37, the RAM 37 stores the temperature of the reflux cold water t and the temperature of the reflux hot water T in the areas A and B at predetermined time intervals.
When is shifted to the area C, it can be configured so that it can be determined directly from the area A or B from the contents stored in the RAM 37.

【0023】[0023]

【発明の効果】以上説明したように本発明の運転制御方
法によれば、冷水と温水を同時に供給していて冷/暖房
の負荷が急減したような場合にも、冷主運転の状態から
低負荷運転に移行したときには冷主運転を継続し、暖主
運転の状態から低負荷運転に移行したときには暖主運転
が継続されるので、ガスバーナなどの加熱手段の燃焼を
オン/オフすることで生じる、冷水と温水の温度がハン
チングすることによる冷主運転/暖主運転の頻繁な切換
がなくなり、これにより安定した温度の冷/温水同時供
給運転が可能となった。
As described above, according to the operation control method of the present invention, even when the cooling / heating load is rapidly reduced due to the simultaneous supply of the cold water and the hot water, the state of the cooling main operation can be reduced. When the operation shifts to the load operation, the cold main operation is continued, and when the operation shifts from the state of the warm main operation to the low load operation, the warm main operation is continued. This is caused by turning on / off the combustion of a heating means such as a gas burner. In addition, the frequent switching between the cold main operation and the warm main operation due to the hunting of the temperatures of the cold water and the hot water is eliminated, thereby enabling the simultaneous cold / hot water supply operation at a stable temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装置構成を示す説明図である。FIG. 1 is an explanatory diagram showing an apparatus configuration.

【図2】制御の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of control.

【図3】他の制御例を示す説明図である。FIG. 3 is an explanatory diagram showing another control example.

【図4】従来の制御を示す説明図である。FIG. 4 is an explanatory diagram showing conventional control.

【符号の説明】[Explanation of symbols]

1 高温再生器 1B ガスバーナ 2 低温再生器 3 凝縮器 3A 凝縮器熱交換器 4 蒸発器 4A 蒸発器熱交換器 5 吸収器 5A 吸収器熱交換器 6 低温熱交換器 7 高温熱交換器 8 温水器 8A 温水器熱交換器 9〜11 吸収液配管 13 吸収液ポンプ 14〜19 冷媒配管 20 冷媒ポンプ 22 冷水配管 23 冷却水配管 24 温水配管 25〜28 開閉弁 29・30 流量制御弁 31 制御装置 32 入力インターフェイス 33 CPU 34 ROM 35 出力インターフェイス 36 CLOCK 37 RAM 40・41 温度センサ DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 3A Condenser heat exchanger 4 Evaporator 4A Evaporator heat exchanger 5 Absorber 5A Absorber heat exchanger 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Water heater 8A Water heater heat exchanger 9-11 Absorbent pipe 13 Absorbent pump 14-19 Refrigerant pipe 20 Refrigerant pump 22 Cold water pipe 23 Cooling water pipe 24 Hot water pipe 25-28 Open / close valve 29/30 Flow control valve 31 Controller 32 Input Interface 33 CPU 34 ROM 35 Output interface 36 CLOCK 37 RAM 40/41 Temperature sensor

