JPH1043881A - Brazing method for planar body - Google Patents

Brazing method for planar body

Info

Publication number
JPH1043881A
JPH1043881A JP21594696A JP21594696A JPH1043881A JP H1043881 A JPH1043881 A JP H1043881A JP 21594696 A JP21594696 A JP 21594696A JP 21594696 A JP21594696 A JP 21594696A JP H1043881 A JPH1043881 A JP H1043881A
Authority
JP
Japan
Prior art keywords
plate
thermal expansion
brazing
brazing material
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21594696A
Other languages
Japanese (ja)
Inventor
Yasuyuki Taniguchi
口 易 之 谷
Ryoji Kobayashi
林 良 治 小
Masaki Kuribayashi
林 正 記 栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP21594696A priority Critical patent/JPH1043881A/en
Publication of JPH1043881A publication Critical patent/JPH1043881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a brazing method capable of minimizing a shearing stress caused in a brazing filler metal layer after cooling, in brazing two planar bodies having a different thermal expansion coefficient. SOLUTION: Two planar bodies 3, 8 having a different coefficient are laminated through a molten filter metal layer, which is then solidified to braze the planar bodies together; in this case, the filter metal between the planar bodies is solidified with at least one of the two operations added, one of which is to temporarily reduce the brazing area of the planar body 3 having a larger thermal expansion coefficient, and the other of which is to temporarily enlarge that of the planar body 8 having a smaller coefficient; consequently, a shearing stress is minimized that is caused in the filler metal layer after cooling on account of the difference between the thermal expansion coefficients of the two planar bodies 3, 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱膨張率の異なる
2枚の板状体をその面同士でろう接するに際して、冷却
後のろう材層に生じる剪断応力を僅少化するろう接方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brazing method for minimizing the shear stress generated in a brazing material layer after cooling when two plates having different coefficients of thermal expansion are brazed to each other.

【0002】[0002]

【従来の技術】板状体同士を広い面積を以てろう接する
物件の代表的なものは、薄膜形成技術であるイオンスパ
ッタリング法に用いるタ−ゲット部材である。以下、タ
−ゲット部材を製作するためのろう接作業を例にとって
本発明方法を説明するが、これは、本発明方法の適用対
象を限定するものではない。
2. Description of the Related Art A typical example of a material in which plate members are brazed with a large area is a target member used in an ion sputtering method which is a thin film forming technique. Hereinafter, the method of the present invention will be described by taking a brazing operation for manufacturing a target member as an example, but this does not limit the application of the method of the present invention.

【0003】上記イオンスパッタリング法は、図12に示
した装置において、グロ−放電により生じたアルゴンな
どのイオン1が、タ−ゲット部材2のタ−ゲット板3に
投射され、これによってタ−ゲット板から原子又は分子
或はこれらのクラスタ−4がイオン化されて飛び出し、
これが電源5により形成された電場の支援を受けて対象
物6に到達し、目的とする薄膜7を対象物6の表面に形
成させるものである。図11において、8はタ−ゲット板
3の裏打ち板である。
In the ion sputtering method, ions 1 such as argon generated by glow discharge are projected on a target plate 3 of a target member 2 in the apparatus shown in FIG. Atoms or molecules or these clusters-4 are ionized and fly out of the plate,
This reaches the object 6 with the assistance of the electric field formed by the power supply 5, and forms the target thin film 7 on the surface of the object 6. In FIG. 11, reference numeral 8 denotes a backing plate for the target plate 3.

【0004】上記スパッタリングに用いられるタ−ゲッ
ト部材2は、図13に示すように、2枚の板状体、即ち、
薄膜形成材料の供給源となるタ−ゲット板3と、このタ
−ゲット板3を支持して冷却するための裏打ち板8と
を、ろう材層9によって接合したものである。タ−ゲッ
ト板3には、スパッタリングで形成させようとする薄膜
の種類に応じて、アルミニウム,ニッケル,コバルト,
クロム,チタンのような金属、或は、これらの金属を含
む合金,更には、アルミナ,インジウム・錫酸化物,高
温超電導材料のようなセラミックス等が充てられる。裏
打ち板8には、ろう接性,熱伝導性共に優れた汎用金属
である銅が多用され、場合によっては、強度確保に主眼
をおいてステンレスが用いられる。又、ろう材としては
インジウム又はこれを主体とする合金が用いられてきた
が、高価であること、又、耐用温度が低いことから、近
年、はんだ等の錫系ろう材の使用が進んでいる。
[0004] As shown in FIG. 13, a target member 2 used for the sputtering is composed of two plate-like members, that is, two plates.
A target plate 3 serving as a supply source of a thin film forming material and a backing plate 8 for supporting and cooling the target plate 3 are joined by a brazing material layer 9. Depending on the type of thin film to be formed by sputtering, aluminum, nickel, cobalt,
Metals such as chromium and titanium, or alloys containing these metals, and ceramics such as alumina, indium tin oxide, and high-temperature superconducting materials are used. For the backing plate 8, copper, which is a general-purpose metal excellent in both brazing property and thermal conductivity, is frequently used, and in some cases, stainless steel is used for the purpose of ensuring strength. In addition, indium or an alloy mainly composed of indium has been used as a brazing filler metal. However, in recent years, tin-based brazing filler metals such as solder have been used because of their high cost and low durability temperature. .

【0005】タ−ゲット部材2のろう接は、上記タ−ゲ
ット板3と裏打ち板8とを、溶融したろう材の層9を介
して積層させ、冷却によりろう材を凝固させて行われ
る。この際ろう接の健全性を確保するために、両板状体
3,8の表面を事前に清浄化し、必要に応じてニッケル
めつき等を施して溶融ろう材に濡れやすくする。又、両
板状体3,8の積層に際しては、ろう材層9に酸化物や
気泡を巻き込まないよにする措置が講じられる。
The brazing of the target member 2 is performed by laminating the target plate 3 and the backing plate 8 via a layer 9 of a molten brazing material and solidifying the brazing material by cooling. At this time, in order to ensure the soundness of the brazing, the surfaces of the two plate-like bodies 3 and 8 are cleaned in advance, and if necessary, nickel is applied to the plate-like bodies 3 and 8 so as to easily wet the molten brazing material. In laminating the plate-like members 3 and 8, measures are taken to prevent oxides and bubbles from getting into the brazing filler metal layer 9.

【0006】タ−ゲット部材2のろう接においては、上
述のようなろう接の健全性の問題の他に、ろう接された
後の歪の問題が存在する。即ち、タ−ゲット板3と裏打
ち板8の熱膨張率が異なる場合、溶融したろう材の層9
を介して積層された状態において、熱膨張率が大きい方
の板状体の方が大きく熱膨張した状態となっており、こ
の結果、ろう材が凝固し、相手材と一体化されて常温迄
冷却される間の収縮量に差が生じて、熱膨張率の大きい
方の板状体の収縮量が相手材の収縮量より大となって、
熱膨張率が小さい方の板状体の側が凸となる形状歪が生
じる。この場合、上記形状歪の存在下では、ろう接部近
傍に大きな剪断応力が生じており、インジウムのような
変形抵抗の特に小さいろう材であれば、ろう材層の塑性
変形(すべり変形)によって上記歪は経時的に減少する
が、はんだなどの他のろう材では、ろう材層に剪断応力
が残留する。いずれにせよ、上記塑性変形あるいは剪断
応力が限度を超えれば、ろう接部の破断につながる問題
である。
[0006] In the brazing of the target member 2, there is a problem of distortion after brazing, in addition to the problem of the soundness of the brazing described above. That is, when the target plate 3 and the backing plate 8 have different coefficients of thermal expansion, the molten brazing material layer 9
In the state of lamination through the plate, the plate-like body having a larger coefficient of thermal expansion is in a state of larger thermal expansion, and as a result, the brazing material solidifies and is integrated with the mating material to room temperature. A difference occurs in the amount of contraction during cooling, and the amount of contraction of the larger plate-like body having a higher coefficient of thermal expansion is larger than the amount of contraction of the mating material,
Shape distortion occurs in which the side of the plate-like body having the smaller coefficient of thermal expansion is convex. In this case, in the presence of the shape distortion, a large shear stress is generated in the vicinity of the brazing portion, and if the brazing material has a particularly small deformation resistance such as indium, the brazing material layer undergoes plastic deformation (slip deformation). Although the above strain decreases with time, in other brazing materials such as solder, shear stress remains in the brazing material layer. In any case, if the above-mentioned plastic deformation or shear stress exceeds the limit, there is a problem that the brazing portion is broken.

【0007】しかして、近年、タ−ゲット部材が大型
化、特に長尺化する傾向にあり、上記形状歪が接合部長
さの2乗に比例する性質のものであることから、上記ろ
う接部の破断が危惧される状況となっていた。
In recent years, however, the size of the target member has tended to be large, particularly long, and the shape distortion has a property proportional to the square of the length of the joining portion. It was in a situation where there was fear of breaking.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術に
おける上述の状況に鑑みてなされたものであって、熱膨
張率の異なる2枚の板状体のろう接に際して、冷却後の
ろう材層に生じる剪断応力を僅少化することのできるろ
う接方法の提供をその課題とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances in the prior art, and is used for brazing after cooling when two plate-like bodies having different coefficients of thermal expansion are brazed. It is an object of the present invention to provide a brazing method that can reduce shear stress generated in a layer.

【0009】[0009]

【課題を解決するための手段】上記課題の解決を目的と
してなされた本発明ろう接方法は、熱膨張率の異なる2
枚の板状体を、溶融したろう材の層を介して積層し、該
ろう材を凝固させて板状体同士をろう接するに際して、
熱膨張率が大きい方の板状体のろう接される側の面の面
積を一時的に縮小させる操作と、熱膨張率が小さい方の
板状体のろう接される側の面の面積を一時的に拡大させ
る操作の、少なくとも一方の操作を加えた状態で板状体
の間のろう材を凝固させることにより、2枚の板状体の
熱膨張率差に由来して冷却後のろう材層に生じる剪断応
力を僅少化することを特徴とする。
SUMMARY OF THE INVENTION An object of the present invention, which has been made to solve the above-mentioned problems, is to provide a soldering method having two different thermal expansion coefficients.
When laminating two plate-like bodies via a layer of molten brazing material, and solidifying the brazing material and brazing the plate-like bodies together,
The operation of temporarily reducing the area of the brazed side of the plate-like body having a larger coefficient of thermal expansion and the operation of temporarily reducing the area of the brazed side of the plate-like body having a smaller coefficient of thermal expansion By solidifying the brazing material between the plates in a state in which at least one of the operations of temporarily enlarging is added, the brazing after cooling due to the difference in the coefficient of thermal expansion between the two plates. It is characterized in that the shear stress generated in the material layer is reduced.

【0010】即ち、上記2枚の板状体の少くとも一方に
ついて、そのろう接される側の面の面積を、板状体の熱
膨張率の大小に応じて縮小又は拡大させた状態とする操
作に対応して、ろう材が凝固してから常温迄冷却される
間の板状体の熱収縮量を減少又は増大させることができ
るので、上記操作における縮小又は拡大のレベルを、前
記形状歪が僅少化するように設定することにより、ろう
材層の剪断応力が僅少化されて、本発明の課題が解決さ
れるものである。
That is, at least one of the two plate-like bodies is reduced or enlarged in area according to the coefficient of thermal expansion of the plate-like body with respect to the area of the surface to be brazed. In response to the operation, the amount of heat shrinkage of the plate-like body during the time that the brazing material is solidified and then cooled to room temperature can be reduced or increased. By setting so as to be small, the shear stress of the brazing material layer is reduced, and the object of the present invention is solved.

【0011】[0011]

【発明の実施の形態】図14,図15は、2枚の板状体を従
来法によりろう接した際に、両板状体の熱膨張率の差に
よって、ろう接後の部材に形状歪が生じる様子を模式的
に示した図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 14 and FIG. 15 show that when two plate-like members are brazed by a conventional method, the difference in the coefficient of thermal expansion between the two plate-like members causes deformation of the member after brazing. FIG. 4 is a view schematically showing a state in which the occurrence occurs.

