JPH1046211A - Pressure sintering method using core - Google Patents

Pressure sintering method using core

Info

Publication number
JPH1046211A
JPH1046211A JP21934896A JP21934896A JPH1046211A JP H1046211 A JPH1046211 A JP H1046211A JP 21934896 A JP21934896 A JP 21934896A JP 21934896 A JP21934896 A JP 21934896A JP H1046211 A JPH1046211 A JP H1046211A
Authority
JP
Japan
Prior art keywords
core
powder
sintered
sintering
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21934896A
Other languages
Japanese (ja)
Inventor
Kiichi Nagara
毅一 長柄
Shogo Tomita
正吾 冨田
Masaru Yokota
勝 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA PREF GOV
Toyama Prefecture
Original Assignee
TOYAMA PREF GOV
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA PREF GOV, Toyama Prefecture filed Critical TOYAMA PREF GOV
Priority to JP21934896A priority Critical patent/JPH1046211A/en
Publication of JPH1046211A publication Critical patent/JPH1046211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a net-shape in one process and in a short time and to reduce the producing cost by using a high m.p. core and sintering with an one axial pressing electric discharge sintering machine, at the time of producing a metallic or a ceramic sintered body having a hollow shape or a complicate shaped through-hole. SOLUTION: Metallic or ceramic powder 1 together with the core 2 formed from the high m.p. ceramics, are inserted into a die 5 for sintering and electrically sintered under the one-axial pressure 8 between an upper and a lower punches 3, 4. At this time, the used core 2 is manufactured by compacting the ceramic powder having m.p. by >=80 deg.C than the m.p. of the powder 1 to be sintered and difficult-to-react with the sintered material of the powder 1 and the die material at room temp. or by forming with an organic binder and calcining and is made to the one easily broken with a small force. By this method, after completing the sintering operation, the core 2 is made to powder state and can be discharged from a core taking-out hole arranged in the sintered material 1. Further, the discharged ceramic core material can be used by regenerating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は粉末冶金技術に関す
るもので、中子を利用するという簡単なプロセスで中空
形状の製品や複雑形状の貫通孔を持った製品を固化成形
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder metallurgy technique, and more particularly to a method of solidifying and molding a hollow product or a product having a complicated through hole by a simple process using a core. .

【0002】[0002]

【従来の技術】従来の粉末冶金技術では、中空材料のよ
うな複雑形状を有する製品の製造は不可能であった。こ
れに対して鋳造法が用いられていたが、鋳造法において
は巣の発生、偏析、結晶粒の粗大化による材料強度の低
下、溶融状態で混ざり合わない合金系には向かない、湯
口や堰などが必要であり歩留まりが悪い、高融点のもの
には向かない、セラミックスを鋳造することは不可能で
あるなどの問題点がある。
2. Description of the Related Art With conventional powder metallurgy techniques, it is impossible to produce products having complicated shapes such as hollow materials. On the other hand, the casting method was used, but in the casting method, porosity, segregation, reduction of material strength due to coarsening of crystal grains, not suitable for alloy systems that do not mix in the molten state, However, there are problems such as low yield, poor melting point, and the inability to cast ceramics.

【0003】そこで、粉末を出発原料として成形を行う
粉末冶金技術を適用することが考えられるが、高密度成
形体の製作には、ホットプレス法やHIP法を利用しな
くてはならない。ところが、ホットプレス法においては
一軸加圧のため板状あるいは円盤のような単純形状のも
のしか焼成することができない。このため、複雑な製品
形状を得るためには、焼結体を機械加工する必要があ
り、製造コストが非常に高くなる欠点がある。また、H
IP法ならばニアネットシェイプ成形をすることができ
るが、この方法においては、高圧、高温を必要とするた
め大型の装置が必要であること、1バッチ当たりに要す
る時間が最低3時間以上必要なこと、前処理として金属
カプセルへの封入作業あるいは仮焼結等があり、これら
が製品コストを大きく引き上げることの要因となってい
る。さらに、両者の特徴を合わせ持つ擬HIP法も近年
行われているが、焼結しようとする製品をあらかじめ樹
脂バインダー等で成形しておかなければならず、この樹
脂バインダーを除去するための仮焼工程が必要となるこ
と及び残った不純物が巣の発生や純度の低下を招くとい
う欠点があった。
Therefore, it is conceivable to apply a powder metallurgy technique in which molding is performed using powder as a starting material, but a hot press method or a HIP method must be used to produce a high-density compact. However, in the hot press method, only a plate-shaped or disk-shaped one can be fired because of uniaxial pressing. For this reason, in order to obtain a complicated product shape, it is necessary to machine the sintered body, and there is a disadvantage that the manufacturing cost is extremely high. Also, H
In the IP method, near net shape molding can be performed. However, this method requires a large-sized apparatus because it requires high pressure and high temperature, and requires at least three hours or more per batch. In addition, as a pretreatment, there is an encapsulation operation in a metal capsule or temporary sintering, etc., which are factors that greatly increase the product cost. Furthermore, a pseudo-HIP method having both features has been recently performed. However, a product to be sintered must be formed in advance with a resin binder or the like, and a calcining process for removing the resin binder is required. There are drawbacks that a process is required and that the remaining impurities cause the formation of nests and a decrease in purity.

