JPH1047261A - Vane pump - Google Patents

Vane pump

Info

Publication number
JPH1047261A
JPH1047261A JP20000196A JP20000196A JPH1047261A JP H1047261 A JPH1047261 A JP H1047261A JP 20000196 A JP20000196 A JP 20000196A JP 20000196 A JP20000196 A JP 20000196A JP H1047261 A JPH1047261 A JP H1047261A
Authority
JP
Japan
Prior art keywords
pump
vane
vanes
rotor
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20000196A
Other languages
Japanese (ja)
Inventor
Katsuyuki Takeuchi
克之 竹内
Tsuyoshi Ikeda
強 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP20000196A priority Critical patent/JPH1047261A/en
Priority to GB9716010A priority patent/GB2315815A/en
Publication of JPH1047261A publication Critical patent/JPH1047261A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To largely relieve an overshoot, and reduce pulsation by forming a clearance between one ends of vanes and a communicating groove to mutually communicate pump chambers to perform a compression stroke in a pre- compression stroke when transferring to a compression stroke from an expansion stroke. SOLUTION: In a vane pump where a rotor 22 to guide plural vanes 21 is housed in a cam ring 17, the vanes 21 are slidably guided by a slit S formed in the rotor 22, and outside end parts of the vanes 21 are slidingly contacted with a cam surface 17a on an inner periphery of the cam ring 17 in which an expansion curve A, a compression curve C and a pre-compression curve B are formed. In this case, the pre-compression curve B is formed so that a clearance O is generated between an end part 21 on the back pressure groove 32 side of the vanes 21 and a communicating groove 35 until the vanes 21 reach an angle position B from an angle position A in a pre-compression stroke in a condition where the vanes 21 close a suction port 25a and a pump chamber P1 is not opened on the delivery port 27a side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の動力舵取
装置に作動流体を供給するベーンポンプに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vane pump for supplying a working fluid to a power steering device of an automobile.

【0002】[0002]

【従来の技術】この種のベーンポンプは、中心軸線から
の距離が位相角に応じて周期的に変化するカム面を内周
に形成したカムリングをハウジングに設け、このカムリ
ング内に同軸的に回転可能に収納したロータに放射方向
へ摺動可能に案内したベーンの先端をカムリングのカム
面に摺動可能に当接した状態で回転に応じて容積が変化
する複数のポンプ室を形成し、膨張行程を行う各ポンプ
室と圧縮行程を行う各ポンプ室に対応してハウジングに
吸入ポートと吐出ポートを設け、吸入ポートからポンプ
室内に作動流体を吸入して吐出ポートから吐出するよう
にしている。通常、カム面のカム曲線の周期は180度
であり、吸入ポートと吐出ポートはそれぞれ各一対が直
径方向に対向して設けられている。この種の圧力平衡形
ベーンポンプでは、ロータの外周面に作用する圧力は、
通常、直径方向にバランスされているが、加工誤差や組
付誤差などにより直径方向で対向する両ポンプ室の間に
一時的な圧力差が生じ、これによるアンバランスにより
振動が励起されて騒音が生じるという問題があった。
2. Description of the Related Art A vane pump of this kind is provided with a cam ring having a cam surface formed on an inner periphery of a cam surface whose distance from a central axis periodically changes according to a phase angle, and is rotatable coaxially within the cam ring. A plurality of pump chambers whose volumes change in accordance with rotation are formed in a state in which the tip of a vane slidably guided in the radial direction by a rotor housed in the rotor is slidably abutted against a cam surface of a cam ring, and an expansion stroke is formed. A suction port and a discharge port are provided in the housing corresponding to each pump chamber for performing the compression stroke and each pump chamber for performing the compression stroke, and the working fluid is sucked into the pump chamber from the suction port and discharged from the discharge port. Normally, the period of the cam curve of the cam surface is 180 degrees, and a pair of suction ports and a pair of discharge ports are provided diametrically opposite each other. In a pressure balanced vane pump of this type, the pressure acting on the outer peripheral surface of the rotor is
Normally, the pump chambers are balanced in the diametric direction, but a temporary pressure difference occurs between the pump chambers that face each other in the diametric direction due to processing errors and assembly errors. There was a problem that would occur.