【0012】図14は、両板状体が溶融したろう材の層を
介して積層されている状態を示しており、両板状体はL
の寸法を以て対峙しているが、この寸法Lは、板状体3
においては、上記対峙部分の常温時の寸法L1がろう接
作業温度迄の昇温△Tによって、△L1=L1α1△Tだ
け熱膨張した寸法に当り、板状体8においては、常温時
の寸法L2が△L2=L2α2△Tだけ熱膨張した寸法に当
る。ここで、α1,α2は夫々の板状体の熱膨張率(線膨
張率)であって、α2>α1とする。
FIG. 14 shows a state in which both plate-like members are laminated via a layer of molten brazing material.
, But this dimension L is the plate-like body 3
In the above, the dimension L 1 of the confronting portion at normal temperature corresponds to the dimension thermally expanded by ΔL 1 = L 1 α 1 ΔT due to the temperature increase ΔT up to the brazing operation temperature. , hitting the heat-expanded dimension by dimension L 2 of the normal temperature is △ L 2 = L 2 α 2 △ T. Here, α 1 and α 2 are thermal expansion coefficients (linear expansion coefficients) of the respective plate-like bodies, and α 2 > α 1 .

【0013】図15は、両板状体間のろう材が凝固して常
温迄冷却された状態を示しており、両板状体が互に拘束
し合う状況下で、前記対峙部分に当る寸法が夫々の板状
体の元の寸法L1(=L−L1α1△T),L2(=L−L
2α2△T)迄収縮しようとするので、収縮寸法の差△L
s=L1−L2=L2α2△T−L1α1△T≒L(α2
α1)△Tに起因する形状歪(反り歪)が生じるもので
ある。
FIG. 15 shows a state in which the brazing material between the two plate-like bodies solidifies and is cooled to room temperature. In a situation where the two plate-like bodies are mutually restrained, the dimension corresponding to the above-mentioned facing portion is shown. There original dimensions L 1 of the plate-like body of each (= L-L 1 α 1 △ T), L 2 (= L-L
2 α 2 △ T), the difference in shrinkage dimension ΔL
s = L 1 -L 2 = L 2 α 2 △ T-L 1 α 1 △ T ≒ L (α 2 -
α 1 ) A shape distortion (warp distortion) caused by ΔT occurs.

【0014】なお、上記形状歪は、本質的には、ろう接
された部材において、X−Y面,ないしはr−θ面に関
して(即ち2次元的に)現われる問題であるが、現実に
は、長方形の部材の長辺方向に集中的に(即ち1次元的
に)現われて問題となることが多い。よって、本発明方
法による対策も、多くの場合、1次元的に行うこととな
る。
The above-mentioned shape distortion is essentially a problem that appears on the XY plane or the r-θ plane (ie, two-dimensionally) in a brazed member. In many cases, the problem occurs when the rectangular members appear intensively (that is, one-dimensionally) in the long side direction. Therefore, in many cases, the measures according to the method of the present invention are also performed one-dimensionally.

【0015】さて、本発明方法において、ろう材の凝固
の際に板状体に加えておく、ろう接される側の面の面積
を縮小又は拡大させる操作を、一時的即ち可逆的に縮小
又は拡大させる操作とする理由は、上記操作による面積
の縮小分又は拡大分が、ろう材の凝固後常温迄冷却され
た段階においては、前記2枚の板状体の熱膨張率差に由
来する収縮量の差と打ち消し合って消滅する性質のもの
でなくてはならないからである。
In the method of the present invention, the operation of reducing or expanding the area of the surface to be brazed, which is added to the plate during solidification of the brazing material, is temporarily or reversibly reduced or increased. The reason for the expansion operation is that, at the stage where the reduction or expansion of the area by the above operation is cooled to room temperature after the solidification of the brazing material, the shrinkage due to the difference in the coefficient of thermal expansion between the two plate-like bodies is caused. It must be of such a nature that it cancels out by canceling out the difference in quantity.

【0016】このような可逆的な寸法変化は、板状体に
対して弾性範囲内の外力を付加するか、又は、板状体の
温度を変化させ熱膨張量を増減させることによってもた
らされる。
Such a reversible dimensional change is brought about by applying an external force within a range of elasticity to the plate or by changing the temperature of the plate to increase or decrease the amount of thermal expansion.

【0017】たとえば、外力により板状体をその面内に
弾性変形させる方式が挙げられるが、タ−ゲット部材の
場合で云えば、引張外力の付加は困難であるため、圧縮
外力を付加する形で本発明法を実施できる。この場合、
板状体をその面内に圧縮変形させるので、板状体の面内
の寸法が、表裏面を含めて一様に、一時的に縮小され
る。即ち、熱膨張率の大きい方の板状体に上記面内圧縮
操作を加えた状態でろう材を凝固させると、該板状体に
おいては、凝固時点で、ろう接される側の面の面積も一
時的に縮小しているので、図14に関して説明した両板状
体3,8が対峙しているLの部分に、前記L2+L2α2
△Tに加えて上記圧縮操作による圧縮量△Lcが仕込ま
れることになり、この圧縮量△Lcを前記冷却に伴なう
収縮寸法の差△Lsと等しい値に設定しておけば、ろう
材が凝固してから常温迄冷却される間の収縮寸法の差が
打消されて、これに起因して生じていた形状歪が僅少に
なる。
For example, there is a method of elastically deforming a plate-like body in the plane by an external force. However, in the case of a target member, since it is difficult to apply a tensile external force, it is difficult to apply a compressive external force. Can carry out the method of the present invention. in this case,
Since the plate is compressed and deformed in its plane, the in-plane dimensions of the plate are uniformly and temporarily reduced including the front and back surfaces. That is, when the brazing material is solidified in a state where the above-mentioned in-plane compression operation is applied to the plate-like body having a larger coefficient of thermal expansion, the area of the surface to be brazed at the time of solidification in the plate-like body Is also temporarily reduced, so that the L 2 + L 2 α 2 is added to the L portion where the two plate-like bodies 3 and 8 described with reference to FIG.
In addition to ΔT, the compression amount ΔLc by the above-mentioned compression operation is charged. If this compression amount ΔLc is set to a value equal to the difference ΔLs in the shrinkage dimension due to the cooling, the brazing material The difference in the shrinkage dimension during the solidification and cooling to room temperature is negated, and the shape distortion caused by this is reduced.

【0018】上記圧縮操作を1次元的に加える態様例を
図1に、2次元的に加える態様例を図2に示す。タ−ゲ
ット部材の場合には、タ−ゲット板3に対する圧縮操作
の適用は好ましくないので、上記圧縮弾性変形方式は、
裏打ち板8の方の熱膨張率が大きい系に適した方式と云
える。又、曲げ変形させにくい、ないしはさせたくない
タ−ゲット板のろう接に好適である。図1,図2におい
て、9は加圧板であり、油圧プレス機等を用いて矢印方
向に加圧する事により、夫々、1次元及び2次元の圧縮
操作を行なうことができる。
FIG. 1 shows an example in which the compression operation is applied one-dimensionally, and FIG. 2 shows an example in which the compression operation is applied two-dimensionally. In the case of a target member, since the application of the compression operation to the target plate 3 is not preferable, the compression elastic deformation method is as follows.
It can be said that this method is suitable for a system in which the thermal expansion coefficient of the backing plate 8 is larger. Further, it is suitable for brazing a target plate that is not easily deformed. In FIGS. 1 and 2, reference numeral 9 denotes a pressing plate, which can perform one-dimensional and two-dimensional compression operations by pressing in the direction of the arrow using a hydraulic press or the like.

【0019】又、外力により板状体を曲げ弾性変形させ
る方式も有用である。この場合、曲げの外側(凸側)の
面積は一時的に拡大し、内側(凹側)の面積は一時的に
縮小することとなるので、溶融したろう材の層を介して
2枚の板状体が積層されている積層体を、熱膨張率が大
きい方の板状体の側が凸となるように一体的に曲げる操
作により、夫々の板状体のろう接される側の面の面積
は、熱膨張率が大きい方の板状体では縮小し、熱膨張率
が小さい方の板状体では拡大することになる。即ち、図
14,図15に関して説明した前記ろう材凝固後の冷却に伴
う収縮寸法の差△Lsが、上記面積縮小と面積拡大とに
よって打消されて形状歪が僅少になる。
It is also useful to use a method in which the plate is bent and elastically deformed by an external force. In this case, the area on the outer side (convex side) of the bending is temporarily enlarged, and the area on the inner side (concave side) is temporarily reduced. By laminating the laminated body on which the plate-like bodies are laminated, so that the side of the plate-like body having the larger coefficient of thermal expansion becomes convex, the area of the surface of each plate-like body to be brazed is Is reduced in a plate having a larger coefficient of thermal expansion, and is enlarged in a plate having a smaller coefficient of thermal expansion. That is,
The difference ΔLs in the shrinkage dimension due to the cooling after the solidification of the brazing material described with reference to FIGS. 14 and 15 is canceled out by the above-described area reduction and area expansion, and the shape distortion becomes small.

【0020】上記曲げ操作を1次元的に加える態様例
を、3点曲げについて図3に、4点曲げについて図4
に、総形型具11を用いた曲げについて図5に示す。又、
2次元的に加える態様例を図6に示す。図6において、
12は3次元的な変形を与える為にフラットバ−を加圧
し、必要なプレス変形量に応じ、厚みを局部的に変えた
ものである。上記曲げ弾性変形方式は、外力の付加に3
次元的造作を要するが、一方、変形のための外力が小さ
くて済むので、タ−ゲット部材2への適用が、タ−ゲッ
ト板3,裏打ち板8のいずれが熱膨張率の大きい方であ
っても問題なく行える。
FIGS. 3A and 3B show three-dimensional bending and FIG. 4 show four-point bending.
Next, FIG. 5 shows the bending using the forming tool 11. or,
FIG. 6 shows an example of two-dimensional addition. In FIG.
Numeral 12 is obtained by pressing a flat bar to give a three-dimensional deformation, and locally changing the thickness according to the required amount of press deformation. The bending elastic deformation method has a 3
Although a three-dimensional feature is required, on the other hand, since an external force for deformation is small, the target member 2 is applied to the target plate 3 and the backing plate 8 whichever has a larger coefficient of thermal expansion. Can be done without any problem.

【0021】板状体に前記可逆的な寸法変化をもたらす
手段として、溶融したろう材の層を介して2枚の板状体
3,8が積層された積層体に対して、熱膨率の小さい方
の板状体の側が高温となる温度勾配を付与する方式も利
用できる。この方式は、高温にしようとする側を加熱す
る操作、あるいは低温にしようとする側を冷却する操
作、更には、上記2操作の併用によって実施できる。し
かして、定常的な温度匂配の形成は、セラミックス系タ
−ゲット板のように熱伝導率が小さい板状体でなければ
実現しにくいが、過度的な温度匂配の形成は、金属系タ
−ゲット板のように熱伝導率が大きい板状体においても
可能である。上記温度匂配の付与により、熱膨張率が小
さい方の板状体の面内寸法を一時的に拡大させ、あるい
は熱膨張率が大きい方の板状体の面内寸法を一時的に縮
小させる操作により、ろう材が凝固してから常温迄冷却
される間に生じる前記地収縮寸法の差△Lsが打消され
て前記形状歪が僅少化される。
As means for causing the reversible dimensional change to the plate-like body, a thermal expansion coefficient of the laminate in which two plate-like bodies 3 and 8 are laminated via a layer of a molten brazing material is used. A method of giving a temperature gradient in which the smaller plate-like body has a higher temperature can also be used. This method can be implemented by an operation of heating the side whose temperature is to be raised, or an operation of cooling the side whose temperature is to be lowered, and a combination of the above two operations. It is difficult to form a steady temperature scent unless a plate having a low thermal conductivity is used, such as a ceramic target plate. It is also possible to use a plate having a large thermal conductivity such as a target plate. By giving the above-mentioned temperature scent, the in-plane dimension of the plate having the smaller coefficient of thermal expansion is temporarily enlarged, or the in-plane dimension of the plate having the larger coefficient of thermal expansion is temporarily reduced. By the operation, the difference ΔLs in the ground shrinkage dimension that occurs during the time that the brazing material is solidified and then cooled to room temperature is canceled, and the shape distortion is reduced.

【0022】上記温度匂配方式は、温度勾配の存在下で
ろう材を凝固させなければ意味がないので、過度的な温
度勾配を形成させた場合には、温度勾配の形成から間髪
を入れずにろう材の凝固が始まるようにすることが望ま
しい。たとえば、一旦ろう接積層された積層体を平担に
維持した状態で、熱膨張率の大きい方の板状体の側を冷
却しながら、熱膨張率が小さい方の板状体の表層部を高
周波誘導加熱等によって急速昇温させる操作によって過
度的な温度勾配を形成させ、2枚の板状体の間のろう材
が溶融し始めて両板状体間の拘束関係が解けると同時に
誘導加熱等を停止してろう材の凝固を開始させる方式が
推奨される。この方式は温度勾配が隨意レベルに形成し
にくいので、形状歪の解消に複数回の操作を要する場合
もあるが、主として熱的な手段によって実施できるとい
うメリットを有する。
The above-mentioned temperature scent method has no meaning unless the brazing material is solidified in the presence of a temperature gradient. Therefore, when an excessive temperature gradient is formed, no haircut is required due to the formation of the temperature gradient. It is desirable that the solidification of the brazing material begins. For example, while the laminated body once brazed and laminated is kept flat, while cooling the side of the plate-like body having a larger coefficient of thermal expansion, the surface layer portion of the plate-like body having a smaller coefficient of thermal expansion is cooled. An excessive temperature gradient is formed by the operation of rapidly increasing the temperature by high-frequency induction heating, etc., and the brazing material between the two plate-like bodies starts to melt, so that the binding relationship between the two plate-like bodies is released and at the same time induction heating, etc. It is recommended that the system be stopped and the solidification of the brazing material be started. In this method, since a temperature gradient is hardly formed at an arbitrary level, it may be necessary to perform a plurality of operations to eliminate the shape distortion.

【0023】上述の、外力を加えて行う面内圧縮操作あ
るいは曲げ変形操作、更には、温度勾配による熱膨張量
増減操作における板状体面積の縮小・拡大率は、2枚の
板状体3,8夫々の熱膨張率及びろう材の融点から計算
される前記ろう材凝固後の冷却による収縮寸法の差を打
消すことのできるレベルを目安として、実験確認を行っ
た上で設定するのがよい。
In the above-described in-plane compression operation or bending deformation operation performed by applying an external force, and furthermore, the reduction / enlargement rate of the plate-like body area in the thermal expansion amount increasing / decreasing operation due to the temperature gradient is as follows. , 8 is set after conducting experiments and confirming the level at which the difference in shrinkage dimension due to cooling after solidification of the brazing material, which is calculated from the coefficient of thermal expansion and the melting point of the brazing material, can be canceled. Good.

【0024】上述のように各種手段によって一時的な寸
法変化を付与した状態でろう材を凝固させてろう接後の
形状歪を僅少化することによって、ろう材層の剪断応力
も僅少となり、前記ろう接部の破断の危惧が払拭され
る。
As described above, the brazing material is solidified in a state where a temporary dimensional change is imparted by various means to reduce the shape distortion after brazing, so that the shearing stress of the brazing material layer is also reduced. The fear of breaking the brazed part is eliminated.

【0025】また、いずれの手段を用いる場合において
も、これらの操作は必ずしも板状体をろう接する作業と
同一工程内において行なう必要はなく、工程上、あるい
はろう接作業条件によっては2工程に分けて行ってもよ
い。なぜならば、板状体のろう接において、特に大面積
の板状体の場合には、ろう材層に気孔や異物等の混入に
よる欠陥が発生して、ろう接不良を生じ易く、これを防
止するために特開平6−114549号の様な方法や真
空ろう付,超音波ろう付などが提案され、実施されてい
るが、このようなろう付法の場合、併行して本発明の操
作を行なう事が困難な場合も生じる。
In any case, these operations need not necessarily be performed in the same step as the work of brazing the plate-like body, and may be divided into two steps depending on the process or the brazing work conditions. You may go. This is because, in the case of brazing of a plate-like body, particularly in the case of a plate-like body having a large area, defects due to the inclusion of pores or foreign matter in the brazing material layer are likely to occur, and poor brazing is likely to occur. For this purpose, methods such as JP-A-6-114549, vacuum brazing, ultrasonic brazing and the like have been proposed and implemented. In such a brazing method, the operation of the present invention is concurrently performed. Sometimes it is difficult to do so.

【0026】このような場合には、とりあえず、気孔等
のないろう材層を有するろう接された板状体をまず製作
し、一旦冷却した後、再度加熱し、本発明方法を適用し
て、ろう材層の応力を除去する事が望ましい。この場
合、一旦冷却した際には残留応力が残り、歪も発生して
いるが、変形はほとんどの場合弾性域で発生しており、
再加熱により、ろう材が再溶融する事により元の形状に
回復する。
In such a case, for the time being, a brazed plate-like body having a brazing material layer without pores and the like is first manufactured, cooled once, heated again, and the method of the present invention is applied. It is desirable to remove the stress of the brazing material layer. In this case, once cooled, residual stress remains and strain is generated, but deformation is almost always generated in the elastic region,
By reheating, the brazing material is restored to its original shape by remelting.

【0027】上記ろう材層の剪断応力は、ろう材層の厚
さが大であるほど単位断面積当りの値が小さくなり、ひ
いては、ろう接部の破断につながりにくいことになる。
よって、ろう材層の厚さを確保する対策を講じることが
望ましく、この対策として、本発明の発明者らは、2枚
の板状体の少なくとも一方のろう接面に、隙間を確保す
るために目立てを施しておくことを推奨するものであ
る。この隙間の大きさ即ち、ろう材層の厚さは、ろう材
層に生じる前記形状歪起因の剪断応力の単位断面積当り
の値が通常のろう材の許容剪断応力より十分小となるよ
うにするために100μm以上とすることが望ましく、一
方、作業性,経済性等を損わないために500μm程度に留
めることが望ましい。目立ての手段は任意であるが、グ
リットなどによるブラスチング加工が1つの好適手段と
なる。該ブラスチング加工等は、その目的上、ろう接さ
れる面に散在させる形で部分的に適用してもよい。上記
目立て措置は、溶融ろう材層の厚さが確保しにくい前記
曲げ弾性変形方式において特に有用となるものである。
The larger the thickness of the brazing material layer, the smaller the value of the shearing stress per unit cross-sectional area of the brazing material layer.
Therefore, it is desirable to take a measure for securing the thickness of the brazing material layer. As a measure for this, the inventors of the present invention provide a method for securing a gap on at least one brazing surface of the two plate-shaped members. It is recommended that you make a sharpening on the. The size of this gap, that is, the thickness of the brazing material layer, is set so that the value per unit cross-sectional area of the shear stress caused by the shape distortion generated in the brazing material layer is sufficiently smaller than the allowable shear stress of a normal brazing material. It is preferable that the thickness be 100 μm or more, while it is preferable that the thickness be about 500 μm in order not to impair workability and economy. The means for dressing is optional, but blasting with grit or the like is one suitable means. The blasting or the like may be partially applied to the brazed surface for the purpose. The dressing is particularly useful in the bending elastic deformation method in which the thickness of the molten brazing material layer is difficult to secure.

【0028】<実施例1>図7に示すように、460×180
×8mmの無酸素銅板81の片面に6−4はんだを常法によ
り約500μm溶融メッキし、はんだ被覆を形成させた。次
に同寸法の純アルミニウム板31の片面に無電解Niメッ
キを約5μm施工し、その面に同じく常法により6−4
はんだを約500μm溶融メッキし、はんだ被覆を形成させ
た。
<Embodiment 1> As shown in FIG.
On one surface of an oxygen-free copper plate 81 of 8 mm, 6-4 solder was hot-dip plated by about 500 μm by a conventional method to form a solder coating. Next, electroless Ni plating is applied to one side of a pure aluminum plate 31 of the same size by about 5 μm, and 6-4
The solder was hot-dip plated by about 500 μm to form a solder coating.

【0029】次に両方の板31,81を各々約230℃に加熱
して溶融したはんだ被覆面同士を重ね合わせた後冷却
し、銅とアルミニウムのろう接積層板21を製作した。こ
の時点ではこの積層板21には図7に示すように中央部に
約2.2mmの歪が発生していた。次にこの積層板21に図8
に示すような幅10mmの銅製フラットバ−12,13を耐熱性
粘着テ−プにて仮止めした。なお、各フラットバ−12,
13の厚みは、フラットバ−12が2.2mm、フラットバ−13
が1.1mmである。
Next, the two plates 31 and 81 were heated to about 230 ° C., respectively, and the melted solder-coated surfaces were overlapped with each other and then cooled to produce a brazed laminate 21 of copper and aluminum. At this time, about 2.2 mm of strain was generated at the center of the laminate 21 as shown in FIG. Next, FIG.
The copper flat bars 12 and 13 having a width of 10 mm as shown in (1) were temporarily fixed with a heat-resistant adhesive tape. In addition, each flat bar 12,
The thickness of 13 is 2.2 mm for flat bar 12 and 13
Is 1.1 mm.

【0030】次に、この積層板21を230℃に昇温させた
ホットプレスにはさみ総荷重800kgfの力で加圧し、積層
板21が230℃に均熱した状態になったのを確認し、圧力
をかけたままヒ−タ−を切り冷却した。冷却後プレスよ
り取り出し、歪を測定したところ、中央部の歪は0.1mm
に減っていた。また、その時のろう材厚みは約30μmで
あった。
Next, this laminated plate 21 was sandwiched between hot presses heated to 230 ° C. and pressed with a total load of 800 kgf, and it was confirmed that the laminated plate 21 was in a state of being uniformly heated to 230 ° C. The heater was turned off while applying pressure, and cooled. Removed from the press after cooling and measured the strain, the strain at the center was 0.1 mm
Was reduced to The thickness of the brazing material at that time was about 30 μm.

【0031】<実施例2>460×180×8mmの無酸素銅板
82の片面の中央部410×130mmの範囲をグリットブラスト
加工を行いRmax 200μmの凹凸をつけた後、他の部分を
マスキングし、6−4はんだを常法により約500μm溶融
メッキし、はんだ被覆を形成させた。次に410×130×6
mmの純クロム板32の片面に無電解Niメッキを約5μm施
工し、その面に同じく常法により6−4はんだを約500
μm溶融メッキし、はんだ被覆を形成させた。
Example 2 Oxygen-free copper plate of 460 × 180 × 8 mm
Grit blasting was applied to the central area of 410 × 130 mm on one side of 82 to give Rmax 200 μm irregularities, then the other parts were masked, and 6-4 solder was hot-dip plated to about 500 μm by a conventional method, and the solder coating was applied. Formed. Next 410 × 130 × 6
Electroless Ni plating is applied to one side of a pure chrome plate 32 of about 5 μm in thickness of about 5 μm, and about 500
It was hot-dipped by μm to form a solder coating.

【0032】次に、両方の板32,82を各々約230℃に加
熱して溶融したはんだ被覆面同士を重ね合わせた後、銅
板82の長手方向に対して断面積当り約550kg/cm2の力を
油圧プレス91により加え、銅板の熱膨張をクロム板の熱
膨張と同等になるように銅板の伸びを拘束しながら、ろ
う材を凝固させ、以後、徐々に圧力を弱めながら、積層
板22を除々に冷却した(図9参照)。冷却後、積層板22
の歪を測定したところ中央部の歪は0.1mmであった。ま
た、その時のろう材厚みは約300μmであった。
Next, after the two plates 32 and 82 are heated to about 230 ° C. and the melted solder-coated surfaces are overlapped with each other, the copper plate 82 has a length of about 550 kg / cm 2 per sectional area in the longitudinal direction. A force is applied by a hydraulic press 91 to consolidate the brazing material while restraining the expansion of the copper plate so that the thermal expansion of the copper plate becomes equal to the thermal expansion of the chrome plate. Was gradually cooled (see FIG. 9). After cooling, the laminate 22
When the strain was measured, the strain at the center was 0.1 mm. The thickness of the brazing material at that time was about 300 μm.

【0033】比較例として両方の板32,82を重ね合わせ
た後、加圧せず、冷却したところ、図10に示すように、
クロム板32と銅板82の熱膨張率の差から、中央部に約4.
0mmの歪が発生した。
As a comparative example, after the two plates 32 and 82 were overlaid and then cooled without applying pressure, as shown in FIG.
Due to the difference in thermal expansion coefficient between the chrome plate 32 and the copper plate 82, about 4.
0 mm distortion occurred.

【0034】<実施例3>実施例1と同様に純アルミニ
ウム板31と無酸素銅板81のろう接積層板21を製作した。
次に、この積層板21と電気炉内で230℃に均熱させた
後、取り出し、誘導加熱コイルを内蔵した電磁加熱プレ
−ト14の上に銅板81が下になるように置き、10kHzの周
波数により銅板81を急速に加熱し、約300℃にした。同
時に、アルミニウム板31の上側に約10℃にした銅製の冷
却板(内部循環水冷式)15を置き、10℃の水を内部に流
しながらアルミニウム板31を急冷させ、すぐに電磁加熱
スイッチも切り、全体を冷却した(図10参照)。冷却
後、この積層板21の歪を測定したところ中央部の歪は0.
1mmであった。
<Example 3> A brazed laminate 21 of a pure aluminum plate 31 and an oxygen-free copper plate 81 was manufactured in the same manner as in Example 1.
Next, the laminate 21 was soaked at 230 ° C. in an electric furnace, taken out, and placed on an electromagnetic heating plate 14 having an induction heating coil built therein so that the copper plate 81 was at a lower position. The copper plate 81 was rapidly heated by the frequency to about 300 ° C. At the same time, a copper cooling plate (internal circulating water cooling type) with a temperature of about 10 ° C is placed on the upper side of the aluminum plate 31, and the aluminum plate 31 is quenched while flowing 10 ° C water inside. The whole was cooled (see FIG. 10). After cooling, when the strain of the laminated plate 21 was measured, the strain at the center was 0.
1 mm.

【0035】[0035]

【発明の効果】以上に述べた通り、本発明ろう接方法
は、熱膨張率の異なる2枚の板状体のろう接に際して、
板状体に対してろう材凝固後の冷却による両板状体の収
縮量の差を打消すような寸法変化を一時的に付与してお
いてろう材を凝固させる構成により、両板状体の熱膨張
率差に由来するろう接後の形状歪を僅少化して、ろう材
層に生じる剪断応力を減少させるものである。更には、
ろう接される2枚の板状体の少なくとも一方に対して、
そのろう接される側の面にブラスチング加工などによる
目立てを施しておくことにより、ろう材層の厚さを確保
して単位断面積当りの剪断応力を小さくする。
As described above, according to the brazing method of the present invention, when brazing two plate-like bodies having different coefficients of thermal expansion,
A configuration in which a dimensional change that temporarily cancels the difference in the amount of shrinkage of both plate bodies due to cooling after solidification of the brazing material is applied to the plate body to solidify the brazing material, The shape distortion after brazing resulting from the difference in thermal expansion coefficient is reduced, and the shear stress generated in the brazing material layer is reduced. Furthermore,
For at least one of the two plate-like bodies to be brazed,
By shaping the surface to be brazed by blasting or the like, the thickness of the brazing material layer is secured and the shear stress per unit cross-sectional area is reduced.

【0036】本発明方法の上記構成は、いずれもろう材
層の破断の危惧を払拭するものであり、長尺化されたタ
−ゲット部材などのろう接の信頼性を大巾に向上させ
て、スパッタリング事業などの生産性の向上に寄与する
ものである。
All of the above configurations of the method of the present invention are intended to eliminate the fear of breakage of the brazing material layer, and greatly improve the reliability of brazing of a long target member or the like. And contribute to the improvement of productivity in the sputtering business and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】タ−ゲット部材に一次元的圧縮操作を加える態
様の一例の斜視図。
FIG. 1 is a perspective view of an example of an embodiment in which a one-dimensional compression operation is applied to a target member.

【図2】タ−ゲット部材に二次元的圧縮操作を加える態
様の一例の斜視図。
FIG. 2 is a perspective view of an example of an embodiment in which a two-dimensional compression operation is applied to a target member.

【図3】タ−ゲット部材に曲げ操作を3点曲げにより加
える正面図。
FIG. 3 is a front view in which a bending operation is applied to the target member by three-point bending.

【図4】タ−ゲット部材に曲げ操作を4点曲げにより加
える正面図。
FIG. 4 is a front view in which a bending operation is applied to the target member by four-point bending.

【図5】タ−ゲット部材に曲げ操作を総形型具を用いて
加える正面図。
FIG. 5 is a front view in which a bending operation is applied to the target member by using a form tool.

【図6】タ−ゲット部材に曲げ操作を二次元的に加える
例の斜視図。
FIG. 6 is a perspective view of an example in which a bending operation is two-dimensionally applied to a target member.

【図7】本発明ろう接法を適用する前の積層板の一例の
斜視図。
FIG. 7 is a perspective view of an example of a laminate before applying the brazing method of the present invention.

【図8】図7の積層板にフラットバ−を仮止めした積層
板の一例の斜視図。
FIG. 8 is a perspective view of an example of a laminated plate in which a flat bar is temporarily fixed to the laminated plate of FIG. 7;

【図9】本発明ろう接法を適用した積層板を油圧による
圧縮操作を加える状態の正面図。
FIG. 9 is a front view showing a state in which a compression operation by hydraulic pressure is applied to a laminated plate to which the brazing method according to the present invention is applied.

【図10】温度勾配を付ける本発明ろう接法の実施形態を
示す正面図。
FIG. 10 is a front view showing an embodiment of the brazing method of the present invention for applying a temperature gradient.

【図11】従来ろう接法によるろう接のまま冷却した積層
板の斜視図。
FIG. 11 is a perspective view of a laminated plate that has been cooled by brazing according to a conventional brazing method.

【図12】イオンスパッタリング装置の一例の断面図。FIG. 12 is a cross-sectional view of an example of an ion sputtering device.

【図13】タ−ゲット部材の正面図。FIG. 13 is a front view of a target member.

【図14】ろう接前のタ−ゲット部材の状態を示す正面
図。
FIG. 14 is a front view showing a state of the target member before brazing.

【図15】ろう接後のタ−ゲット部材の歪状態を模式的に
示す正面図。
FIG. 15 is a front view schematically illustrating a distortion state of the target member after brazing.