フロントページの続き (72)発明者 内田 英樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 池田 澄雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continued on the front page (72) Inventor Hideki Uchida 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Sumio Ikeda 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 再生器・凝縮器・蒸発器・吸収器などを
配管接続して冷媒と吸収液の循環サイクルを形成すると
共に、蒸発器の内部に通水して第1の冷水所定温度t1
を目標に冷却した冷水を冷却負荷に循環供給する冷水供
給経路と、再生器から冷媒蒸気が流入し、熱交換して凝
縮した冷媒液が再生器に還流する容器内に通水して第1
の温水所定温度T1を目標に加熱した温水を加熱負荷に
循環供給する温水供給経路とを備え、冷水/温水同時供
給運転時に、冷却のために前記蒸発器に通水する水の温
度(以下、還流冷水温度)tまたは加熱のために前記容
器に通水する水の温度(以下、還流温水温度)Tに基づ
いて、冷水主、温水従(以下、冷主運転)、若しくは温
水主、冷水従(以下、暖主運転)の何れかの制御が選択
されて、前記再生器に供給する熱量を制御する吸収冷温
水機において、 還流冷水温度tが第1の冷水所定温度t1より僅かに高
い第2の冷水所定温度t2より低く、還流温水温度Tが
第1の温水所定温度T1より僅かに低い第2の温水所定
温度T2より高い、冷却/加熱負荷共に小さい低負荷状
態に、少なくとも還流冷水温度tが第2の冷水所定温度
t2より高いか、還流温水温度Tが第2の温水所定温度
T2より低い高負荷状態から移行するときに、冷主運転
から移行するときには冷主運転を継続し、暖主運転から
移行するときには暖主運転を継続することを特徴とする
運転制御方法。
1. A recycler, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation cycle of a refrigerant and an absorbent, and water is passed through the evaporator to form a first cold water predetermined temperature t1.
And a chilled water supply path for circulating the chilled water cooled to the cooling load as a target, and a refrigerant vapor flowing in from the regenerator, and a refrigerant liquid condensed by heat exchange being passed through the container returning to the regenerator to be discharged into the first container.
A hot water supply path for circulating hot water heated to a predetermined temperature T1 of the hot water to the heating load, and a temperature of water passing through the evaporator for cooling (hereinafter, referred to as a “cooling water / hot water simultaneous feeding operation”). Cold water main, hot water sub (hereinafter, cold main operation), or hot water main, cold water sub, based on the temperature of reflux cold water) t or the temperature T of water passing through the container for heating (hereinafter, hot water temperature of reflux) T (Hereinafter referred to as “warm-up main operation”), in the absorption chiller / heater controlling the amount of heat supplied to the regenerator, the return chilled water temperature t is slightly higher than the first chilled water predetermined temperature t1. 2, the reflux hot water temperature T is slightly lower than the first hot water predetermined temperature T1, slightly higher than the first hot water predetermined temperature T1, higher than the second hot water predetermined temperature T2, and the cooling / heating load is low, and at least the reflux cold water temperature t is the second cold water predetermined temperature t When the transition from the high load state where the reflux hot water temperature T is higher than 2 or the reflux hot water temperature T is lower than the second hot water predetermined temperature T2, the cold main operation is continued when the transition from the cold main operation is performed, and the warm main operation is performed when the transition from the warm main operation is performed. An operation control method characterized by continuing main operation.
JP20255096A 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater Expired - Fee Related JP3819485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255096A JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255096A JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH1047804A true JPH1047804A (en) 1998-02-20
JP3819485B2 JP3819485B2 (en) 2006-09-06

Family

ID=16459366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255096A Expired - Fee Related JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3819485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater
JP4721783B2 (en) * 2005-06-24 2011-07-13 三洋電機株式会社 Operation control method of absorption chiller / heater

Also Published As

Publication number Publication date
JP3819485B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP6385044B2 (en) Absorption refrigeration system
US4280331A (en) Single effect and double effect absorption refrigerating system
JPH0473064B2 (en)
JP2008025915A (en) Absorption refrigerator system
KR100981977B1 (en) Absorption water chiller-heater
JPH1047804A (en) Method for controlling absorption cold and hot water machine
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JPH11108486A (en) Double effect absorption water cooler/heater
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP2003343939A (en) Absorption refrigerating machine
JP3748950B2 (en) Heat input control device for absorption chiller / heater
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JPH1047805A (en) Operation control method of absorption cold and hot water device
JP3143251B2 (en) Absorption refrigerator
JPS602580B2 (en) Absorption type water chiller/heater control device
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2023039597A (en) Waste heat use system, waste heat use method and control device
JP4115020B2 (en) Control method of absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JPH08320168A (en) Control method for absorption type cold/hot water machine
JPH08152225A (en) Absorption water cooling-heating machine
JP3831432B2 (en) Absorption refrigeration system
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPH0621730B2 (en) Single-double-effect absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees