JPH1042730A - Water culture apparatus for plant - Google Patents

Water culture apparatus for plant

Info

Publication number
JPH1042730A
JPH1042730A JP8220590A JP22059096A JPH1042730A JP H1042730 A JPH1042730 A JP H1042730A JP 8220590 A JP8220590 A JP 8220590A JP 22059096 A JP22059096 A JP 22059096A JP H1042730 A JPH1042730 A JP H1042730A
Authority
JP
Japan
Prior art keywords
hydroponic
cultivation
heat
plant
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8220590A
Other languages
Japanese (ja)
Inventor
Yuzo Narasaki
祐三 楢崎
Ichiro Kamiya
一郎 神谷
Hidemitsu Otsuka
秀光 大塚
Manabu Morishita
学 盛下
Hiroshi Nanbu
浩史 南部
Yutaka Okazaki
裕 岡崎
Atsushi Hirayama
淳 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8220590A priority Critical patent/JPH1042730A/en
Publication of JPH1042730A publication Critical patent/JPH1042730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Landscapes

  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water culture apparatus for plant, capable of generating utilities such as water and electric power necessary for the culture of plant by solar energy and minimizing or eliminating the use of external utilities. SOLUTION: This water culture apparatus is at least provided with a roofed culture chamber 100, a water-culture facility 200, a photovoltaic power generation apparatus 400 and a desalination apparatus 300. The photovoltaic power generation apparatus 400 supplies the total or a part of power and the desalination apparatus 300 supplies the total or a part of water necessary for the water culture of plant. The apparatus is further provided with a water-temperature controlling apparatus 500 to control the temperature of the water-culture liquid of the water culture facility 200 to a prescribed level suitable for water culture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽エネルギーを利
用し、特に植物栽培不適地域での植物栽培に適する植物
水耕栽培装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant hydroponic cultivation apparatus that utilizes solar energy and is particularly suitable for plant cultivation in an unsuitable plant cultivation area.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】地球陸
地面積の中で大きな部分を占める砂漠等の高温且つ乾燥
した不毛地域においては、太陽の日射が強く、また土壌
に保水力がないため、この地域で植物栽培を行なうため
には大規模な植物育成のための環境改善及び土壌改良等
が必要不可欠である。また、このような地域は水、電力
等のユーティリティを簡単に得ることができないため植
物栽培の不可能な地域となっている。また、周囲から断
絶された孤島等においても事情は同様である。
2. Description of the Related Art In hot and dry barren areas such as deserts which occupy a large part of the earth's land area, the sun is strong and the soil has no water retention capacity. In order to grow plants in this area, it is essential to improve the environment and soil for large-scale plant growth. In addition, such an area is an area where plant cultivation is impossible because utilities such as water and electric power cannot be easily obtained. The situation is the same in an isolated island or the like that has been disconnected from the surroundings.

【0003】上記のような不毛地域において、ユーティ
リティ供給と栽培環境改善により植物栽培を可能にする
ことは、このような地域における人類の居住、生活活動
にとって、また地球全体の食糧不足問題を解決するため
に、非常に重要な課題となっている。
In the above-mentioned barren areas, enabling plant cultivation by supplying utilities and improving the cultivation environment solves the problem of food shortage for human habitation and living activities in such areas and the entire earth. Therefore, it has become a very important issue.

【0004】本発明は上述の点に鑑みてなされたもの
で、太陽エネルギーを利用することにより植物栽培に必
要なユーティリティの外部からの導入を極力減少又は不
要にするだけでなく、日射量が強く高温下においても植
物栽培を可能にする植物水耕栽培装置を提供することを
目的とする。
The present invention has been made in view of the above points, and not only minimizes or eliminates the need for external introduction of utilities necessary for plant cultivation by utilizing solar energy, but also increases the amount of solar radiation. It is an object of the present invention to provide a plant hydroponic cultivation device that enables plant cultivation even under high temperatures.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
請求項1乃至7に記載の発明による手段を提示する。請
求項1に記載の発明は、少なくとも屋根を有する栽培
室、水耕液温調節手段を有する水耕栽培設備、太陽光発
電装置、淡水化装置を具備した植物水耕栽培装置であっ
て、該植物水耕栽培装置が必要とする電力の全部又は一
部を太陽光発電装置から得ると共に、水耕液に用いる水
の全部又は一部を淡水化装置で得るように構成したこと
を特徴とする。
Means for Solving the Problems To solve the above problems, means according to the first to seventh aspects of the present invention are presented. The invention according to claim 1 is a plant hydroponic cultivation apparatus equipped with a cultivation room having at least a roof, a hydroponic cultivation facility having a hydroponic liquid temperature control means, a solar power generation apparatus, and a desalination apparatus, All or part of the electric power required by the plant hydroponic device is obtained from the solar power generation device, and all or part of the water used for the hydroponic solution is obtained by the desalination device. .

