JPH1046295A - Ferritic stainless steel sheet excellent in magnetic property and its production - Google Patents

Ferritic stainless steel sheet excellent in magnetic property and its production

Info

Publication number
JPH1046295A
JPH1046295A JP20172396A JP20172396A JPH1046295A JP H1046295 A JPH1046295 A JP H1046295A JP 20172396 A JP20172396 A JP 20172396A JP 20172396 A JP20172396 A JP 20172396A JP H1046295 A JPH1046295 A JP H1046295A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
magnetic properties
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20172396A
Other languages
Japanese (ja)
Other versions
JP3629102B2 (en
Inventor
Tomio Satsunoki
富美夫 札軒
Yasuhiro Shimizu
庸宏 清水
Shigeru Fujiwara
茂 藤原
Haruki Ariyoshi
春樹 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20172396A priority Critical patent/JP3629102B2/en
Publication of JPH1046295A publication Critical patent/JPH1046295A/en
Application granted granted Critical
Publication of JP3629102B2 publication Critical patent/JP3629102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a stainless steel sheet excellent in magnetic properties and workability and to provide a method for producing the same. SOLUTION: This ferritic stainless steel excellent in magnetic properties is the one having a compsn, contg., by weight, <=0.01%C, 0.1 to 0.6% Si, 0.1 to 1.0% Mn, <=0.004% S, 5 to 13% Cr, 0.05 to 0.5% Ti, <=0.004% O and 0.015% N, in which the total content of C+N is also regulated to <=0.015%, and the balance Fe with inevitable impurities, and the total of the intensity of the (111) plane in the surface layer and the center layer is regulated to <=10, and the maximum relative permeability is regulated to >=4,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ディスプレイ管サポー
トフレーム用等の電気電子部品に用いられる、軟磁性ス
テンレス鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic stainless steel sheet used for electric and electronic parts such as a support frame for a display tube and a method for producing the same.

【0002】[0002]

【従来の技術】これまでディスプレイ管サポートフレー
ム用等の電気電子部品に用いられる、いわゆる軟磁性ス
テンレス鋼板としては、磁気特性、例えば最大比透磁率
を高めるため、例えば特開昭62−23962号公報で
はフェライト系ステンレス鋼板にSi,Alを添加する
例がある。しかしながら、Si,Alの過度の添加は、
材料の加工性、特に伸びを悪くし、ディスプレイ管サポ
ートフレーム用に曲げ等の加工を行うと割れが発生し問
題となっている。一方、別な手段で磁気特性を高めるた
めには、例えば特開平2−182834号公報では、フ
ェライト系ステンレス鋼板の最終焼鈍を2段階の温度範
囲で行うことにより、ゴス方位({110}<001
>)を強く集積させる集合組織を得、磁気特性を高める
例がある。しかしながら、2段階の温度範囲で最終焼鈍
を行うことは操業上困難であり、またコストアップにも
なり望ましくない。
2. Description of the Related Art A so-called soft magnetic stainless steel sheet used for electric and electronic parts such as a support frame for a display tube or the like is disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 62-23962 in order to improve magnetic properties, for example, maximum relative magnetic permeability. There is an example in which Si and Al are added to a ferritic stainless steel sheet. However, excessive addition of Si and Al
The workability of the material, especially the elongation, is deteriorated, and when a process such as bending is performed for the display tube support frame, cracks occur, which is a problem. On the other hand, in order to enhance the magnetic properties by another means, for example, in Japanese Patent Application Laid-Open No. 2-182834, the Goss orientation ({110} <001) is obtained by performing the final annealing of a ferritic stainless steel sheet in two temperature ranges.
There is an example in which a texture that strongly accumulates>) is obtained to improve the magnetic properties. However, it is difficult to perform the final annealing in the two-step temperature range, and it is not desirable because it increases the cost.

【0003】[0003]