【0004】[0004]

【課題を解決するための手段】本発明は上記のような従
来の問題点を解決するためになされたものである。金属
あるいはセラミック粉末を出発原料とし、セラミック圧
粉体の中子とともに充填された焼結用ダイの中で一軸加
圧下で電流を通電されることにより、中空形状の成形体
を簡便な方法で得ることができる。得ようとする焼結体
の材質に対し、セラミックや金属などの高融点材料から
なる中子を用いることにより、ダイへ通電しても中子は
焼結されないため一連の工程が終了したのち中子の粉末
を簡単に取り出すことが可能であることを実験的に見い
だし本発明に至った。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. By using a metal or ceramic powder as a starting material and applying a current under uniaxial pressure in a sintering die filled together with a core of ceramic green compact, a hollow shaped body can be obtained in a simple manner. be able to. By using a core made of a material with a high melting point such as ceramic or metal for the material of the sintered body to be obtained, the core is not sintered even when electricity is supplied to the die, so a series of steps are completed. The present inventors have experimentally found that it is possible to easily remove the powder of the child, and have reached the present invention.

【0005】以下詳細に説明する。本発明では、酸化
物、窒化物、炭化物、ほう化物、その他のセラミック並
びに高融点金属粉末を中子材料として用いる。酸化物セ
ラミックとしては、酸化アルミニウム、酸化ベリリウ
ム、酸化カルシウム、酸化マグネシウム、酸化珪素、酸
化鉄、酸化チタニウム、酸化ジルコニウム等を挙げるこ
とができる。窒化物セラミックとしては、窒化ホウ素、
窒化珪素等を挙げることができる。炭化物系セラミック
としては炭化珪素、炭化チタニウム、炭化タングステ
ン、炭化タンタル等を挙げることができる。その他のセ
ラミックとしては炭素、ケイ化モリブデン、サイアロン
等を挙げることができる。高融点金属粉末にはケイ素粉
末、ステンレス鋼粉末、スーパーアロイ粉末等を挙げる
ことができる。
The details will be described below. In the present invention, oxides, nitrides, carbides, borides, other ceramics, and high melting point metal powders are used as the core material. Examples of the oxide ceramic include aluminum oxide, beryllium oxide, calcium oxide, magnesium oxide, silicon oxide, iron oxide, titanium oxide, and zirconium oxide. As nitride ceramics, boron nitride,
Silicon nitride and the like can be given. Examples of the carbide-based ceramic include silicon carbide, titanium carbide, tungsten carbide, tantalum carbide, and the like. Other ceramics include carbon, molybdenum silicide, sialon, and the like. Examples of the high melting point metal powder include silicon powder, stainless steel powder, and super alloy powder.

【0006】中子材料2の選定方法としては、焼結しよ
うとする材料の融点よりも800℃以上高い融点をもつ
材料で、かつ焼結材料や形材と反応しにくいものを選択
する。
As a method for selecting the core material 2, a material having a melting point higher than the melting point of the material to be sintered by 800 ° C. or more and hardly reacting with the sintered material or the shape material is selected.