【0003】このような問題を解決するために、実開昭
57−30396号に開示されるように、ロータの側面
と当接するポンプハウジングの摺接面に、ロータの回転
により予圧縮工程(膨張工程と圧縮工程の間)に移行す
る両ポンプ室に開口する一対のノッチとこの両ノッチを
連通する連通溝を形成し、これにより両ポンプ室を連通
して、このようなタイミングの不一致による一時的な両
ポンプ室の間の圧力差を緩和している。
In order to solve such a problem, as disclosed in Japanese Utility Model Laid-Open No. 57-30396, a pre-compression step (expansion) is performed by rotating a rotor on a sliding contact surface of a pump housing which is in contact with a side surface of the rotor. A pair of notches opened in both pump chambers and a communication groove communicating the two notches are formed so that the two pump chambers are communicated with each other. The pressure difference between the two pump chambers is alleviated.

【0004】[0004]

【発明が解決しようとする課題】このように、両ポンプ
室を一対のノッチと連通溝を介して連通させる方法は、
ポンプが低回転の場合には圧力変化に伴う変動成分(以
下、オーバーシュートという)が比較的小さいことか
ら、このオーバーシュートを連通溝により一方のポンプ
室から他方のポンプ室に逃して両ポンプ室の間の圧力差
を緩和することができるが、高速走行等ポンプが高回転
の場合には予圧縮行程で発生するオーバーシュートも急
激に増大し、この急激なオーバーシュートを一度に連通
溝により他のポンプ室に逃がすことができず連通効果が
低下し、オーバーシュートを緩和しきれなくなってしま
う。このようにオーバシュートが緩和できなくなると、
脈動が発生してポンプの振動,騒音を解消することがで
きない。
As described above, a method of connecting both pump chambers to a pair of notches through a communication groove is as follows.
When the pump rotates at a low speed, a fluctuation component due to a pressure change (hereinafter, referred to as an overshoot) is relatively small. Therefore, the overshoot is released from one pump chamber to the other pump chamber by the communication groove, and the two pump chambers However, when the pump rotates at a high speed, such as in high-speed running, the overshoot that occurs during the pre-compression stroke also increases sharply. Cannot escape to the pump chamber, the communication effect is reduced, and the overshoot cannot be alleviated. When overshoot cannot be alleviated in this way,
Pulsation occurs, and the vibration and noise of the pump cannot be eliminated.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1のものにおいては、ポンプハウジングに嵌
装されたカムリングと、カムリングに回転可能に収納さ
れたロータと、このロータの放射方向に複数設けたスリ
ットおよび各スリットに摺動可能に案内された複数のベ
ーンと、この複数のベーンにより複数区画されたポンプ
室と、膨張行程を行うポンプ室に対応する吸入ポートと
圧縮行程を行うポンプ室に対応する吐出ポートを直径方
向にそれぞれ対向して設け、この圧縮行程を行うポンプ
室間を互いに連通する連通溝と、スリットに保持された
ベーンの一端に吐出ポートの吐出圧を導くベーン背圧溝
を備えたベーンポンプであって、前記膨張行程から前記
圧縮行程に移行する間の予圧縮行程において、前記ベー
ンの一端と前記連通溝の間に隙間が形成されることを特
徴するものである。
In order to solve the above-mentioned problems, according to the first aspect, a cam ring fitted to a pump housing, a rotor rotatably housed in the cam ring, and radiation of the rotor. A plurality of slits provided in the direction and a plurality of vanes slidably guided by the slits, a pump chamber partitioned by the plurality of vanes, a suction port corresponding to the pump chamber performing an expansion stroke, and a compression stroke. Discharge ports corresponding to the pump chambers to be performed are provided to face each other in the diametrical direction, and the discharge pressure of the discharge ports is guided to one end of the vane held by the slit and the communication groove communicating between the pump chambers performing the compression stroke. A vane pump having a vane back pressure groove, wherein said precompression stroke during transition from said expansion stroke to said compression stroke is connected to one end of said vane. Is to, characterized in that the gap is formed between the grooves.