【発明が解決しようとする課題】本発明は以上のことを
かんがみ、磁気特性および加工性に優れたステンレス鋼
板を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a stainless steel sheet having excellent magnetic properties and workability.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、残部がFeおよび不可避的不純物
からなり、表層および中心層における(111)面強度
の和が10以上であり、最大比透磁率≧4000である
ことを特徴とする磁気特性に優れたフェライト系ステン
レス鋼板。 (2)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、Ni,Mo,Cu,N
b,Zr,Vのうち1種または2種以上を合計で0.0
5〜1.0%を添加し、残部がFeおよび不可避的不純
物からなり、表層および中心層における(111)面強
度の和が10以上であり、最大比透磁率≧4000であ
ることを特徴とする磁気特性に優れたフェライト系ステ
ンレス鋼板。 (3)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、B:0.0003〜0.
02%を添加し、残部がFeおよび不可避的不純物から
なり、表層および中心層における(111)面強度の和
が10以上であり、最大比透磁率≧4000であること
を特徴とする磁気特性に優れたフェライト系ステンレス
鋼板。 (4)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、Ni,Mo,Cu,N
b,Zr,Vのうち1種または2種以上を合計で0.0
5〜1.0%を添加し、さらに、B:0.0003〜
0.02%を添加し、残部がFeおよび不可避的不純物
からなり、表層および中心層における(111)面強度
の和が10以上であり、最大比透磁率≧4000である
ことを特徴とする磁気特性に優れたフェライト系ステン
レス鋼板。 (5)結晶粒径が60〜300μmであることを特徴と
する上記(1)〜(4)のいずれか一つに記載の磁気特
性に優れたフェライト系ステンレス鋼板。 (6)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、残部がFeおよび不可避的不純物
からなるフェライト系ステンレス鋼スラブを熱間圧延を
行い熱延板とし、続いてロール直径が200mm以上を有
するワ−クロ−ルを用いて1回あるいは中間焼鈍を含む
2回以上の冷間圧延を行い冷延板とし、続いて920〜
1100℃の温度範囲で焼鈍を行い、続いて製品形状に
成形加工し、続いて750〜1000℃の温度範囲で歪
取り焼鈍を行うことを特徴とする磁気特性に優れたフェ
ライト系ステンレス鋼板の製造方法。 (7)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、Ni,Mo,Cu,N
b,Zr,Vのうち1種または2種以上を合計で0.0
5〜1.0%を添加し、残部がFeおよび不可避的不純
物からなるフェライト系ステンレス鋼スラブを熱間圧延
を行い熱延板とし、続いてロール直径が200mm以上を
有するワ−クロ−ルを用いて1回あるいは中間焼鈍を含
む2回以上の冷間圧延を行い冷延板とし、続いて920
〜1100℃の温度範囲で焼鈍を行い、続いて製品形状
に成形加工し、続いて750〜1000℃の温度範囲で
歪取り焼鈍を行うことを特徴とする磁気特性に優れたフ
ェライト系ステンレス鋼板の製造方法。 (8)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、B:0.0003〜0.
02%を添加し、残部がFeおよび不可避的不純物から
なるフェライト系ステンレス鋼スラブを熱間圧延を行い
熱延板とし、続いてロール直径が200mm以上を有する
ワ−クロ−ルを用いて1回あるいは中間焼鈍を含む2回
以上の冷間圧延を行い冷延板とし、続いて920〜11
00℃の温度範囲で焼鈍を行い、続いて製品形状に成形
加工し、続いて750〜1000℃の温度範囲で歪取り
焼鈍を行うことを特徴とする磁気特性に優れたフェライ
ト系ステンレス鋼板の製造方法。 (9)重量%にて、C≦0.01%、Si:0.1〜
0.6%、Mn:0.1〜1.0%、S≦0.004
%、Cr:5〜13%、Ti:0.05〜0.5%、O
≦0.004%、N≦0.015%、とし、かつC+N
≦0.015%とし、さらに、Ni,Mo,Cu,N
b,Zr,Vのうち1種または2種以上を合計で0.0
5〜1.0%を添加し、さらに、B:0.0003〜
0.02%を添加し、残部がFeおよび不可避的不純物
からなるフェライト系ステンレス鋼スラブを熱間圧延を
行い熱延板とし、続いてロール直径が200mm以上を有
するワ−クロ−ルを用いて1回あるいは中間焼鈍を含む
2回以上の冷間圧延を行い冷延板とし、続いて920〜
1100℃の温度範囲で焼鈍を行い、続いて製品形状に
成形加工し、続いて750〜1000℃の温度範囲で歪
取り焼鈍を行うことを特徴とする磁気特性に優れたフェ
ライト系ステンレス鋼板の製造方法。 (10)冷延板焼鈍を行って、結晶粒径を60〜300
μmに成長させることを特徴とする上記(6)〜(9)
のいずれか一つに記載の磁気特性に優れたフェライト系
ステンレス鋼板の製造方法。
The gist of the present invention is as follows. (1) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, the balance being Fe and unavoidable impurities, the sum of the (111) plane strength in the surface layer and the center layer is 10 or more, and the maximum relative magnetic permeability ≥ 4000. Excellent ferritic stainless steel sheet. (2) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and Ni, Mo, Cu, N
One or more of b, Zr, and V are used in a total of 0.0
5 to 1.0%, the balance being Fe and unavoidable impurities, the sum of the (111) plane strengths in the surface layer and the center layer is 10 or more, and the maximum relative magnetic permeability is ≧ 4000. Ferritic stainless steel sheet with excellent magnetic properties. (3) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and further, B: 0.0003-0.
02% is added, with the balance being Fe and unavoidable impurities, the sum of the (111) plane strengths in the surface layer and the center layer being 10 or more, and the maximum relative magnetic permeability ≧ 4000. Excellent ferritic stainless steel sheet. (4) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and Ni, Mo, Cu, N
One or more of b, Zr, and V are used in a total of 0.0
5 to 1.0%, and B: 0.0003 to
0.02% is added, with the balance being Fe and unavoidable impurities, the sum of the (111) plane strength in the surface layer and the center layer is 10 or more, and the maximum relative magnetic permeability is ≧ 4000. Ferritic stainless steel sheet with excellent properties. (5) The ferritic stainless steel sheet according to any one of the above (1) to (4), having a crystal grain size of 60 to 300 µm. (6) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤0.015%, the balance being ferritic stainless steel slab consisting of Fe and unavoidable impurities, hot-rolled to form a hot-rolled sheet, and then 1% by using a work roll having a roll diameter of 200 mm or more. Cold rolling two or more times including intermediate or intermediate annealing to obtain a cold-rolled sheet.
Production of a ferritic stainless steel sheet having excellent magnetic properties, wherein annealing is performed in a temperature range of 1100 ° C., followed by forming into a product shape, and then performing strain relief annealing in a temperature range of 750 to 1000 ° C. Method. (7) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and Ni, Mo, Cu, N
One or more of b, Zr, and V are used in a total of 0.0
The ferritic stainless steel slab containing 5% to 1.0% and the balance of Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet, followed by a work roll having a roll diameter of 200 mm or more. Cold rolling is performed once or twice or more including intermediate annealing to obtain a cold rolled sheet.
Annealing in the temperature range of 11100 ° C., followed by forming into a product shape, and then performing strain relief annealing in the temperature range of 750 to 1000 ° C. Production method. (8) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and further, B: 0.0003-0.
The ferritic stainless steel slab consisting of Fe and unavoidable impurities is hot-rolled to obtain a hot-rolled sheet, and then once with a roll having a roll diameter of 200 mm or more. Alternatively, cold rolling is performed twice or more including intermediate annealing to form a cold rolled sheet, and then 920 to 11
Production of ferritic stainless steel sheet having excellent magnetic properties, wherein annealing is performed in a temperature range of 00 ° C, followed by forming into a product shape, and then performing strain relief annealing in a temperature range of 750 to 1000 ° C. Method. (9) In terms of% by weight, C ≦ 0.01%, Si: 0.1 to
0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004
%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O
≦ 0.004%, N ≦ 0.015%, and C + N
≤ 0.015%, and Ni, Mo, Cu, N
One or more of b, Zr, and V are used in a total of 0.0
5 to 1.0%, and B: 0.0003 to
A ferritic stainless steel slab containing 0.02% and the balance of Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet, and then using a roll having a roll diameter of 200 mm or more. Cold rolling is performed once or twice or more including intermediate annealing to obtain a cold rolled sheet.
Production of a ferritic stainless steel sheet having excellent magnetic properties, wherein annealing is performed in a temperature range of 1100 ° C, followed by forming into a product shape, and then performing strain relief annealing in a temperature range of 750 to 1000 ° C. Method. (10) Anneal the cold rolled sheet to reduce the crystal grain size to 60 to 300.
(6) to (9), characterized in that they are grown to μm.
The method for producing a ferritic stainless steel sheet having excellent magnetic properties according to any one of the above.

【0005】以下、本発明鋼の限定理由について詳細に
説明する。Cは、含有量が多くなりすぎると合金中に炭
化物を形成し磁気特性を劣化させるため、その上限を
0.01%とした。さらに好ましくは、0.007%以
下が良い。
Hereinafter, the reasons for limiting the steel of the present invention will be described in detail. If the content of C is too large, carbides are formed in the alloy to deteriorate magnetic properties, so the upper limit was made 0.01%. More preferably, the content is 0.007% or less.