【符号の説明】[Explanation of symbols]

2 タ−ゲット部材 21,22 積層板 3,31,32 板状体(タ−ゲット板) 8,81,82 板状体(裏付ち板) 2 Target member 21,22 Laminated plate 3,31,32 Plate (target plate) 8,81,82 Plate (backed plate)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張率の異なる2枚の板状体を、溶融
したろう材の層を介して積層し、該ろう材を凝固させて
板状体同士をろう接するに際して、熱膨張率が大きい方
の板状体のろう接される側の面の面積を一時的に縮小さ
せる操作と、熱膨張率が小さい方の板状体のろう接され
る側の面の面積を一時的に拡大させる操作の、少なくと
も一方の操作を加えた状態で板状体の間のろう材を凝固
させることにより、2枚の板状体の熱膨張率差に由来し
て冷却後のろう材層に生じる剪断応力を僅少化すること
を特徴とする板状体のろう接方法。
1. A method in which two plate-like bodies having different coefficients of thermal expansion are laminated via a layer of a molten brazing material, and when the brazing material is solidified and the plate-like bodies are brazed to each other, the coefficient of thermal expansion is increased. Temporarily reducing the area of the brazed side of the larger plate, and temporarily increasing the area of the brazed side of the smaller plate with a lower coefficient of thermal expansion The solidification of the brazing material between the plate-like bodies in a state where at least one of the operations is added to the brazing material layer after cooling occurs due to the difference in the coefficient of thermal expansion between the two plate-like bodies. A brazing method for a plate-like body, characterized in that shear stress is reduced.
【請求項2】 溶融したろう材の層を介して積層された
前記2枚の板状体のうち、熱膨張率が大きい方の板状体
を、その面内にて圧縮弾性変形させて、該板状体のろう
接される側の面の面積を一時的に縮小させた状態とする
請求項1に記載の板状体のろう接方法。
2. Among the two plate-like members laminated via a layer of a molten brazing material, a plate-like member having a larger coefficient of thermal expansion is compressed and elastically deformed in its plane, 2. The method for brazing a plate-like body according to claim 1, wherein an area of a surface of the plate-like body to be brazed is temporarily reduced.
【請求項3】 溶融したろう材の層を介して積層された
前記2枚の板状体を、熱膨張率が大きい方の板状体の側
が凸となるように一体的に曲げ弾性変形させて、熱膨張
率が大きい方の板状体のろう接される側の面の面積を一
時的に縮小させ、且つ、熱膨張率が小さい方の板状体の
ろう接される側の面の面積を一時的に拡大させた状態と
する請求項1に記載の板状体のろう接方法。
3. The two plate-like members laminated via a layer of molten brazing material are integrally bent and elastically deformed such that the side of the plate-like member having a larger coefficient of thermal expansion becomes convex. Therefore, the area of the brazed side of the plate having the larger coefficient of thermal expansion is temporarily reduced, and the surface of the brazed side of the plate having the smaller coefficient of thermal expansion is temporarily reduced. The method for brazing a plate-like body according to claim 1, wherein the area is temporarily enlarged.
【請求項4】 溶融したろう材の層を介して積層された
前記2枚の板状体に、熱膨張率が小さい方の板状体が熱
膨張率が大きい方の板状体より高温となる温度勾配を付
与して、熱膨張率が小さい方の板状体のろう接される側
の面の面積を一時的に拡大させた状態とする請求項1に
記載の板状体のろう接方法。
4. A plate having a smaller coefficient of thermal expansion has a higher temperature than a plate having a larger coefficient of thermal expansion in said two plates laminated through a layer of a molten brazing material. 2. A brazing method for a plate-like body according to claim 1, wherein a predetermined temperature gradient is applied to temporarily increase an area of a surface of the plate-like body having a smaller coefficient of thermal expansion on a side to be brazed. Method.
【請求項5】 ろう接に供される前記2枚の板状体の少
なくとも一方に対して、そのろう接される側の面に、相
手側の板状体との間に隙間を確保するための目立て加工
を施しておくことによって、2枚の板状体の間のろう材
層の厚さを確保することを特徴とする請求項1〜4のい
ずれかに記載の板状体のろう接方法。
5. A method for securing a gap between at least one of the two plate-shaped members to be brazed and a mating plate-shaped member on a surface to be brazed. The brazing of the plate-shaped body according to any one of claims 1 to 4, wherein the thickness of the brazing material layer between the two plate-shaped bodies is ensured by performing the dressing process. Method.
【請求項6】 目立て加工がブラスチング加工である請
求項5に記載の板状体のろう接方法。
6. The brazing method according to claim 5, wherein the dressing is blasting.
JP21594696A 1996-07-30 1996-07-30 Brazing method for planar body Pending JPH1043881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21594696A JPH1043881A (en) 1996-07-30 1996-07-30 Brazing method for planar body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21594696A JPH1043881A (en) 1996-07-30 1996-07-30 Brazing method for planar body

Publications (1)

Publication Number Publication Date
JPH1043881A true JPH1043881A (en) 1998-02-17

Family

ID=16680882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21594696A Pending JPH1043881A (en) 1996-07-30 1996-07-30 Brazing method for planar body

Country Status (1)

Country Link
JP (1) JPH1043881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958625A (en) * 2021-01-28 2021-06-15 广西南南铝加工有限公司 Preparation method of aluminum alloy ultra-wide plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958625A (en) * 2021-01-28 2021-06-15 广西南南铝加工有限公司 Preparation method of aluminum alloy ultra-wide plate

Similar Documents

Publication Publication Date Title
EP1974847B1 (en) Bonding method of dissimilar materials made from metals and bonding structure thereof
US7361412B2 (en) Nanostructured soldered or brazed joints made with reactive multilayer foils
TW200900242A (en) Reactive multilayer joining with improved metallization techniques
JPH0249267B2 (en)
JP2000312979A (en) Aluminum/stainless steel clad material, and its manufacturing method
EP1631450B1 (en) Nanostructured soldered or brazed joints made with reactive multilayer foils
JPH1043881A (en) Brazing method for planar body
EP1009579A1 (en) Metal bonding
JP2000239837A (en) Method for separating sputtering target assembled body subjected to solid phase diffusion joining
JP2005021899A (en) Metal clad plate and its producing method
JP2003201561A (en) Method for manufacturing sputtering target
JPS5944148B2 (en) Diffusion welding method
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
GB2093386A (en) Magnetic head
JP2001073129A (en) Method and device for joining sputtering target and supporting board therefor
JP2010131631A (en) Joining method of member and joined body
JPS6039477B2 (en) Manufacturing method of clad steel plate
WO2022070880A1 (en) Sputtering target-backing plate assembly, production method therefor, and sputtering target recovery method
JPH04309475A (en) Method for joining chromium or chromium alloy and copper
JPS62275589A (en) Production of clad plate using amorphous alloy
JP3071361B2 (en) Method of forming film on inner surface of pipe
JP2002511663A (en) Alloy steel separation sheet and copper / steel laminate for use in the production of printed circuit boards
JP2001138055A (en) Method of joining members by stud welding
JP4127896B2 (en) Liquid phase diffusion bonding method