【0006】請求項2のものにおいては、前記ポンプ室
を構成する一対のベーンのうち、吸入ポート側のベーン
のスリットを介して、前記連通溝の圧力を前記ベーン背
圧溝に逃すことを特徴するものである。請求項3のもの
において、前記連通溝と前記背圧溝は前記ポンプハウジ
ングと前記ロータの摺接面のいずれか一方にロータと同
軸的に形成され、前記連通溝は前記背圧溝よりも外側に
設けられたことを特徴するものである。 (作用)請求項1のものにおいて、予圧縮行程におい
て、連通溝により緩和しきれない両ポンプ室のオーバー
シュートが、ベーンの一端と連通溝の間に形成された隙
間を通り、スリットを介して背圧溝に逃れるので、両ポ
ンプ室のオーバーシュートによる圧力変動を緩和する。
According to a second aspect of the present invention, the pressure in the communication groove is released to the vane back pressure groove through a slit of the vane on the suction port side of the pair of vanes constituting the pump chamber. Is what you do. 4. The device according to claim 3, wherein the communication groove and the back pressure groove are formed coaxially with the rotor on one of a sliding contact surface of the pump housing and the rotor, and the communication groove is located outside the back pressure groove. It is characterized by being provided in. (Function) In the first aspect, in the pre-compression stroke, the overshoot of both pump chambers, which cannot be alleviated by the communication groove, passes through a gap formed between one end of the vane and the communication groove, and passes through the slit. Since it escapes to the back pressure groove, pressure fluctuation due to overshoot of both pump chambers is reduced.

【0007】請求項2のものにおいて、吸入ポート側の
ベーンが吸入ポートを閉じ切った後に、吸入ポート側の
ベーンを摺動可能に案内するスリットを介して、ポンプ
室のオーバーシュートが背圧溝に逃れてオーバーシュー
トを緩和する。請求項3のものにおいて、連通溝と背圧
溝はポンプハウジングまたはロータの摺接面にロータと
同軸的に形成され、連通溝を背圧溝よりも外側のポンプ
ハウジングまたはロータの摺接面に形成することによ
り、ベーンがカムリングの方向に最も飛び出した状態
で、連通溝とスリットを連通できる。これによりオーバ
ーシュートがスリットを介して背圧溝に逃れる。
According to the second aspect of the present invention, after the vane on the suction port side closes the suction port, the overshoot of the pump chamber is connected to the back pressure groove via the slit for slidably guiding the vane on the suction port side. Escape to overshoot to mitigate. In the third aspect, the communication groove and the back pressure groove are formed coaxially with the rotor on the sliding surface of the pump housing or the rotor, and the communication groove is formed on the sliding surface of the pump housing or the rotor outside the back pressure groove. With the formation, the communication groove and the slit can be communicated with the vane most protruding in the direction of the cam ring. Thereby, the overshoot escapes to the back pressure groove via the slit.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。この実施の形態のベーンポンプ
は、図1および図2において、10はポンプハウジング
で、このポンプハウジング10には中空室11とこの中
空室11に連通する貫通穴12が形成され、この中空室
11はポンプハウジング10の一端に開口し、貫通穴1
2はポンプハウジング10の他端に開口している。この
中空室11の開口部を閉塞するリヤハウジング13には
凹部14が穿設され、この凹部14に回転軸15が挿通
され、軸受16a,16bにて回転可能に軸承されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. 1 and FIG. 2, reference numeral 10 denotes a pump housing, in which a hollow chamber 11 and a through-hole 12 communicating with the hollow chamber 11 are formed. Opened at one end of pump housing 10, through hole 1
2 is open to the other end of the pump housing 10. A recess 14 is formed in the rear housing 13 that closes the opening of the hollow chamber 11, and a rotating shaft 15 is inserted through the recess 14 and is rotatably supported by bearings 16a and 16b.