【0006】Siは、脱酸剤として有効であり、また磁
気特性を向上させる元素であるが、0.1%未満ではそ
の効果が少なく、一方、0.6%を超えた添加では加工
性、特に伸びを低下させる。従ってSiの範囲は、0.
10〜0.60%とした。さらに好ましくは、0.30
〜0.50%が良い。
[0006] Si is an element effective as a deoxidizing agent and improves the magnetic properties. When less than 0.1%, its effect is small. In particular, it reduces elongation. Therefore, the range of Si is 0.
It was set to 10 to 0.60%. More preferably, 0.30
~ 0.50% is good.

【0007】Mnは、脱硫,脱酸剤として有効である
が、0.1%未満ではその効果が少なく、また1.0%
を超えると、耐食性が劣化する。従って、Mnの範囲
は、0.10〜1.0%とした。さらに好ましくは、
0.20〜0.50%が良い。
[0007] Mn is effective as a desulfurizing and deoxidizing agent.
If it exceeds 300, the corrosion resistance deteriorates. Therefore, the range of Mn is set to 0.10 to 1.0%. More preferably,
0.20-0.50% is good.

【0008】Sは、含有量が多くなりすぎると合金中に
硫化物を形成し磁気特性を劣化させるため、その上限を
0.004%とした。さらに好ましくは、0.003%
以下が良い。
[0008] If the content of S is too large, sulfides are formed in the alloy to deteriorate the magnetic properties, so the upper limit was made 0.004%. More preferably, 0.003%
The following is good.

【0009】Crは、ステンレス鋼の耐食性を付与する
基本的な元素であり、5.0%未満の含有ではその効果
が少なく、一方、13.0%を超える含有では、磁気特
性が劣化する。従ってCrの範囲は、5.0〜13.0
%とした。さらに好ましくは、10.0〜11.5%が
良い。
[0009] Cr is a basic element imparting corrosion resistance to stainless steel, and if its content is less than 5.0%, its effect is small, while if it exceeds 13.0%, its magnetic properties deteriorate. Therefore, the range of Cr is 5.0 to 13.0.
%. More preferably, the content is 10.0 to 11.5%.

【0010】Tiは、耐食性及び磁気特性を向上させる
元素であるが、0.05%未満ではその効果が少なく、
また、0.5%を超える添加では、加工性、特に伸びを
低下させる。従って、Tiの範囲は0.05〜0.5%
とした。さらに好ましくは、0.1〜0.3%が良い。
[0010] Ti is an element that improves the corrosion resistance and magnetic properties.
Further, if the addition exceeds 0.5%, the processability, particularly the elongation, is reduced. Therefore, the range of Ti is 0.05-0.5%
And More preferably, 0.1 to 0.3% is good.

【0011】Oは、含有量が多くなりすぎると合金中に
酸化物を形成し磁気特性を劣化させるため、その上限を
0.004%とした。さらに好ましくは、0.003%
以下が良い。
If the content of O is too large, an oxide is formed in the alloy and the magnetic properties are deteriorated. Therefore, the upper limit is made 0.004%. More preferably, 0.003%
The following is good.

【0012】Nは、含有量が多くなりすぎると合金中に
窒化物を形成し磁気特性を劣化させるため、その上限を
0.015%とした。さらに好ましくは、0.01%以
下が良い。
[0012] If the content of N is too large, nitrides are formed in the alloy to deteriorate the magnetic properties. Therefore, the upper limit is made 0.015%. More preferably, the content is 0.01% or less.

【0013】C及びNは、共存した状態で磁気特性を劣
化させる性質があるため、その上限をC+N≦0.01
5%とした。さらに好ましくは、C+Nは0.010%
以下が良い。
Since C and N have the property of deteriorating the magnetic properties when they coexist, the upper limit is C + N ≦ 0.01.
5%. More preferably, C + N is 0.010%
The following is good.

【0014】Ni,Mo,Cu,Nb,Zr,Vは、耐
食性を改善させる元素であり、1種または2種以上を合
計で0.05%未満ではその効果が少なく、また、1.
0%を超える添加では、磁気特性を損なうので、Ni,
Mo,Cu,Nb,Zr,Vのうち1種または2種以上
を添加する範囲を0.05〜1.0%とした。さらに好
ましくは、0.1〜0.7%が良い。また、1種単独で
添加する場合には、0.1〜0.5%が良い。
Ni, Mo, Cu, Nb, Zr, and V are elements that improve corrosion resistance. If one or more of them is less than 0.05% in total, the effect is small.
If the addition exceeds 0%, the magnetic properties are impaired.
The range in which one or more of Mo, Cu, Nb, Zr, and V are added is set to 0.05 to 1.0%. More preferably, 0.1 to 0.7% is good. When one kind is added alone, the content is preferably 0.1 to 0.5%.

【0015】Bは、磁気特性を向上させる元素である
が、0.0003%未満ではその効果が少なく、また、
0.02%を超える添加では、熱間及び冷間での加工性
を劣化させる。従って、Bの範囲は0.0003〜0.
02%とした。さらに好ましくは、0.0005〜0.
01%が良い。
B is an element for improving the magnetic properties, but its effect is small when it is less than 0.0003%.
Addition of more than 0.02% deteriorates hot and cold workability. Therefore, the range of B is 0.0003 to 0.
02%. More preferably, 0.0005 to 0.5.
01% is good.

【0016】次に製造方法を規定した理由を述べる。本
発明の製造方法は、所定の化学成分のスラブを、熱間圧
延を行い熱延板とし、続いてロール直径が200mm以上
を有するワークロールを用いて1回あるいは中間焼鈍を
含む2回以上の冷間圧延を行い冷延板とし、続いて焼鈍
を920〜1100℃の温度範囲で行い、続いて製品形
状に成形加工し、続いて750〜1000℃の温度範囲
で歪取り焼鈍を行い、表層および中心層における(11
1)面強度の和を10以下にさせる。
Next, the reason for defining the manufacturing method will be described. In the production method of the present invention, a slab of a predetermined chemical component is hot-rolled to form a hot-rolled sheet, and subsequently, using a work roll having a roll diameter of 200 mm or more, once or twice or more including intermediate annealing. Cold-rolled to form a cold-rolled sheet, followed by annealing in a temperature range of 920 to 1100 ° C., followed by forming into a product shape, and then performing strain relief annealing in a temperature range of 750 to 1000 ° C. And (11) in the central layer
1) The sum of the surface strengths is reduced to 10 or less.