【0006】また、請求項2に記載の発明は、請求項1
に記載の植物水耕栽培装置において、水耕液温調節手段
は、日射のある昼間に太陽光発電装置から供給される電
力により電動式冷凍機を作動させ冷熱を造る冷熱製造装
置と該冷熱製造装置からの冷熱媒を蓄える蓄熱槽とを具
備し、少なくとも1日に必要な冷熱量を供給できるよう
に構成すると共に、水耕液の液温に応じて蓄熱槽からの
冷熱媒と水耕液との間で熱交換を行なう熱交換部を具備
することを特徴とする。
[0006] The invention described in claim 2 is the invention according to claim 1.
In the plant hydroponic cultivation apparatus according to the above, the hydroponic liquid temperature adjusting means operates a motor-driven refrigerator by electric power supplied from the solar power generation apparatus during the daytime with solar radiation to produce cold heat, and the cold heat production apparatus A heat storage tank for storing the cooling medium from the apparatus, configured to be able to supply at least one day's required amount of cooling heat, and the cooling medium and the water culture liquid from the heat storage tank according to the temperature of the hydroponic liquid. And a heat exchange unit for exchanging heat between the heat exchanger and the heat exchanger.

【0007】また、請求項3に記載の発明は請求項1に
記載の植物水耕栽培装置において、水耕液温調節手段
は、日射のある昼間に太陽光発電装置及び/又は深海水
循環ポンプ専用に別途設置された太陽光発電装置から供
給される電力により駆動される深海水循環ポンプを有す
ると共に、該深海水循環ポンプで汲み上げた低温度の深
海水を冷熱媒との間で熱交換を行なう熱交換部と熱交換
した冷熱媒を蓄える蓄熱槽を備え、少なくとも1日に必
要な冷熱量を供給できるように構成すると共に、水耕液
の液温に応じて前記蓄熱槽からの冷熱媒と水耕液との間
で熱交換を行なう熱交換部を具備することを特徴とす
る。
According to a third aspect of the present invention, in the plant hydroponic cultivation apparatus according to the first aspect, the hydroponic liquid temperature adjusting means is dedicated to a photovoltaic power generator and / or a deep sea water circulation pump during daytime when there is solar radiation. A deep seawater circulating pump driven by electric power supplied from a photovoltaic power generator separately installed in the chiller, and heat exchange between the low temperature deep seawater pumped by the deep seawater circulating pump and a cooling medium. A heat storage tank for storing a cooling medium that has exchanged heat with the section, so as to be able to supply at least one day's required amount of cold heat, and to cool and heat the cooling medium from the heat storage tank according to the temperature of the hydroponic solution. It is characterized by comprising a heat exchanging section for exchanging heat with the liquid.

【0008】後述のようにこれにより省エネルギー、高
効率の水温調整を実現する。但し、本発明においては必
ずしも深海水を移送管で直接又は蓄熱槽への貯留状態に
おいて、水耕液と熱交換する方法を排除しない。また、
深海水循環ポンプは太陽光発電装置以外の動力源を用い
ることを妨げない。更に、念のため本発明に関して光セ
ンサや時計式制御機構等の制御手段、バッテリーその他
の補助動力等を配備してもかまわないことは自明であ
る。
As described later, this realizes energy saving and highly efficient water temperature adjustment. However, the present invention does not necessarily exclude a method of exchanging heat with the hydroponic liquid in a state in which deep sea water is stored directly in a transfer pipe or in a storage tank. Also,
The deep sea water circulation pump does not prevent using a power source other than the solar power generator. Further, it is obvious that control means such as an optical sensor and a clock-type control mechanism, a battery and other auxiliary power may be provided in the present invention just in case.

【0009】また、請求項4に記載の発明は、請求項1
に記載の植物水耕栽培装置において、水耕液温調節手段
は、日射のある昼間に前記太陽光発電装置から供給され
る電力と、蓄熱槽を具備した太陽熱温水器から供給され
る温水により駆動される吸着式冷凍機と、該吸着式冷凍
機からの冷熱媒を蓄える蓄熱槽とを具備し、少なくとも
1日に必要な冷熱量を供給できるように構成すると共
に、水耕液の液温に応じて蓄熱槽からの冷熱媒と水耕液
との間で熱交換を行なう熱交換部を具備することを特徴
とする。吸着式冷凍機は65℃前後の低い温水でも効率
良く冷熱を取り出すことができる。また、蓄熱槽は地下
埋設型とすることが好ましい。
The invention described in claim 4 is the first invention.
In the plant hydroponic cultivation apparatus according to the above, the hydroponic liquid temperature adjusting means is driven by electric power supplied from the solar power generation apparatus in the daytime with solar radiation and hot water supplied from a solar water heater having a heat storage tank. And a heat storage tank for storing a cooling medium from the adsorption refrigerator, and configured to be able to supply a required amount of cold energy at least for one day. It is characterized by comprising a heat exchanging section for exchanging heat between the cooling medium from the heat storage tank and the hydroponic solution accordingly. The adsorption refrigerator can efficiently extract cold heat even with low temperature water of about 65 ° C. Further, the heat storage tank is preferably of an underground type.

【0010】また、請求項5に記載の発明は、請求項1
乃至4のいずれか1に記載の植物水耕栽培装置におい
て、太陽光発電装置の太陽光発電パネルの一部又は全部
を栽培室の屋根に太陽軌道と略直交する方向に設置する
と共に、該屋根及び該太陽光発電パネルの傾斜角度が太
陽光入射角に対して最適傾斜角度になるように設置した
ことを特徴とする。
[0010] The invention described in claim 5 is the first invention.
In the plant hydroponic cultivation apparatus according to any one of to 4, a part or the whole of the solar power generation panel of the photovoltaic power generation apparatus is installed on a roof of a cultivation room in a direction substantially orthogonal to a solar orbit, and the roof is installed. And the solar panel is installed such that the inclination angle of the solar power generation panel is an optimum inclination angle with respect to the sunlight incident angle.

【0011】また、ここで請求項5に記載の植物水耕栽
培装置において、太陽光発電パネルを栽培室の屋根の梁
を利用して配置し、栽培室の屋根の傾斜面と太陽光発電
パネルの裏面との間にトンネル状の隙間を形成するよう
に構成し、該隙間の煙突効果により太陽光発電パネルを
冷却する空気を通すことが好ましい。
[0011] In the plant hydroponic cultivation apparatus according to the fifth aspect, the photovoltaic power generation panel is disposed by using a beam on the roof of the cultivation room, and the inclined surface of the cultivation room roof and the photovoltaic power generation panel are arranged. It is preferable that a tunnel-shaped gap is formed between the photovoltaic panel and the rear surface of the photovoltaic power generation panel by the chimney effect of the gap.

【0012】また、上記植物水耕栽培装置において、太
陽光発電パネルの裏面に放熱フィンを前記冷却空気の流
れに平行に(沿って)取り付けることが更に好ましい。
[0012] In the above-mentioned plant hydroponic cultivation apparatus, it is further preferable that a radiation fin is attached to the back surface of the solar panel in parallel with (along) the flow of the cooling air.

【0013】また、請求項6に記載の発明は、請求項1
乃至5のいずれか1に記載の植物水耕栽培装置におい
て、通年の1日の太陽の軌道及び前記栽培室の設置位置
を考慮して太陽光発電装置の太陽光発電パネルを該栽培
室の屋根に太陽軌道と略直交する方向に平行にスリット
状に配置し、そのスリット幅と太陽光発電パネルによる
遮光の幅の比率を最適にすることにより、水耕栽培設備
の栽培面に1日の積算日射量が略一様となるようにした
ことを特徴とする。
The invention according to claim 6 is the first invention.
The plant hydroponic cultivation apparatus according to any one of Items 1 to 5, wherein a solar power generation panel of the photovoltaic power generation apparatus is mounted on the roof of the cultivation room in consideration of the sun's orbit of the whole year and the installation position of the cultivation room. In a slit shape parallel to the direction substantially perpendicular to the sun's orbit, and by optimizing the ratio of the slit width and the width of light shielding by the photovoltaic panel, it is possible to accumulate one day on the cultivation surface of the hydroponic cultivation equipment. It is characterized in that the amount of solar radiation is made substantially uniform.