【0009】前記中空室11にはリヤハウジング13の
一端面に対接するカムリング17と、このカムリング1
7の他側面に対接するサイドプレート18が収納されて
いる。前記カムリング17の内周には、カム曲線の周期
が180度のカム面17aが形成され、このカム面17
aに外方端部が摺接する複数のベーン21を放射方向に
摺動可能に案内するロータ22がカムリング17内に収
納されている。このロータ22の図中右側面及びベーン
21の右端面はリヤハウジング13の端面と摺接し、ロ
ータ22の左側面及びベーン21の左端面はサイドプレ
ート18の側面に摺接し、各摺接面にて密封作用がなさ
れる。これによってカムリング17のカム面17aとロ
ータ22との間にベーン21によって複数個に区画され
たポンプ室P1,P2が形成され、各ポンプ室P1,P
2はロータ22の回転により容積変化を生ずる。
In the hollow chamber 11, a cam ring 17 which is in contact with one end surface of a rear housing 13,
A side plate 18 that is in contact with the other side of the housing 7 is housed. On the inner periphery of the cam ring 17, a cam surface 17a having a cam curve cycle of 180 degrees is formed.
The rotor 22 that guides the plurality of vanes 21 slidably in contact with the outer ends slidably in the radial direction is housed in the cam ring 17. The right side surface of the rotor 22 in the drawing and the right end surface of the vane 21 are in sliding contact with the end surface of the rear housing 13, the left side surface of the rotor 22 and the left end surface of the vane 21 are in sliding contact with the side surface of the side plate 18, and each sliding contact surface The sealing action is performed. As a result, a plurality of pump chambers P1 and P2 partitioned by the vane 21 are formed between the cam surface 17a of the cam ring 17 and the rotor 22.
2 causes a volume change due to the rotation of the rotor 22.

【0010】前記サイドプレート18には、膨張行程を
なすポンプ室に対応して一対の吸入ポート25a,25
bが直径方向に対向して形成され、また、圧縮行程をな
すポンプ室に対応して一対の吐出ポート27a,27b
が直径方向に対向して形成されている。前記ロータ22
の左側面に対接するサイドプレート18の一側面には、
ベーン背圧室31に通じる背圧溝32がロータ22と同
軸的に形成され、この背圧溝32は図略の連通路を介し
て吐出ポート27a,27bに連通されている。また、
サイドプレート18の一側面には、前記吸入ポート25
aと吐出ポート27aとの間及び吸入ポート25bと吐
出ポート27bとの間に一対のノッチ33,34が直径
方向に形成され、これらノッチ33,34はサイドプレ
ート18の一側面にロータ22と同軸的に形成された環
状の連通溝35にそれぞれ連通されている。この一対の
ノッチ33,34は膨張行程から圧縮行程に移行する区
間に対応する両ポンプ室P1,P2に開口され、これら
ポンプ室P1,P2を前記ノッチ33,34及び連通溝
35を介して互いに連通している。
The side plate 18 has a pair of suction ports 25a and 25 corresponding to a pump chamber performing an expansion stroke.
b are formed so as to face each other in the diameter direction, and a pair of discharge ports 27a and 27b correspond to a pump chamber which performs a compression stroke.
Are formed so as to face each other in the diameter direction. The rotor 22
On one side of the side plate 18 that is in contact with the left side of
A back pressure groove 32 communicating with the vane back pressure chamber 31 is formed coaxially with the rotor 22, and this back pressure groove 32 communicates with the discharge ports 27a and 27b via a communication path (not shown). Also,
The suction port 25 is provided on one side surface of the side plate 18.
a and a discharge port 27a and a pair of notches 33 and 34 are formed in the diameter direction between the suction port 25b and the discharge port 27b. These notches 33 and 34 are coaxial with the rotor 22 on one side surface of the side plate 18. Each of them is communicated with an annular communication groove 35 formed in an intended manner. The pair of notches 33 and 34 are opened to both pump chambers P1 and P2 corresponding to a section where the expansion stroke shifts to the compression stroke, and the pump chambers P1 and P2 are connected to each other via the notches 33 and 34 and the communication groove 35. Communicating.