【0017】重量%にて、C:0.003%、Si:
0.42%、Mn:0.35%、S:0.0010%、
Cr:11.1%、Ti:0.15%、O:0.002
8%、N:0.0065%、C+N=0.0095%と
し、残部がFeおよび不可避的不純物からなる鋼組成を
用いて、転炉で溶製し、連続鋳造法によりスラブとし
た。その後1250℃×2時間加熱後熱間圧延を行い、
板厚3.2mmの熱延板を得た。その後、熱延板をショッ
トブラストと硫酸によりデスケール処理を行い、ワーク
ロ−ル直径を60〜500mmに種々変化させて冷間圧延
を行い板厚1.2mmの冷延薄板を得、焼鈍を950℃×
1分、大気中にて行った後、ソルト・電界硝酸により酸
洗処理を行った。得られた最終焼鈍板から、30mm幅×
300mm長の試験片を切り出し、歪取り焼鈍を800℃
×10分、大気中にて行った。(111)面強度は、M
o管球を線源とするX線回折装置により印加電圧40k
V,印加電流200mAの条件で測定した。表層におけ
る(111)面強度と中心層における(111)面強度
との和は、表層と中心層でそれぞれのX線ピーク強度と
純鉄製無方向性試料のX線ピーク強度の比として求めた
ものをたし合わせた。磁気特性測定は、JIS C 2
550に準じ、25cmエプスタイン法により試験片を
8枚積層させ、最大比透磁率μmを測定した。
In weight%, C: 0.003%, Si:
0.42%, Mn: 0.35%, S: 0.0010%,
Cr: 11.1%, Ti: 0.15%, O: 0.002
8%, N: 0.0065%, C + N = 0.0095%, and the balance was melted in a converter using a steel composition comprising Fe and unavoidable impurities, and was made into a slab by a continuous casting method. Thereafter, hot rolling is performed after heating at 1250 ° C. × 2 hours,
A hot-rolled sheet having a thickness of 3.2 mm was obtained. Thereafter, the hot-rolled sheet is subjected to a descaling treatment by shot blasting and sulfuric acid, and cold-rolled by varying the work roll diameter to 60 to 500 mm to obtain a cold-rolled thin sheet having a sheet thickness of 1.2 mm. ×
After one minute in the air, pickling was performed with salt and electric nitric acid. From the obtained final annealed plate, 30mm width ×
A 300 mm long test piece was cut out and subjected to strain relief annealing at 800 ° C.
X 10 minutes in air. The (111) plane strength is M
oApplied voltage 40k by X-ray diffractometer using tube as a radiation source
V and an applied current of 200 mA were measured. The sum of the (111) plane intensity in the surface layer and the (111) plane intensity in the center layer was obtained as a ratio of the X-ray peak intensity of each of the surface layer and the center layer to the X-ray peak intensity of the pure iron non-directional sample. Was added. Magnetic property measurement is based on JIS C 2
According to 550, eight test pieces were laminated by the 25 cm Epstein method, and the maximum relative magnetic permeability μm was measured.

【0018】(111)面強度の和と磁気特性の関係に
ついて図1に示す。磁気特性としては、最大比透磁率が
4000以上の高い値である事が望まれており、そのた
めには表層および中心層における(111)面強度の和
を10以下とする必要があることが分かる。表層および
中心層における(111)面強度の和が10以下になる
と磁気特性が向上する機構の詳細は未だ明確でないが、
(111)方位の結晶構造が磁化困難方位であるので、
(111)面強度の和が10を超えると、磁化過程にお
いて、磁壁の移動障害となるためと考えられる。
FIG. 1 shows the relationship between the sum of the (111) plane strength and the magnetic characteristics. As the magnetic properties, it is desired that the maximum relative magnetic permeability is a high value of 4000 or more, and it is necessary to make the sum of the (111) plane strength in the surface layer and the center layer 10 or less. . Although the details of the mechanism by which the magnetic properties are improved when the sum of the (111) plane strengths of the surface layer and the center layer is 10 or less are not clear yet,
Since the crystal structure of the (111) orientation is a hard magnetization orientation,
It is considered that, when the sum of the (111) plane strengths exceeds 10, the movement of the domain wall is hindered in the magnetization process.

【0019】冷間圧延におけるワークロールの直径が2
00mm未満の場合には、表層と中心層への冷間圧延によ
る歪導入が不均一に起こるため、冷間圧延後の再結晶焼
鈍を行い、更に続いて製品形状加工後の歪取り焼鈍を行
っても表層および中心層における(111)面強度の和
が10以下にならない。従って、冷間圧延におけるワー
クロール直径を200mm以上とした。
In the cold rolling, the work roll has a diameter of 2
In the case of less than 00 mm, since strain introduction due to cold rolling to the surface layer and the center layer occurs unevenly, recrystallization annealing after cold rolling is performed, and then strain relief annealing after product shape processing is performed. However, the sum of the (111) plane strengths in the surface layer and the center layer does not become 10 or less. Therefore, the work roll diameter in cold rolling was set to 200 mm or more.

【0020】冷延板焼鈍において焼鈍温度が920℃未
満の場合には、結晶粒径が60μm未満と小さくなり、
結晶粒界が磁壁移動になると考えられるため、磁気特性
が向上しない。一方、焼鈍温度が1100℃を超えた場
合には結晶粒径が300μmを超えて製品形状に曲げ加
工等を行うと、加工肌荒れが発生するため望ましくな
い。よって焼鈍温度範囲を920〜1100℃とした。
さらに好ましくは930〜1050℃が良い。尚、焼鈍
の保定時間は、30秒〜10分が好ましい。また、粒径
の範囲は60〜300μmとした。さらに、好ましくは
60〜220μmが良い。
When the annealing temperature is lower than 920 ° C. in the cold-rolled sheet annealing, the crystal grain size becomes as small as less than 60 μm,
Since the crystal grain boundary is considered to be a domain wall motion, the magnetic characteristics are not improved. On the other hand, when the annealing temperature exceeds 1100 ° C., if the crystal grain size exceeds 300 μm and a bending process or the like is performed into a product shape, the processed surface is roughened, which is not desirable. Therefore, the annealing temperature range was set to 920 to 1100 ° C.
More preferably, the temperature is 930 to 1050 ° C. The retention time of the annealing is preferably 30 seconds to 10 minutes. Further, the range of the particle size was 60 to 300 μm. Further, the thickness is preferably 60 to 220 μm.

【0021】その後に調質圧延を行うと、表層と中心層
への歪導入が不均一に起こるため、更に続いて製品形状
加工後の歪取り焼鈍を行っても表層および中心層におけ
る(111)面強度の和が10以下にならない。従っ
て、調質圧延は行わない方が良い。尚、割れ等を起こさ
ずに加工成型を行うためには、伸びが34%以上の値で
ある事が望まれている。
When temper rolling is performed thereafter, strain is introduced nonuniformly into the surface layer and the center layer. Therefore, even if the strain relief annealing after the product shape processing is further performed, (111) in the surface layer and the center layer is performed. The sum of the surface strength does not become 10 or less. Therefore, it is better not to perform temper rolling. In order to perform work forming without causing cracks or the like, it is desired that the elongation is 34% or more.