【0014】また、請求項7に記載の発明は、請求項6
に記載の植物水耕栽培装置において、栽培面上方に半透
光性の材質からなるカーテンを設置することにより、日
射光をやわらげ、散乱させることにより、太陽光発電パ
ネル設置により生じる栽培面上の明暗を減じ、栽培面に
極力一様に日射が供給できるようにしたことを特徴とす
る。
The invention described in claim 7 is the same as the claim 6.
In the plant hydroponic cultivation apparatus according to the above, by installing a curtain made of a semi-translucent material above the cultivation surface, to soften and scatter sunlight, on the cultivation surface generated by the solar power generation panel installation Light and darkness are reduced, and the solar radiation can be supplied to the cultivation surface as uniformly as possible.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明の植物水耕栽培装置
のシステム構成を示す図である。本植物水耕栽培装置は
栽培室100、水耕栽培設備200、淡水化装置30
0、太陽光発電装置400を具備し、該植物水耕栽培装
置で必要とする電力の全部又は一部を太陽光発電装置4
00から得ると共に、水耕栽培に必要な水の全部又は一
部を淡水化装置300で得るように構成している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a system configuration of the plant hydroponics apparatus of the present invention. The plant hydroponics apparatus comprises a cultivation room 100, a hydroponic cultivation facility 200, a desalination apparatus 30.
0, equipped with a photovoltaic power generator 400, and all or a part of the electric power required by the plant hydroponics
00, and all or a part of the water required for hydroponics is obtained by the desalination apparatus 300.

【0016】また、水耕栽培設備200で使用する水耕
液の液温を栽培に適した所定の温度に調整する水耕液温
調節装置500を設けている。本実施の形態において
は、水耕液の液温の設定範囲を15℃〜30℃としてお
り、この範囲で栽培条件により決定される設定温度が一
定になるように温度調整されている。但し、高温側は2
5℃以下であることが望ましい。
Further, there is provided a hydroponic liquid temperature controller 500 for adjusting the liquid temperature of the hydroponic liquid used in the hydroponic cultivation equipment 200 to a predetermined temperature suitable for cultivation. In the present embodiment, the set range of the liquid temperature of the hydroponic solution is set to 15 ° C. to 30 ° C., and the temperature is adjusted so that the set temperature determined by the cultivation conditions is constant in this range. However, the high temperature side is 2
It is desirable that the temperature is 5 ° C. or less.

【0017】図2は栽培室と水耕栽培設備と水耕液温調
節装置の概略構成を示す図である。栽培室100は屋根
101及び側壁102を有し、屋根101には後に詳述
するように太陽光発電装置400の構成機器である太陽
光発電パネル401が設置されている。また、栽培室1
00内の天井部には電動モータ105で駆動されるカー
テン103や電動モータ106で駆動されるカーテン1
04、電動モータ116で駆動される天窓115及び照
明機器107が設けられ、周囲には電動モータ106’
で駆動されるカーテン104’が設けられている。な
お、屋根101及び側壁102は太陽光を十分透過させ
る材料で構成する。
FIG. 2 is a diagram showing a schematic configuration of a cultivation room, a hydroponic cultivation facility, and a hydroponic liquid temperature control device. The cultivation room 100 has a roof 101 and a side wall 102, and a solar power generation panel 401, which is a component device of the solar power generation device 400, is installed on the roof 101 as described in detail later. In addition, cultivation room 1
The curtain 103 driven by the electric motor 105 and the curtain 1 driven by the electric motor 106
04, a skylight 115 driven by an electric motor 116 and a lighting device 107 are provided.
Is provided with a curtain 104 ′ driven by. Note that the roof 101 and the side walls 102 are made of a material that allows sunlight to sufficiently pass therethrough.

【0018】上記カーテン103は栽培室100内の日
射量を調整するためのものである。また、上記カーテン
104やカーテン104’は外気温の低い時や夜間の放
熱で栽培室内の温度低下を防ぐための保温作用も奏す
る。更に、上記天窓115は栽培室内の湿度と温度上昇
により開放され、室内の換気を行なって湿度と温度の調
整を行なうものである。
The curtain 103 is for adjusting the amount of solar radiation in the cultivation room 100. Further, the curtain 104 or the curtain 104 'also has a heat retaining action for preventing a temperature drop in the cultivation room due to heat radiation at a low outside air temperature or at night. Further, the skylight 115 is opened due to the rise in humidity and temperature in the cultivation room, and the room is ventilated to adjust the humidity and temperature.