【0011】各吸入ポート25a,25bはポンプハウ
ジング10内に形成された流体流通空間41及びバイパ
ス通路28を介して図略のリザーバに連結される吸入口
44に連通され、サイドプレート18の一側面に形成さ
れた各吐出ポート27a,27bはポンプハウジング1
0内に形成した圧力室20を介して作動流体の図略の送
出口に連通されている。バイパス通路28と圧力室20
との間には、送出口から吐出される作動流体の量を一定
にするため、余剰の作動流体をバイパス通路28に戻す
図略の流量調整用スプール弁を収納する弁収納穴45が
設けられている。
Each of the suction ports 25a and 25b communicates with a suction port 44 connected to a reservoir (not shown) through a fluid passage space 41 and a bypass passage 28 formed in the pump housing 10, and one side surface of the side plate 18. The discharge ports 27a, 27b formed in the pump housing 1
The working fluid is communicated with an unillustrated outlet of the working fluid via a pressure chamber 20 formed in the inside of the housing. Bypass passage 28 and pressure chamber 20
In order to keep the amount of working fluid discharged from the delivery port constant, a valve storage hole 45 for storing a not-shown flow adjustment spool valve for returning excess working fluid to the bypass passage 28 is provided between ing.

【0012】前記ベーン21は、図3に示すように、ロ
ータ22に放射方向に形成されたスリットSにより摺動
可能に案内されており、膨張曲線(イ),圧縮曲線
(ハ),この両曲線を結ぶ予圧縮曲線(ロ)が形成され
たカムリング17内周のカム面17aにベーン21の外
方端部が摺接するようになっている。特に、ベーン21
が吸入ポート25aを閉じ切りポンプ室P1が吐出ポー
ト27a側に開口していない状態の予圧縮行程で、ベー
ン21が角度位置Aから所定角度位置Bに達するまでの
間(ポンプ室P1にオーバーシュートが発生する位置に
対応)、ベーン21の背圧溝32側の端部21と連通溝
35の間に隙間Oが生じるように予圧縮曲線(ロ)が形
成され、ベーン21の長さLが設定されている。
As shown in FIG. 3, the vane 21 is slidably guided by a slit S formed in the rotor 22 in a radial direction, and has an expansion curve (a) and a compression curve (c). The outer end of the vane 21 is in sliding contact with the cam surface 17a on the inner periphery of the cam ring 17 on which the pre-compression curve (b) connecting the curves is formed. In particular, vane 21
During the pre-compression stroke in which the suction port 25a is closed and the pump chamber P1 is not open to the discharge port 27a side until the vane 21 reaches the predetermined angular position B from the angular position A (overshoot to the pump chamber P1). The pre-compression curve (b) is formed so that a gap O is formed between the end 21 of the vane 21 on the back pressure groove 32 side and the communication groove 35, and the length L of the vane 21 is reduced. Is set.

【0013】次に上記したベーンポンプの作動について
説明する。原動機によって回転軸15と共にロータ22
が回転駆動されると、図略のリザーバ内の作動流体は吸
入口44、バイパス通路28、流体流通空間41を介し
て吸入ポート25a,25bよりポンプ室P1に吸入さ
れ、作動流体がサイドプレート18の吐出ポート27
a,27bを介して圧力室20に吐出される。
Next, the operation of the vane pump will be described. The rotor 22 together with the rotating shaft 15 is driven by the prime mover.
Is rotationally driven, the working fluid in the reservoir (not shown) is sucked into the pump chamber P1 from the suction ports 25a and 25b through the suction port 44, the bypass passage 28, and the fluid circulation space 41, and the working fluid is Discharge port 27
The liquid is discharged into the pressure chamber 20 through the pressure chambers a and 27b.