【0022】その後、750〜1000℃の温度範囲で
歪取り焼鈍を行う。750℃未満では、加工後の歪が残
存するために高い磁気特性が得られない。また、100
0℃を超えた場合には、歪除去の効果が飽和され、また
工程にも負荷が加わるため望ましくない。よって、歪取
り焼鈍温度範囲を、750〜1000℃とした。さら
に、好ましくは、800〜900℃が良い。尚、歪取り
焼鈍の保定時間は、30秒〜30分が好ましい。
Thereafter, strain relief annealing is performed in a temperature range of 750 to 1000 ° C. If the temperature is lower than 750 ° C., high magnetic properties cannot be obtained because the strain after processing remains. Also, 100
If the temperature exceeds 0 ° C., the effect of strain removal is saturated, and a load is added to the process, which is not desirable. Therefore, the strain relief annealing temperature range was set to 750 to 1000 ° C. Further, the temperature is preferably 800 to 900 ° C. The retention time of the strain relief annealing is preferably 30 seconds to 30 minutes.

【0023】[0023]

【発明の実施の形態】次に、本発明の優位性を実施例と
比較例を用いて,具体的に説明する。表1及び表2に、
本発明例と比較例の化学成分および焼鈍条件、結晶粒
径、磁気特性等を示す。
Next, the superiority of the present invention will be specifically described with reference to examples and comparative examples. In Table 1 and Table 2,
The chemical composition, annealing conditions, crystal grain size, magnetic properties, etc. of the present invention example and the comparative example are shown.

【0024】表1及び表2に示すような本発明鋼組成と
比較鋼組成を、転炉で溶製し、連続鋳造法によりスラブ
とした。その後1200℃×2時間加熱後熱間圧延を行
い、板厚3.2mmの熱延板を得た。その後、熱延板をシ
ョットブラストと硫酸によりデスケール処理を行い、1
回または2回の冷間圧延にて所定板厚の冷延薄板を得、
焼鈍を910〜1120℃×1分、大気中にて行った
後、ソルト・電界硝酸により酸洗処理を行った。得られ
た焼鈍板から、JIS13B号試験片を採取し引張試験
機により伸びを測定した。また、焼鈍板のL方向断面組
織から、光学顕微鏡により比較法にて結晶粒径を測定し
た。続いて、調質圧延を省略したものと、調質圧延を実
施したものから、30mm幅×300mm長の試験片を切り
出し、歪取り焼鈍を740〜1030℃×6分、大気中
にて行った。(111)面強度はX線回折装置により測
定した。磁気特性測定は、最大比透磁率μmを測定し
た。また、耐食性は、塩水噴霧試験(JIS Z 23
71)後の発銹状況により、良好な順番にA>B>C>
D>Eの5ランクに評価した発銹試験から判断した。こ
の際、耐銹性の優劣の判断基準として、Cランク以上の
材料を耐食性良好と判断した。
The steel compositions of the present invention and the comparative steel compositions as shown in Tables 1 and 2 were melted in a converter and made into slabs by a continuous casting method. Thereafter, the sheet was heated at 1200 ° C. for 2 hours and then hot-rolled to obtain a hot-rolled sheet having a thickness of 3.2 mm. Thereafter, the hot-rolled sheet is descaled with shot blast and sulfuric acid, and
Cold rolling twice or twice to obtain a cold-rolled thin plate of a predetermined thickness,
After performing annealing at 910 to 1120 ° C. × 1 minute in the air, an acid washing treatment was performed with salt and electric nitric acid. From the obtained annealed plate, a JIS No. 13B test piece was sampled, and the elongation was measured by a tensile tester. In addition, the crystal grain size was measured from the L-direction cross-sectional structure of the annealed plate by a comparative method using an optical microscope. Subsequently, a test specimen having a width of 30 mm and a length of 300 mm was cut out from the specimen without the temper rolling and the specimen subjected to the temper rolling, and the strain relief annealing was performed at 740 to 1030 ° C. for 6 minutes in the atmosphere. . The (111) plane intensity was measured by an X-ray diffractometer. In the measurement of magnetic properties, the maximum relative magnetic permeability μm was measured. In addition, the corrosion resistance was measured by a salt spray test (JIS Z 23).
71) A>B>C>
Judgment was made from the rust test evaluated in 5 ranks of D> E. In this case, as a criterion for judging the rust resistance, a material having a rank of C or higher was judged to have good corrosion resistance.

【0025】No.1〜40は本発明例、No.41〜
81は比較例である。比較例No.41〜42、44、
46、48〜49、51〜53、58〜75、77およ
び79〜80は、ワークロール直径が200mm未満と本
発明範囲から外れており、表層および中心層における
(111)面強度の和が10を超えて大きくなり、磁気
特性が劣化している。
No. Nos. 1 to 40 are examples of the present invention. 41-
81 is a comparative example. Comparative Example No. 41 to 42, 44,
46, 48 to 49, 51 to 53, 58 to 75, 77 and 79 to 80 have a work roll diameter of less than 200 mm, which is out of the range of the present invention, and the sum of the (111) plane strength in the surface layer and the center layer is 10%. And magnetic properties are degraded.