【0007】成形方法は、常温で圧粉成形するか、ある
いはエポキシ樹脂等の有機バインダーで成形したものを
常温よりも高い温度で仮焼し小さな力で簡単に破壊でき
る程度に固化成形する。圧粉成形には炭素鋼、ダイス鋼
製あるいは超硬製等の金型を用いて行い、真密度の20
〜80%にする。また、有機バインダーによる成形を行
う場合には250〜350℃程度で有機バインダーを除
去するために仮焼を行う。これは、焼結体へのガス成分
の混入を防ぎ、高密度のものを得るためであり、さらに
装置の汚染を防ぐ効果もある。
[0007] The molding method is compaction molding at room temperature or calcination at a temperature higher than room temperature by molding with an organic binder such as epoxy resin, and solidification molding to such an extent that it can be easily broken with a small force. The powder compacting is performed using a mold made of carbon steel, die steel, or carbide, and has a true density of 20%.
~ 80%. In the case of performing molding with an organic binder, calcination is performed at about 250 to 350 ° C. to remove the organic binder. This is to prevent gas components from being mixed into the sintered body and to obtain a high-density one, and also has an effect of preventing contamination of the apparatus.

【0008】成形した中子2を焼結しようとする粉体1
とともにダイ5の中へ装填する。中子は焼結作業後、取
り除くことが容易にできるよう、取り出し穴10を作っ
ておくことが必要である。
A powder 1 for sintering a molded core 2
And is loaded into the die 5. After the sintering operation, the core needs to have an extraction hole 10 so that it can be easily removed.

【0009】試料を装填したダイを一軸加圧方式の放電
焼結機にセットする。焼結作業の開始とともに、電源9
より直流パルス電流がダイに通電される。焼結温度は概
ね融点の70〜90%で行うとよい。
The die loaded with the sample is set in a uniaxial pressurized discharge sintering machine. At the start of the sintering operation, power supply 9
More DC pulse current is applied to the die. The sintering temperature is preferably about 70 to 90% of the melting point.

【0010】加圧力は、中子として用いる粉体の種類に
より、100kgf/平方センチメートルから3000kgf
/平方センチメートルと変化させる必要がある。
The pressure is from 100 kgf / cm 2 to 3000 kgf depending on the type of powder used as the core.
/ Square centimeter.

【0011】焼結作業が終了したのち、型材より製品を
取り出し、中子を除去する。除去される中子は焼結され
ていないため、粉末状で簡単に取り出すことが可能であ
り、また、90〜100%近くリサイクルして使用する
ことができる。
After the sintering operation is completed, the product is taken out of the mold and the core is removed. Since the core to be removed is not sintered, it can be easily taken out in the form of a powder, and it can be recycled and used for nearly 90 to 100%.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0012】焼結工程の開始とともに試料室内の温度は
上昇し、焼結しようとする材料はこの間、焼結現象の進
行とともに、寸法が収縮する。一方、中子は焼結しない
ため寸法変化としては熱膨張による寸法の増加がある。
At the start of the sintering step, the temperature in the sample chamber rises, and during this time, the material to be sintered contracts in size with the progress of the sintering phenomenon. On the other hand, since the core is not sintered, the dimensional change includes an increase in size due to thermal expansion.

【0013】ところが、成形時に低い充填率にしておく
ことにより加圧下では中子が圧縮される余地が存在する
ため、焼結材料の焼結現象による寸法収縮に伴い、中子
も加圧力により寸法が収縮する。
[0013] However, since there is room for the core to be compressed under pressure by setting a low filling rate at the time of molding, the core is also sized by the pressing force due to the dimensional shrinkage due to the sintering phenomenon of the sintered material. Contracts.

【0014】この結果、焼結工程が終了するまで焼結材
料には加圧力が働き、高密度の中空形状焼結体または貫
通孔を有する焼結体を作製することができる。
As a result, a pressing force acts on the sintered material until the sintering step is completed, so that a hollow sintered body having a high density or a sintered body having through holes can be produced.

【0015】したがって、中子を成形するに際して、焼
結体の密度を上げたいときには、多少取扱に注意が必要
となっても中子の密度を低く成形する必要があり、ま
た、焼結体の密度が重要視されない場合には、中子を高
密度に成形する。
Therefore, when forming the core, if it is desired to increase the density of the sintered body, it is necessary to form the core at a low density even if some care is required in handling. If the density is not important, the core is formed at a high density.