【0019】傾斜した屋根101の下端には雨樋108
が設けられ、屋根101に降った雨水は雨樋108に集
められ砂濾過装置301に流れるようになっている。ま
た、114は日射量を検出する日射量センサ、109は
栽培室100内の温度、湿度等の環境を制御する環境制
御装置である。
At the lower end of the inclined roof 101, a gutter 108
The rainwater that has fallen on the roof 101 is collected by the rain gutter 108 and flows to the sand filtration device 301. Reference numeral 114 denotes a solar radiation sensor for detecting the amount of solar radiation, and reference numeral 109 denotes an environment control device for controlling an environment such as temperature and humidity in the cultivation room 100.

【0020】栽培室100内には前述のように水耕栽培
設備200が配置されており、該水耕栽培設備200は
栽培槽201及び水耕液タンク202を具備し、水耕液
タンク202内の水耕液をポンプ203、204で栽培
槽201に供給できるようになっている。栽培槽201
に供給された水耕液は栽培槽201を通過した後栽培槽
201の液レベルを一定にするように調整され、なお且
つ液レベルが調整できるようになっているオーバーフロ
ーノズルから排出され、水耕液タンク202に戻るよう
に水耕液の循環系を形成している。
The hydroponic cultivation equipment 200 is disposed in the cultivation room 100 as described above. The hydroponic cultivation equipment 200 includes a cultivation tank 201 and a hydroponic liquid tank 202. Can be supplied to the cultivation tank 201 by the pumps 203 and 204. Cultivation tank 201
The hydroponic solution supplied to the cultivation tank 201 is adjusted to maintain a constant liquid level in the cultivation tank 201 after passing through the cultivation tank 201, and is discharged from an overflow nozzle capable of adjusting the liquid level. A circulation system of the hydroponic liquid is formed so as to return to the liquid tank 202.

【0021】ここで図示では水耕液タンク202は地上
に設置しているが、設置スペースの問題や、栽培槽20
1からの水耕液の流下の容易性や、水耕液タンク202
内の水耕液の恒温性から地下に埋設することが望まし
い。水耕液タンク202内には淡水化装置300の地下
に埋設された淡水槽303からポンプ335で淡水が供
給され、水耕液レベルが一定に維持されるようになって
いる。
Here, in the figure, the hydroponic solution tank 202 is installed on the ground.
1. The ease of the flow of the hydroponic liquid from
It is desirable to bury it underground because of the constant temperature of the hydroponic solution inside. Fresh water is supplied to the inside of the hydroponic solution tank 202 from a freshwater tank 303 buried underground in the desalination apparatus 300 by a pump 335 so that the level of the hydroponic solution is kept constant.

【0022】水耕液タンク202内は温調コイル205
が配置されており、該温調コイル205に水耕液温調節
装置500の地下に埋設された蓄熱槽501から蓄冷液
を送り、水耕液タンク202内の水耕液と熱交換を行な
い、該水耕液の液温を栽培に適した所定温度に調整でき
るようになっている。
A temperature control coil 205 is provided in the hydroponic solution tank 202.
Is sent to the temperature control coil 205 from the heat storage tank 501 buried underground of the hydroponic liquid temperature control device 500, and performs heat exchange with the hydroponic liquid in the hydroponic liquid tank 202, The liquid temperature of the hydroponic solution can be adjusted to a predetermined temperature suitable for cultivation.

【0023】また、206は酸素供給器であり、栽培槽
201内の水耕液に酸素を供給し、該水耕液中の溶存酸
素量を増加させるようになっている。また、208、2
08’はPH調整装置であり、水耕液タンク202の水
耕液を所定のPH値に維持するためポンプ207、20
7’でアルカリ調整液又は酸性調整液を供給できるよう
になっている。また、210は自動追肥装置であり、水
耕液タンク202の水耕液にポンプ209で肥料の溶け
た原液を供給できるようになっている。
An oxygen supply unit 206 supplies oxygen to the hydroponic solution in the cultivation tank 201 to increase the amount of dissolved oxygen in the hydroponic solution. Also, 208, 2
Reference numeral 08 'denotes a pH adjusting device, and the pumps 207 and 20 maintain the hydroponic solution in the hydroponic solution tank 202 at a predetermined PH value.
At 7 ', an alkali adjustment liquid or an acid adjustment liquid can be supplied. Reference numeral 210 denotes an automatic top-up fertilizer, which can supply a stock solution in which fertilizer is dissolved to the hydroponic solution in the hydroponic liquid tank 202 by a pump 209.