【0026】比較例No.41は、C量が本発明範囲を
超えるものであり、この場合においては、結晶粒径が小
さくなり磁気特性が低下している。比較例No.42
は、Si量が本発明範囲より低く、結晶粒径が小さくな
り磁気特性が著しく低下している。比較例No.43
は、Si量が本発明範囲より高く、磁気特性は高いが、
伸びが低い。比較例No.44は、Mn量が本発明範囲
より低く、粒径が小さくなり磁気特性が著しく低下して
いる。比較例No.45は、Mn量が本発明範囲より高
く、耐食性が劣化している。比較例No.46は、S量
が本発明範囲より高く、結晶粒径が小さくなり磁気特性
が低下している。比較例No.47は、Cr量が本発明
範囲より低く、磁気特性は高いが、耐食性が劣化してい
る。比較例No.48は、Cr量が本発明範囲より高
く、磁気特性が著しく低下している。比較例No.49
は、Ti量が本発明範囲より低く、結晶粒径が小さくな
り、磁気特性が著しく低下している。比較例No.50
は、Ti量が本発明範囲より高く、磁気特性は高いが、
伸びが低い。比較例No.51は、O量が本発明範囲よ
り高く、結晶粒径が小さくなり、磁気特性が著しく低下
している。比較例No.52は、N量が本発明範囲より
高く、粒径が小となり、磁気特性が著しく低下してい
る。比較例No.53は、C,N量単独では本発明範囲
内ではあるが、C+N量が本発明範囲より高く、結晶粒
径が小さくなり磁気特性が著しく低下している。
Comparative Example No. No. 41 has a C content exceeding the range of the present invention. In this case, the crystal grain size is small and the magnetic properties are low. Comparative Example No. 42
In the case of, the amount of Si is lower than the range of the present invention, the crystal grain size is small, and the magnetic properties are significantly reduced. Comparative Example No. 43
Means that the Si content is higher than the range of the present invention and the magnetic properties are high,
Low elongation. Comparative Example No. In No. 44, the Mn content was lower than the range of the present invention, the particle size was small, and the magnetic properties were significantly reduced. Comparative Example No. In No. 45, the Mn content is higher than the range of the present invention, and the corrosion resistance is deteriorated. Comparative Example No. In No. 46, the S content was higher than the range of the present invention, the crystal grain size was small, and the magnetic properties were low. Comparative Example No. In No. 47, the Cr content is lower than the range of the present invention and the magnetic properties are high, but the corrosion resistance is deteriorated. Comparative Example No. In No. 48, the Cr content was higher than the range of the present invention, and the magnetic properties were remarkably deteriorated. Comparative Example No. 49
For Ti, the Ti content is lower than the range of the present invention, the crystal grain size is small, and the magnetic properties are significantly reduced. Comparative Example No. 50
Indicates that the Ti content is higher than the range of the present invention and the magnetic properties are high,
Low elongation. Comparative Example No. In No. 51, the O content was higher than the range of the present invention, the crystal grain size was small, and the magnetic properties were significantly reduced. Comparative Example No. In No. 52, the N content is higher than the range of the present invention, the particle size is small, and the magnetic properties are significantly reduced. Comparative Example No. 53 is within the range of the present invention when the C and N amounts are alone, but the C + N amount is higher than the range of the present invention, the crystal grain size is reduced, and the magnetic properties are significantly reduced.

【0027】比較例No.54は、化学成分範囲は本発
明範囲内であるが、焼鈍温度が本発明範囲より低く、結
晶粒径が小さくなり磁気特性が著しく低下している。比
較例No.55は、化学成分範囲は本発明範囲内である
が、焼鈍温度が本発明範囲より高く、結晶粒径が大きく
なり磁気特性は高いが、成品形状に成形加工した時に肌
荒れが生じた。比較例No.56は、化学成分範囲は本
発明範囲内であるが、歪取り焼鈍温度が本発明範囲より
低く、加工後の歪みが残存しているために磁気特性が低
い。比較例No.57は、化学成分範囲は本発明範囲内
であるが、歪取り焼鈍温度が本発明範囲より高く、加工
後の歪みは除去されているが、その効果は飽和し、また
工程にも負荷が大と考えられるため望ましくない。
Comparative Example No. In No. 54, the chemical component range is within the range of the present invention, but the annealing temperature is lower than the range of the present invention, the crystal grain size is small, and the magnetic properties are significantly reduced. Comparative Example No. No. 55 has a chemical component within the range of the present invention, but the annealing temperature is higher than the range of the present invention, the crystal grain size is large, and the magnetic properties are high. Comparative Example No. In No. 56, the chemical component range is within the range of the present invention, but the magnetic properties are low because the strain relief annealing temperature is lower than the range of the present invention and the strain after processing remains. Comparative Example No. 57, the chemical composition range is within the range of the present invention, but the strain relief annealing temperature is higher than the range of the present invention, and the strain after processing is removed, but the effect is saturated and the load on the process is large. It is not desirable because it is considered.

【0028】比較例No.58及びNo.64は、Ni
量が、比較例No.59,No.65及びNo.77
は、Mo量が、比較例No.60,No.72及びN
o.79は、Cu量が、比較例No.61、No.66
及びNo.68は、Nb量が、比較例No.62及びN
o.70は、Zr量が、比較例No.63は、V量が、
比較例No.71は、Zr及びV量が、比較例No.7
4は、Cu,Nb及びZr量が、本発明範囲を超えるも
のであり、この場合においては、磁気特性が低下してい
る。また、比較例No.67は、Ni,V単独では本発
明範囲内ではあるが、Ni+Vの合計量が本発明範囲を
超えており、磁気特性が低下している。比較例No.6
9は、Ni,Mo,Cu単独では本発明範囲内ではある
が、Ni+Mo+Cuの合計量が本発明範囲を超えてお
り、磁気特性が低下している。比較例No.73は、N
i,Mo,Cu,Nb,V単独では本発明範囲内ではあ
るが、Ni+Mo+Cu+Nb+Vの合計量が本発明範
囲を超えており、磁気特性が低下している。比較例N
o.75は、Ni,Mo,Cu,Nb,Zr,V単独で
は本発明範囲内ではあるが、Ni+Mo+Cu+Nb+
Zr+Vの合計量が本発明範囲を超えており、磁気特性
が低下している。
Comparative Example No. 58 and No. 64 is Ni
The amount of Comparative Example No. 59, no. 65 and No. 77
In Comparative Example No. 60, no. 72 and N
o. No. 79 has a Cu content of Comparative Example No. 79; 61, no. 66
And No. No. 68 has a Nb amount of Comparative Example No. 68. 62 and N
o. No. 70 has a Zr content of Comparative Example No. 63 is the V amount,
Comparative Example No. No. 71 shows that the amount of Zr and V is comparative example No. 7
In No. 4, the amounts of Cu, Nb and Zr exceed the range of the present invention, and in this case, the magnetic properties are deteriorated. Also, in Comparative Example No. No. 67 is within the range of the present invention when Ni and V are used alone, but the total amount of Ni + V exceeds the range of the present invention, and the magnetic properties are deteriorated. Comparative Example No. 6
In No. 9, although Ni, Mo, and Cu alone are within the range of the present invention, the total amount of Ni + Mo + Cu exceeds the range of the present invention, and the magnetic properties are deteriorated. Comparative Example No. 73 is N
Although i, Mo, Cu, Nb, and V alone are within the range of the present invention, the total amount of Ni + Mo + Cu + Nb + V exceeds the range of the present invention, and the magnetic properties are degraded. Comparative Example N
o. 75 is Ni + Mo + Cu + Nb + although Ni, Mo, Cu, Nb, Zr, and V alone are within the scope of the present invention.
The total amount of Zr + V exceeds the range of the present invention, and the magnetic properties are deteriorated.