【実施例】【Example】

【0016】実施例について図面を参照して説明する。
図3は本発明のセラミック中子を用いて試作した中空形
状焼結体の図面である。これを図1に示す通電加圧焼結
装置とにセットし、焼結実験を行った。また、図2に示
す試料粉末及び中子のセットの仕方をすれば、貫通孔を
付与させた試料の作成も可能であり、図5のように中空
及び貫通孔を合わせ持つ焼結体の作製も可能となる。
An embodiment will be described with reference to the drawings.
FIG. 3 is a drawing of a hollow-shaped sintered body prototyped using the ceramic core of the present invention. This was set in an electric pressure sintering apparatus shown in FIG. 1 and a sintering experiment was performed. By setting the sample powder and the core shown in FIG. 2, a sample having a through hole can be prepared, and a sintered body having both a hollow and a through hole as shown in FIG. 5 can be prepared. Is also possible.

【0017】(実施例1)焼結する材料としては、純度
99.8%、−100meshのアルミニウム粉末を用い
た。中子は、酸化アルミニウム粉末で成形したもの及び
窒化ホウ素粉末を用いて成形したものの2種類を作製し
た。酸化アルミニウム中子は真密度の70%程度に圧粉
し、窒化ホウ素粉末は真密度の40%程度に圧粉した。
これは、酸化アルミニウムの場合、有機バインダーを用
いない状態で成形した場合、充填率が70%程度無いと
取扱ができないためであり、一方、窒化ホウ素粉末は充
填率が30%以上であれば成形体としてその形状を保て
るためである。
(Example 1) Aluminum powder having a purity of 99.8% and -100 mesh was used as a material to be sintered. Two types of cores were produced, one molded using aluminum oxide powder and one molded using boron nitride powder. The aluminum oxide core was compacted to about 70% of the true density, and the boron nitride powder was compacted to about 40% of the true density.
This is because in the case of aluminum oxide, when it is molded without using an organic binder, it cannot be handled unless the filling rate is about 70%. On the other hand, when the boron nitride powder has a filling rate of 30% or more, the molding is impossible. This is because the shape can be maintained as a body.

【0018】焼結は、黒鉛ダイスを用い、500℃で5
分間保持して行った。加圧力は500kgf/平方センチ
メートルとした。試料は冷却後取り出し、中子除去を行
った。
The sintering is performed using a graphite die at 500 ° C. for 5 minutes.
Hold for minutes. The pressure was 500 kgf / cm 2. The sample was taken out after cooling, and the core was removed.

【0019】表1は中子を用いない焼結体及び中子を使
用した焼結体の密度を示す。充填率の低い窒化ホウ素中
子を用いた場合、焼結現象の進行に伴うアルミニウムの
寸法収縮に追随して、中子の寸法も加圧力により収縮す
るため焼結工程の終了時までアルミニウムには加圧力が
働き、その密度は中子を用いない場合に匹敵するもので
あった。しかし酸化アルミニウム中子を用いた場合で
も、密度が最も低い数値になったとはいえ、真密度の9
5%以上の焼結体が得られることが判明した。
Table 1 shows the densities of the sintered body without the core and the sintered body with the core. When a boron nitride core having a low filling rate is used, the size of the core also shrinks due to the pressing force following the dimensional shrinkage of the aluminum accompanying the progress of the sintering phenomenon. The pressing force worked, and the density was comparable to the case without a core. However, even when the aluminum oxide core was used, although the density was the lowest, the true density of 9
It was found that a sintered body of 5% or more was obtained.

【表1】 [Table 1]

【0020】図9、10には、図3に示す焼結体の各部
分P−P’(中空焼結体の側面部の上端から下端ま
で)、Q−Q’(底面部の外周側の端から中心まで)、
R−R’(上面の外周側の端から中央部の穴まで)のそ
れぞれについて硬さ試験を行った結果を示す。図9は酸
化アルミニウム中子を用いて焼結したアルミニウム中空
焼結体の硬さ分布であり、若干の硬さのバラツキは見ら
れるものの、極端に硬度が低い部分は認められなかっ
た。また、図10は窒化ホウ素中子を用いて焼結したも
のの硬さ分布である。こちらの場合、硬さ分布は各部分
でほぼ一定であり、均一な焼結体が得られていることを
示している。
FIGS. 9 and 10 show respective portions PP ′ (from the upper end to the lower end of the side surface of the hollow sintered body) and QQ ′ (the outer peripheral side of the bottom surface portion) of the sintered body shown in FIG. From end to center),
The results of a hardness test performed on each of RR '(from the outer peripheral end of the upper surface to the center hole) are shown. FIG. 9 shows the hardness distribution of the aluminum hollow sintered body sintered using the aluminum oxide core. Although there was some variation in hardness, no extremely low hardness portion was observed. FIG. 10 shows a hardness distribution of a sintered body using a boron nitride core. In this case, the hardness distribution was almost constant in each part, indicating that a uniform sintered body was obtained.