【0014】この際、膨張行程から圧縮行程に移行する
予圧縮行程においては、図3に示すように2組のベーン
21,21によって区画されたポンプ室P1(ここでは
一方のポンプ室P1のみを示すが、他方のポンプ室P2
においても同様である)が、吸入ポート25a側に開口
した状態の膨張行程からベーン21により吸入ポート2
5aを閉じ切った状態の予圧縮行程に移行した時、両ポ
ンプ室P1内の圧力が急激に上昇するオーバーシュート
が生じる。この時、ノッチ33,34およびこれらノッ
チ33,34に連通する連通溝35により、両ポンプ室
P1,P2を連通させてオーバーシュートが緩和され
る。しかしながら、高速走行等においてはポンプが高回
転となりポンプ室P1,P2で発生するオーバーシュー
トも急激に増大してしまい、連通溝35のみではオーバ
ーシュートを緩和しきれなくなってしまう。
At this time, in the pre-compression stroke which shifts from the expansion stroke to the compression stroke, as shown in FIG. 3, a pump chamber P1 partitioned by two sets of vanes 21 and 21 (here, only one pump chamber P1 is used). As shown, the other pump chamber P2
The same applies to the above.), However, from the expansion stroke in the state of opening to the suction port 25a side, the suction port 2
When the process shifts to the pre-compression stroke in a state where 5a is closed, an overshoot occurs in which the pressures in both pump chambers P1 rapidly increase. At this time, the pump chambers P1 and P2 are communicated by the notches 33 and 34 and the communication groove 35 communicating with the notches 33 and 34, so that overshoot is reduced. However, in high-speed running or the like, the pump rotates at a high speed, and the overshoot generated in the pump chambers P1 and P2 also increases sharply, so that the overshoot cannot be reduced only by the communication groove 35 alone.

【0015】この場合には、ポンプ室P1にオーバーシ
ュートが生じる位置(ポンプ室P1が吸入ポート25a
側に開口していた状態からベーン21により吸入ポート
25aを閉じ切った状態)すなわち図3中のベーンの角
度位置Aから所定角度位置Bの領域において、ベーン2
1の端部21aと連通溝35の間で隙間Oが形成される
ので、ノッチ33を介して連通溝33に導入されるポン
プ室P1のオーバーシュートを、この隙間Oからスリッ
トSを介して背圧溝32に逃すことによりオーバーシュ
ートを緩和するようになっている。また、ポンプ室P1
内に生じた高圧のオーバーシュートがほぼ同圧の高圧部
である背圧溝32側に逃すので、ポンプ室P1の容積を
急激に変化させることがない。
In this case, a position where an overshoot occurs in the pump chamber P1 (the pump chamber P1 is
The state where the suction port 25a is completely closed by the vane 21 from the state where the vane 21 is opened to the side), that is, in the region from the angular position A of the vane to the predetermined angular position B in FIG.
Since the gap O is formed between the end 21a of the first groove 21 and the communication groove 35, the overshoot of the pump chamber P1 introduced into the communication groove 33 through the notch 33 can be removed from the gap O through the slit S. The overshoot is alleviated by leaving the pressure groove 32. Also, the pump chamber P1
Since the high-pressure overshoot generated inside escapes to the back pressure groove 32 side, which is a high-pressure portion having substantially the same pressure, the volume of the pump chamber P1 does not suddenly change.

【0016】例えば、膨張行程→予圧縮行程→圧縮行程
におけるポンプ室P1内の圧力変化は図4のグラフに示
すようになり、この本発明の実施の形態のベーンポンプ
は従来に比べてオーバーシュートを緩和できることが分
かる。なお、このグラフ中時間t1は膨張行程の状態
を、時間t2は予圧縮行程の状態を、圧縮行程の状態を
示している。
For example, the pressure change in the pump chamber P1 in the expansion stroke → pre-compression stroke → compression stroke is as shown in the graph of FIG. 4. The vane pump according to the embodiment of the present invention has an overshoot as compared with the conventional one. It can be seen that it can be relaxed. In this graph, time t1 indicates the state of the expansion stroke, time t2 indicates the state of the pre-compression stroke, and the state of the compression stroke.

【0017】また、このオーバーシュートの緩和によ
り、脈動も大きく低減することができる。
Further, pulsation can be greatly reduced by alleviating the overshoot.

【0018】[0018]