【0029】比較例No.76及びNo.78は、B量
が本発明範囲を超えるものであり、この場合において
は、伸びが低く、冷間での加工を劣化させている。比較
例No.80は、Ni,Nb及びB量が本発明範囲を超
えるものであり、磁気特性が低く、伸びが低い。比較例
No.81は、Cu及びB量が本発明範囲を超えるもの
であり、磁気特性が低く、伸びが低い。
Comparative Example No. 76 and No. In No. 78, the B content exceeds the range of the present invention, and in this case, the elongation is low and the cold working is deteriorated. Comparative Example No. No. 80 has Ni, Nb and B contents exceeding the range of the present invention, and has low magnetic properties and low elongation. Comparative Example No. No. 81 has Cu and B contents exceeding the range of the present invention, has low magnetic properties and low elongation.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【表8】 [Table 8]

【0038】[0038]

【発明の効果】以上のことから明らかなように、本発明
によれば、磁気特性および加工性に優れたステンレス鋼
板を得る事ができる。
As is apparent from the above, according to the present invention, a stainless steel sheet having excellent magnetic properties and workability can be obtained.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【0040】[0040]

【図1】 表層および中心層の(111)面強度の和と
最大比透磁率の関係を示す図表である。
FIG. 1 is a chart showing the relationship between the sum of the (111) plane strengths of a surface layer and a center layer and the maximum relative magnetic permeability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有吉 春樹 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Haruki Ariyoshi 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、残部がF
eおよび不可避的不純物からなり、表層および中心層に
おける(111)面強度の和が10以下であり、最大比
透磁率≧4000であることを特徴とする磁気特性に優
れたフェライト系ステンレス鋼板。
C. ≦ 0.01%, Si: 0.1 to 0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004%, Cr: 5 to 5% by weight 13%, Ti: 0.05 to 0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, with the balance being F
A ferritic stainless steel sheet having excellent magnetic properties, wherein the ferrite stainless steel sheet comprises e and unavoidable impurities, the sum of the (111) plane strengths in the surface layer and the central layer is 10 or less, and the maximum relative magnetic permeability is ≥4000.
【請求項2】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 Ni,Mo,Cu,Nb,Zr,Vのうち1種または2
種以上を合計で0.05〜1.0%を含有し、残部がF
eおよび不可避的不純物からなり、表層および中心層に
おける(111)面強度の和が10以下であり、最大比
透磁率≧4000であることを特徴とする磁気特性に優
れたフェライト系ステンレス鋼板。
2. C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5% by weight 13%, Ti: 0.05-0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and Ni, Mo, Cu, Nb , Zr, V, one or two
Contains at least 0.05% to 1.0% of the seeds, with the balance being F
A ferritic stainless steel sheet having excellent magnetic properties, wherein the ferrite stainless steel sheet comprises e and unavoidable impurities, the sum of the (111) plane strengths in the surface layer and the central layer is 10 or less, and the maximum relative magnetic permeability is ≥4000.
【請求項3】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 B:0.0003〜0.02%を含有し、残部がFeお
よび不可避的不純物からなり、表層および中心層におけ
る(111)面強度の和が10以下であり、最大比透磁
率≧4000であることを特徴とする磁気特性に優れた
フェライト系ステンレス鋼板。
3. Weight%: C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5-5% 13%, Ti: 0.05 to 0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and B: 0.0003 to 0 .02%, the balance being Fe and unavoidable impurities, the sum of the (111) plane strengths in the surface layer and the central layer being 10 or less, and the maximum relative magnetic permeability ≧ 4000. Excellent ferritic stainless steel sheet.
【請求項4】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 Ni,Mo,Cu,Nb,Zr,Vのうち1種または2
種以上を合計で0.05〜1.0%を含有し、さらに、 B:0.0003〜0.02%を含有し、残部がFeお
よび不可避的不純物からなり、表層および中心層におけ
る(111)面強度の和が10以下であり、最大比透磁
率≧4000であることを特徴とする磁気特性に優れた
フェライト系ステンレス鋼板。
4. C. ≦ 0.01%, Si: 0.1 to 0.6%, Mn: 0.1 to 1.0%, S ≦ 0.004%, Cr: 5% by weight% 13%, Ti: 0.05-0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and Ni, Mo, Cu, Nb , Zr, V, one or two
B: 0.0003 to 0.02%, the balance being Fe and unavoidable impurities, and (111) in the surface layer and the central layer. A) ferritic stainless steel sheet having excellent magnetic properties, wherein the sum of the surface strengths is 10 or less and the maximum relative magnetic permeability is ≧ 4000.
【請求項5】 結晶粒径が60〜300μmであること
を特徴とする請求項1〜4のいずれか1項に記載の磁気
特性に優れたフェライト系ステンレス鋼板。
5. The ferritic stainless steel sheet having excellent magnetic properties according to claim 1, wherein the crystal grain size is 60 to 300 μm.
【請求項6】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、残部がF
eおよび不可避的不純物からなるフェライト系ステンレ
ス鋼スラブを熱間圧延を行い熱延板とし、続いてロール
直径が200mm以上を有するワ−クロ−ルを用いて1回
あるいは中間焼鈍を含む2回以上の冷間圧延を行い冷延
板とし、続いて920〜1100℃の温度範囲で焼鈍を
行い、続いて製品形状に成形加工し、続いて750〜1
000℃の温度範囲で歪取り焼鈍を行うことを特徴とす
る磁気特性に優れたフェライト系ステンレス鋼板の製造
方法。
6. Weight%: C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5-5% 13%, Ti: 0.05 to 0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, with the balance being F
e and hot rolled ferritic stainless steel slabs consisting of unavoidable impurities to obtain a hot-rolled sheet, and then using a roll having a roll diameter of 200 mm or more once or twice or more including intermediate annealing Cold-rolled to form a cold-rolled sheet, subsequently annealed in a temperature range of 920 to 1100 ° C., subsequently formed into a product shape, and subsequently processed to 750 to 1
A method for producing a ferritic stainless steel sheet having excellent magnetic properties, comprising performing strain relief annealing in a temperature range of 000 ° C.
【請求項7】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 Ni,Mo,Cu,Nb,Zr,Vのうち1種または2
種以上を合計で0.05〜1.0%を含有し、残部がF
eおよび不可避的不純物からなるフェライト系ステンレ
ス鋼スラブを熱間圧延を行い熱延板とし、続いてロール
直径が200mm以上を有するワ−クロ−ルを用いて1回
あるいは中間焼鈍を含む2回以上の冷間圧延を行い冷延
板とし、続いて920〜1100℃の温度範囲で焼鈍を
行い、続いて製品形状に成形加工し、続いて750〜1
000℃の温度範囲で歪取り焼鈍を行うことを特徴とす
る磁気特性に優れたフェライト系ステンレス鋼板の製造
方法。
7. In weight%, C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5- 13%, Ti: 0.05-0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and Ni, Mo, Cu, Nb , Zr, V, one or two
Contains at least 0.05% to 1.0% of the seeds, with the balance being F
e and hot rolled ferritic stainless steel slabs consisting of unavoidable impurities to obtain a hot-rolled sheet, and then using a roll having a roll diameter of 200 mm or more once or twice or more including intermediate annealing Cold-rolled to form a cold-rolled sheet, subsequently annealed in a temperature range of 920 to 1100 ° C., subsequently formed into a product shape, and subsequently processed to 750 to 1
A method for producing a ferritic stainless steel sheet having excellent magnetic properties, comprising performing strain relief annealing in a temperature range of 000 ° C.
【請求項8】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 B:0.0003〜0.02%を含有し、残部がFeお
よび不可避的不純物からなるフェライト系ステンレス鋼
スラブを熱間圧延を行い熱延板とし、続いてロール直径
が200mm以上を有するワ−クロ−ルを用いて1回ある
いは中間焼鈍を含む2回以上の冷間圧延を行い冷延板と
し、続いて920〜1100℃の温度範囲で焼鈍を行
い、続いて製品形状に成形加工し、続いて750〜10
00℃の温度範囲で歪取り焼鈍を行うことを特徴とする
磁気特性に優れたフェライト系ステンレス鋼板の製造方
法。
8. In weight%, C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5- 13%, Ti: 0.05 to 0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and B: 0.0003 to 0 A ferritic stainless steel slab containing 0.02%, the balance being Fe and unavoidable impurities, is hot-rolled to form a hot-rolled sheet, and then is rolled using a work roll having a roll diameter of 200 mm or more. Cold rolling is performed twice or more times including intermediate annealing or intermediate annealing to obtain a cold rolled sheet, subsequently, annealing is performed in a temperature range of 920 to 1100 ° C., and then formed into a product shape.
A method for producing a ferritic stainless steel sheet having excellent magnetic properties, comprising performing strain relief annealing in a temperature range of 00 ° C.
【請求項9】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 S ≦0.004%、 Cr:5〜13%、 Ti:0.05〜0.5%、 O ≦0.004%、 N ≦0.015% を含有し、かつC+N≦0.015%であり、さらに、 Ni,Mo,Cu,Nb,Zr,Vのうち1種または2
種以上を合計で0.05〜1.0%を含有し、さらに、 B:0.0003〜0.02%を含有し、残部がFeお
よび不可避的不純物からなるフェライト系ステンレス鋼
スラブを熱間圧延を行い熱延板とし、続いてロール直径
が200mm以上を有するワ−クロ−ルを用いて1回ある
いは中間焼鈍を含む2回以上の冷間圧延を行い冷延板と
し、続いて920〜1100℃の温度範囲で焼鈍を行
い、続いて製品形状に成形加工し、続いて750〜10
00℃の温度範囲で歪取り焼鈍を行うことを特徴とする
磁気特性に優れたフェライト系ステンレス鋼板の製造方
法。
9. In weight%, C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, S ≦ 0.004%, Cr: 5- 13%, Ti: 0.05-0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015%, and Ni, Mo, Cu, Nb , Zr, V, one or two
A ferrite-based stainless steel slab containing at least 0.05% and at least 1.0% of the seeds, and further containing B: 0.0003% to 0.02%, with the balance being Fe and unavoidable impurities. Rolling is performed to obtain a hot-rolled sheet, and then, using a roll having a roll diameter of 200 mm or more, cold rolling is performed once or twice or more including intermediate annealing to obtain a cold-rolled sheet. Annealing is performed in a temperature range of 1100 ° C., and then formed into a product shape.
A method for producing a ferritic stainless steel sheet having excellent magnetic properties, comprising performing strain relief annealing in a temperature range of 00 ° C.
【請求項10】 冷延板焼鈍を行って、結晶粒径を60
〜300μmに成長させることを特徴とする請求項6〜
9のいずれか1項に記載の磁気特性に優れたフェライト
系ステンレス鋼板の製造方法。
10. A cold-rolled sheet is annealed to reduce the crystal grain size to 60.
7. The method according to claim 6, wherein the layer is grown to a thickness of about 300 [mu] m.
10. The method for producing a ferritic stainless steel sheet having excellent magnetic properties according to any one of items 9 to 9.
JP20172396A 1996-07-31 1996-07-31 Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same Expired - Lifetime JP3629102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20172396A JP3629102B2 (en) 1996-07-31 1996-07-31 Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20172396A JP3629102B2 (en) 1996-07-31 1996-07-31 Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1046295A true JPH1046295A (en) 1998-02-17
JP3629102B2 JP3629102B2 (en) 2005-03-16