【0021】(実施例2)焼結しようとする製品の外部
に凹凸がある場合には、図7に示すように、割型を採用
することもできる。一軸加圧下で成形した後割型を外型
からはずせば、簡単に焼結体を取り出すことができる。
なお、割型の分割は製品の形状によって2分割、3分
割、4分割等にすることができる。
(Example 2) When there are irregularities on the outside of the product to be sintered, a split mold can be adopted as shown in FIG. By removing the split mold from the outer mold after forming under uniaxial pressure, the sintered body can be easily taken out.
The split mold can be divided into two, three, four, etc., depending on the shape of the product.

【発明の効果】【The invention's effect】

【0022】以上のように本発明によれば、一軸加圧方
式で中空形状焼結体および複雑形状で貫通孔を有する焼
結体の製造が可能となる。そのため、複雑形状でしかも
均一微細組織の高密度焼結体がニアネットシェイプで成
形でき、従来の鋳造法で生産されていたものに対して巣
や偏析の無い高品位のものが得られ、また、従来の焼結
法で生産されていたものに対して機械加工による工程が
大幅に減り安価に製造できるようになる。
As described above, according to the present invention, it is possible to manufacture a hollow-shaped sintered body and a sintered body having a complicated shape having through holes by a uniaxial pressing method. Therefore, a high-density sintered body with a complex shape and a uniform fine structure can be formed by a near-net shape, and a high-quality sintered body without cavities or segregation can be obtained as compared with that produced by the conventional casting method. In addition, the number of steps by machining is greatly reduced as compared with those produced by the conventional sintering method, so that it can be produced at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を説明するための一軸加圧型
通電焼結装置の概略図である。(中空形状焼結体作製
時)
FIG. 1 is a schematic view of a uniaxial pressurization type electric current sintering apparatus for explaining Embodiment 1 of the present invention. (At the time of making hollow shaped sintered body)

【図2】貫通孔を付与させた焼結体を作製するための図
1におけるダイ中の粉末及び中子セットの仕方を示した
図である。
FIG. 2 is a view showing a method of setting a powder and a core in a die in FIG. 1 for producing a sintered body provided with through holes.

【図3】本発明の実施例1で試作した中空形状焼結体の
図である。
FIG. 3 is a diagram of a hollow-shaped sintered body experimentally manufactured in Example 1 of the present invention.

【図4】A−A’断面図FIG. 4 is a sectional view taken along line A-A '.

【図5】本発明の実施例1で試作した貫通孔を付与した
中空形状焼結体の例である。
FIG. 5 is an example of a hollow-shaped sintered body provided with a through-hole experimentally manufactured in Example 1 of the present invention.

【図6】B−B’断面図FIG. 6 is a sectional view taken along line B-B '.

【図7】本発明の実施例2を説明するための割型と焼結
体及び中子のセットの仕方を説明する図である。
FIG. 7 is a view for explaining how to set a split mold, a sintered body, and a core for explaining a second embodiment of the present invention.

【図8】C−C’断面図FIG. 8 is a sectional view taken along line C-C '.

【図9】本発明の実施例1で試作したアルミニウム中空
形状焼結体の硬さ分布を説明する図である。(アルミナ
中子使用時)
FIG. 9 is a diagram for explaining the hardness distribution of the aluminum hollow-shaped sintered body experimentally manufactured in Example 1 of the present invention. (When using alumina core)

【図10】本発明の実施例1で試作したアルミニウム中
空形状焼結体の硬さ分布を説明する図である。(窒化ホ
ウ素中子使用時)
FIG. 10 is a diagram illustrating the hardness distribution of the aluminum hollow-shaped sintered body experimentally manufactured in Example 1 of the present invention. (When using boron nitride core)

【符号の説明】[Explanation of symbols]