【0024】211は水耕液タンク202の水耕液の肥
料濃度を検出する肥料検出センサ、212は水耕液のP
H値を検出するPH検出センサであり、上記日射量セン
サ114、該肥料検出センサ211、PH検出センサ2
12の出力は測定・制御室110に送られ、該測定・制
御室110の指令で、上記環境制御装置109やポンプ
等の各種機器が制御されるようになっている。
Reference numeral 211 denotes a fertilizer detection sensor for detecting the fertilizer concentration of the hydroponic liquid in the hydroponic liquid tank 202, and reference numeral 212 denotes P of the hydroponic liquid.
It is a PH detection sensor for detecting the H value, and is the solar radiation amount sensor 114, the fertilizer detection sensor 211, the PH detection sensor
The output of 12 is sent to the measurement / control room 110, and various devices such as the environment control device 109 and the pump are controlled by a command from the measurement / control room 110.

【0025】水耕液温調節装置500は電動式冷凍機5
02を具備し、日射のある昼間に太陽光発電装置400
から供給される電力により、ポンプ503及び該電動式
冷凍機502を作動させ蓄熱槽501の蓄冷液を冷却
し、該蓄冷液を蓄熱槽501に蓄えておき、水耕液タン
ク202内の水耕液の液温に応じて蓄熱槽501内の蓄
冷液をポンプ504で温調コイル205に送り、水耕液
タンク202内の水耕液と熱交換を行なう。
The water culture temperature controller 500 is an electric refrigerator 5
02 and the solar power generation device 400 in the daytime with solar radiation.
The pump 503 and the electric refrigerator 502 are operated by the electric power supplied from the chiller to cool the cold storage liquid in the heat storage tank 501, the cold storage liquid is stored in the heat storage tank 501, and the water culture in the water culture liquid tank 202 is performed. The regenerator liquid in the heat storage tank 501 is sent to the temperature control coil 205 by the pump 504 according to the liquid temperature of the liquid, and exchanges heat with the hydroponic liquid in the hydroponic liquid tank 202.

【0026】なお、505は蓄熱槽501内の蓄冷液の
レベルを検出するレベルセンサである。ここで電動式冷
凍機502とは電動機によって駆動される機械的に冷媒
を圧縮して冷熱を得るターボ式やピストン式等の機械圧
縮式冷凍機のことをいう。また、本実施の形態において
は空冷式を用いた。
A level sensor 505 detects the level of the cold storage liquid in the heat storage tank 501. Here, the electric refrigerator 502 refers to a mechanical compression refrigerator such as a turbo type or a piston type that mechanically compresses a refrigerant and that obtains cold heat by being driven by the electric motor. In this embodiment, an air-cooled type is used.

【0027】また、本実施の形態では詳細に記載してい
ないが、栽培室100で必要な24時間連続した運転と
なるポンプの消費電力、制御に必要な電力、その他の全
ての電力は太陽光発電装置400からの電力を蓄電池を
介して供給されるように構成することによって外部から
の電力供給が不要となり、独立した植物水耕栽培設備と
して構成する。
Although not described in detail in the present embodiment, the power consumption of the pump, which is required to operate continuously for 24 hours in the cultivation room 100, the power required for the control, and all other power are sunlight. By configuring so that the power from the power generation device 400 is supplied via the storage battery, external power supply is not required, and the plant is configured as an independent plant hydroponic cultivation facility.