【発明の効果】以上述べたように本発明によれば、膨張
行程から圧縮行程に移行する間の予圧縮行程において、
ベーンの一端と連通溝の間に隙間が形成されるようにし
たので、特に、高速走行等ポンプが高回転の場合、ポン
プ室に急激に発生するオーバーシュートを連通溝からス
リットを介して背圧溝側に逃すことができ、従来の連通
溝のみによりオーバーシュートを緩和する場合に比べて
オーバーシュートを大きく緩和することができる。この
際、オーバーシュートをほぼ同圧の高圧部である背圧溝
側に逃すので、ポンプ室の容積を急激に変化させること
がない。また、オーバーシュートの緩和により、脈動も
大きく低減できる。
As described above, according to the present invention, in the pre-compression stroke during the transition from the expansion stroke to the compression stroke,
Since a gap is formed between one end of the vane and the communication groove, especially when the pump is rotating at high speed, such as in high-speed running, an overshoot that suddenly occurs in the pump chamber is generated from the communication groove through the slit through the back pressure. The overshoot can be relieved to the groove side, and the overshoot can be greatly reduced as compared with the case where the overshoot is reduced only by the conventional communication groove alone. At this time, the overshoot is released to the back pressure groove side, which is a high pressure portion having substantially the same pressure, so that the volume of the pump chamber does not suddenly change. Also, pulsation can be significantly reduced by alleviating the overshoot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるベーンポンプの横
断面図である。
FIG. 1 is a cross-sectional view of a vane pump according to an embodiment of the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】本発明の実施の形態におけるベーンポンプの作
動を説明するための図である。
FIG. 3 is a diagram for explaining the operation of the vane pump in the embodiment of the present invention.

【図4】本発明の実施の形態におけるベーンポンプのポ
ンプ室の圧力変化を示す図である。
FIG. 4 is a diagram showing a pressure change in a pump chamber of the vane pump according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 ポンプハンジング 13 リヤハウジング 15 回転軸 17 カムリング 21 ベーン 21a 端部 25a,25b 吸入ポート 27a,27b 吐出ポート 32 背圧溝 33,34 ノッチ 35 連通溝 DESCRIPTION OF SYMBOLS 10 Pump housing 13 Rear housing 15 Rotation shaft 17 Cam ring 21 Vane 21a End 25a, 25b Suction port 27a, 27b Discharge port 32 Back pressure groove 33, 34 Notch 35 Communication groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポンプハウジングに嵌装されたカムリン
グと、カムリングに回転可能に収納されたロータと、こ
のロータの放射方向に複数設けたスリットおよび各スリ
ットに摺動可能に案内された複数のベーンと、この複数
のベーンにより複数区画されたポンプ室と、膨張行程を
行うポンプ室に対応する吸入ポートと圧縮行程を行うポ
ンプ室に対応する吐出ポートを直径方向にそれぞれ対向
して設け、この圧縮行程を行うポンプ室間を互いに連通
する連通溝と、スリットに保持されたベーンの一端に吐
出ポートの吐出圧を導くベーン背圧溝を備えたベーンポ
ンプであって、前記膨張行程から前記圧縮行程に移行す
る間の予圧縮行程において、前記ベーンの一端と前記連
通溝の間に隙間が形成されることを特徴するベーンポン
プ。
1. A cam ring fitted in a pump housing, a rotor rotatably housed in the cam ring, a plurality of slits provided in a radial direction of the rotor, and a plurality of vanes slidably guided by each slit. And a pump chamber partitioned by a plurality of vanes, a suction port corresponding to a pump chamber performing an expansion stroke, and a discharge port corresponding to a pump chamber performing a compression stroke are provided to face each other in the diameter direction. A vane pump having a communication groove that communicates between pump chambers performing a stroke, and a vane back pressure groove that guides a discharge pressure of a discharge port to one end of the vane held in the slit, from the expansion stroke to the compression stroke. A vane pump, wherein a gap is formed between one end of the vane and the communication groove during a pre-compression stroke during transition.
【請求項2】 前記ポンプ室を構成する一対のベーンの
うち、吸入ポート側のベーンのスリットを介して、前記
連通溝の圧力を前記ベーン背圧溝に逃すことを特徴する
請求項1に記載のベーンポンプ。
2. The pressure of the communication groove is released to the vane back pressure groove through a slit of the vane on the suction port side of the pair of vanes constituting the pump chamber. Vane pump.
【請求項3】 前記連通溝と前記背圧溝は前記ポンプハ
ウジングと前記ロータの摺接面のいずれか一方にロータ
と同軸的に形成され、前記連通溝は前記背圧溝よりも外
側に設けられたことを特徴する請求項1または請求項2
に記載のベーンポンプ。
3. The communication groove and the back pressure groove are formed coaxially with the rotor on one of a sliding contact surface of the pump housing and the rotor, and the communication groove is provided outside the back pressure groove. Claim 1 or Claim 2 characterized by having been done
The vane pump according to the above.
JP20000196A 1996-07-30 1996-07-30 Vane pump Pending JPH1047261A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20000196A JPH1047261A (en) 1996-07-30 1996-07-30 Vane pump
GB9716010A GB2315815A (en) 1996-07-30 1997-07-29 Vane Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000196A JPH1047261A (en) 1996-07-30 1996-07-30 Vane pump