1 原料粉末 2 セラミック中子 3 下パンチ 4 上パンチ 5 成形型 6 下部電極板 7 上部電極板 8 油圧 9 電源 10 中子取り出し孔 11 中空焼結体 12 貫通孔付与焼結体 13 貫通孔のひとつ 14 他の貫通孔 15 割型の一方 16 割型の他方 17 割型保持用外型 DESCRIPTION OF SYMBOLS 1 Raw material powder 2 Ceramic core 3 Lower punch 4 Upper punch 5 Mold 6 Lower electrode plate 7 Upper electrode plate 8 Hydraulic pressure 9 Power supply 10 Core take-out hole 11 Hollow sintered body 12 Sintered body with through hole 13 One of through holes 14 Other through-hole 15 One of the split types 16 The other of the split types 17 The split type holding outer type

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 勝 富山県高岡市角480番地の1 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masaru Yokota 480-1 Kaku, Takaoka City, Toyama Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属及びそれらの合金粉末またはセラミ
ック粉末1を高融点のセラミックで成形された中子2と
ともに焼結用ダイ5の中へ装填し、一軸加圧8のもと試
料粉体に直接通電を行うことにより中空形状の焼結体ま
たは複雑形状の貫通孔を持った焼結体を一工程でかつ短
時間にニアネットシェイプで得ることを特長とする加圧
焼結方法。
1. A metal and their alloy powder or ceramic powder 1 are charged into a sintering die 5 together with a core 2 formed of a high melting point ceramic, and are subjected to uniaxial pressing 8 to form a sample powder. A pressure sintering method characterized in that a hollow sintered body or a sintered body having a through hole having a complicated shape is obtained in one step and in a short time in a near-net shape by directly energizing.
JP21934896A 1996-07-31 1996-07-31 Pressure sintering method using core Pending JPH1046211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21934896A JPH1046211A (en) 1996-07-31 1996-07-31 Pressure sintering method using core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21934896A JPH1046211A (en) 1996-07-31 1996-07-31 Pressure sintering method using core

Publications (1)

Publication Number Publication Date
JPH1046211A true JPH1046211A (en) 1998-02-17

Family

ID=16734051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21934896A Pending JPH1046211A (en) 1996-07-31 1996-07-31 Pressure sintering method using core

Country Status (1)

Country Link
JP (1) JPH1046211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030815A1 (en) * 2009-09-10 2011-03-17 学校法人日本大学 Process for production of electrically conductive molded article, and apparatus for production of electrically conductive molded article
KR101231330B1 (en) * 2011-01-31 2013-02-07 엘지이노텍 주식회사 Method for manufacturing sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030815A1 (en) * 2009-09-10 2011-03-17 学校法人日本大学 Process for production of electrically conductive molded article, and apparatus for production of electrically conductive molded article
KR101231330B1 (en) * 2011-01-31 2013-02-07 엘지이노텍 주식회사 Method for manufacturing sintered body

Similar Documents

Publication Publication Date Title
US6371746B1 (en) Method of electronic sintering method and mold for use in the method
US4719078A (en) Method of sintering compacts
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
US4601877A (en) Press sintering process for green compacts and apparatus therefor
WO1999046424A1 (en) Compact electrode for discharge surface treatment
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
JPH1046211A (en) Pressure sintering method using core
US20040146424A1 (en) Production of component parts by metal injection moulding (mim)
JP6654210B2 (en) How to make a mold for sintering
JP4045712B2 (en) Method for producing metal matrix composite material
JPH0436117B2 (en)
WO2003078094A1 (en) Apparatus and method for manufacturing metal mold using semisolid rapid tooling
JPH03174367A (en) Method and apparatus for production of sintered body
Cornie Advanced pressure infiltration casting technology produces near-absolute net-shape metal matrix composite components cost competitively
JP4399579B2 (en) Castable molded product and method for producing the same
US5623727A (en) Method for manufacturing powder metallurgical tooling
JP3834283B2 (en) Composite material and manufacturing method thereof
US5985207A (en) Method for manufacturing powder metallurgical tooling
JPH0235705B2 (en)
JPH05320717A (en) Production of different-composition composite sintered compact by powder metallurgy
JPH05200711A (en) Method for molding powder
RU82697U1 (en) COMPLETE FORM FORMING WITH HOT PRESSING
JP2000355703A (en) Method and apparatus for manufacturing metallic sintered compact
JPH079005B2 (en) A (1) Method of molding base composite material
JPS61281801A (en) Manufacture of powder metallurgical product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705