Family

ID=16445872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20172396A Expired - Lifetime JP3629102B2 (en) 1996-07-31 1996-07-31 Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP3629102B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964073A1 (en) * 1996-12-05 1999-12-15 Nisshin Steel Co., Ltd. A steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
US6544356B2 (en) 1996-12-05 2003-04-08 Nisshin Steel Co., Ltd. Steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
JP2020063473A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel plate excellent in magnetic characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964073A1 (en) * 1996-12-05 1999-12-15 Nisshin Steel Co., Ltd. A steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
US6544356B2 (en) 1996-12-05 2003-04-08 Nisshin Steel Co., Ltd. Steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
JP2020063473A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel plate excellent in magnetic characteristics

Also Published As

Publication number Publication date
JP3629102B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP5924459B1 (en) Stainless steel for cold rolled steel
KR20180009775A (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
EP3231882A1 (en) Stainless steel and production method therefor
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP3692222B2 (en) High-strength cold-rolled steel sheet and high-strength plated steel sheet with good geomagnetic shielding characteristics and manufacturing method thereof
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JPH1046295A (en) Ferritic stainless steel sheet excellent in magnetic property and its production
JP5098403B2 (en) Ferritic stainless steel sheet that hardly causes rough surface during bending, and method for producing the same
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP3281243B2 (en) Ferritic stainless steel sheet excellent in magnetic properties and method for producing the same
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
JPH1192887A (en) Ferritic stainless steel sheet excellent in magnetic property and its production
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP4180685B2 (en) High strength electroplating plate, electroplated steel plate excellent in geomagnetic shielding and plating adhesion, and manufacturing method thereof
JP3503424B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in formability and method for producing the same
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP4494653B2 (en) Manufacturing method of ferritic stainless steel sheet
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041210

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term