Publications (1)

Publication Number Publication Date
JPH1047261A true JPH1047261A (en) 1998-02-17

Family

ID=16417152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000196A Pending JPH1047261A (en) 1996-07-30 1996-07-30 Vane pump

Country Status (2)

Country Link
JP (1) JPH1047261A (en)
GB (1) GB2315815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112224A1 (en) * 2003-06-06 2004-12-23 Bei Sensors And Systems Company, Inc. Ironcore linear brushless dc motor with reduced detent force
JP2008057361A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Vane pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610797B2 (en) * 1998-12-11 2005-01-19 豊田工機株式会社 Vane pump
US7207785B2 (en) 2000-09-28 2007-04-24 Goodrich Pump & Engine Control Systems, Inc. Vane pump wear sensor for predicted failure mode
WO2002027188A2 (en) 2000-09-28 2002-04-04 Goodrich Pump & Engine Control Systems, Inc. Vane pump
US6663357B2 (en) 2000-09-28 2003-12-16 Goodrich Pump And Engine Control Systems, Inc. Vane pump wear sensor for predicted failure mode
JP2004536246A (en) * 2000-09-28 2004-12-02 グッドリッチ・パンプ・アンド・エンジン・コントロール・システムズ・インコーポレイテッド Vane pump wear sensor for predicted failure modes
US6481990B2 (en) * 2001-03-21 2002-11-19 Delphi Technologies, Inc. Hydraulically balanced multi-vane hydraulic motor
US10018197B2 (en) * 2015-01-16 2018-07-10 Hamilton Sundstrand Corporation Low-pulse vane pumps
JP6707340B2 (en) * 2015-12-17 2020-06-10 株式会社ショーワ Vane pump device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB801069A (en) * 1955-07-23 1958-09-10 Heinz Teves Improved rotary pump of the sliding vane type
US3447477A (en) * 1967-06-22 1969-06-03 Sperry Rand Corp Power transmission
JPS5669491A (en) * 1979-11-13 1981-06-10 Kayaba Ind Co Ltd Vane pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112224A1 (en) * 2003-06-06 2004-12-23 Bei Sensors And Systems Company, Inc. Ironcore linear brushless dc motor with reduced detent force
JP2008057361A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Vane pump

Also Published As

Publication number Publication date
GB2315815A (en) 1998-02-11
GB9716010D0 (en) 1997-10-01

Similar Documents

Publication Publication Date Title
JP4146312B2 (en) Variable displacement pump
JPH1089266A (en) Vane pump
JPH09273487A (en) Variable displacement type pump
JP2015059524A (en) Variable displacement vane pump
JPH1047261A (en) Vane pump
CN111094749B (en) Pump device
JP4929471B2 (en) Variable displacement vane pump
JP5371795B2 (en) Variable displacement vane pump
JPS623318B2 (en)
JP4267768B2 (en) Variable displacement pump
JP2870602B2 (en) Variable displacement vane pump
JPH07119648A (en) Variable displacement type vane pump
JP3631264B2 (en) Variable displacement pump
JP4067348B2 (en) Variable displacement pump
JPH09242679A (en) Vane pump
JP4009455B2 (en) Variable displacement vane pump
JP3796073B2 (en) Variable displacement vane pump
JP2884529B2 (en) Variable displacement vane pump
JP2017203450A (en) Oscillation piston type compressor
JPH06241176A (en) Variable displacement type pump
JP2863590B2 (en) Variable displacement vane pump
JPH03275994A (en) Variable displacement vane pump
JP2001065470A (en) Variable displacement pump
JPH08277784A (en) Vane pump
JP2006161696A (en) Vane rotary type vacuum pump