【0028】なお、水耕液温調節装置は上記構成に限定
されるものではなく、例えば図11に示すように、深海
水循環ポンプ520を備え、日射のある昼間に例えば深
海水循環ポンプ520の専用として単独に設置されてい
る太陽光発電装置521から供給される電力により該深
海水循環ポンプ520を起動し、低温の深海水308a
を汲み上げ、蓄熱槽501内に配設された冷却コイル5
22を通して循環させ、該蓄熱槽501内の蓄冷液との
間で熱交換を行ない冷却し、該蓄冷液を水耕液タンク2
02内の水耕液の液温に応じてポンプ504で温調コイ
ル205に送り、水耕液タンク202内の水耕液と熱交
換を行なう構成とすると良い。
It should be noted that the hydroponic liquid temperature control device is not limited to the above-described configuration. For example, as shown in FIG. 11, a deep sea water circulation pump 520 is provided. The deep seawater circulation pump 520 is activated by the electric power supplied from the photovoltaic power generation device 521 installed alone, and the low-temperature deepwater 308 a
And the cooling coil 5 provided in the heat storage tank 501.
22 and exchanges heat with the cold storage liquid in the heat storage tank 501 for cooling.
It is preferable that the water is sent to the temperature control coil 205 by the pump 504 in accordance with the temperature of the hydroponic liquid in the tank 02 to exchange heat with the hydroponic liquid in the hydroponic liquid tank 202.

【0029】このように深海水循環ポンプ520の駆動
専用に単独で太陽光発電装置521を設置し、同時に深
海水308aの循環系523を閉回路にすることによ
り、海と栽培室の距離が遠い場合でも最適な場所に深海
水循環ポンプ520を設置でき、さらに蓄電池を設置す
ることなしに日射量に対応した発電量による深海水循環
ポンプ520の運転であっても無駄なく冷熱を蓄えるこ
とができる。また、循環系523を閉回路にすることに
より、揚程差がなくなるので、深海水循環ポンプ520
の動力が小さくて済み、動力源となる太陽光発電装置5
21を小さく(小容量)することができる。
As described above, the photovoltaic power generator 521 is installed solely for driving the deep sea water circulation pump 520, and the circulation system 523 for the deep sea water 308a is closed at the same time. However, the deep sea water circulation pump 520 can be installed at an optimal place, and even without the storage battery, even when the deep sea water circulation pump 520 is operated by the power generation amount corresponding to the amount of solar radiation, cold heat can be stored without waste. Further, since the head difference is eliminated by making the circulation system 523 a closed circuit, the deep seawater circulation pump 520
Solar power generation device 5 that needs only a small power
21 can be made small (small capacity).

【0030】また、蓄熱槽501内の蓄冷液と水耕液タ
ンク202内の水耕液の間は温調コイル205を介して
間接的に熱交換が行われるため、万一腐食等で系外に海
水が漏れた場合でも水耕液側への海水混入を防ぐことが
できる。また、動力効率等の心配がいらないようであれ
ば蓄熱槽501を介さず低温の深海水を直接温調コイル
205に送り、該深海水と水耕液の間で熱交換すること
も考えられる。
Further, since heat exchange is performed indirectly between the cold storage liquid in the heat storage tank 501 and the hydroponic liquid in the hydroponic liquid tank 202 via the temperature control coil 205, the corrosion may occur outside the system. Even when seawater leaks, seawater can be prevented from entering the hydroponic solution side. If there is no need to worry about power efficiency or the like, it is conceivable to send low-temperature deep seawater directly to the temperature control coil 205 without passing through the heat storage tank 501 and exchange heat between the deep seawater and the hydroponic solution.

【0031】また、水耕液温調節装置としては、吸収式
冷凍機に比べて65℃前後の低い温水で効率良く冷熱を
取り出せ、また電動式冷凍機より動力が少なくて済む吸
着式冷凍機を設け、日射のある昼間に太陽光発電装置4
00から供給される電力と蓄熱槽を具備した太陽熱温水
器により加熱された温水により該吸着式冷凍機を作動さ
せ、該吸着式冷凍機により冷却された蓄冷液を蓄える地
下に埋設した蓄熱槽501に蓄えておき、水耕液タンク
202内の水耕液の液温に応じて蓄熱槽501内の蓄冷
液をポンプ504で温調コイル205に送り、水耕液タ
ンク202内の水耕液と熱交換を行なう構成としても良
い。これにより、太陽エネルギーを熱として有効に使う
と同時に太陽光発電装置400を小さくすることができ
る。
As the hydroponic liquid temperature controller, an adsorption type refrigerator capable of efficiently extracting cold heat with hot water having a temperature of about 65 ° C. lower than that of an absorption type refrigerator and requiring less power than an electric type refrigerator is used. Provided during the daytime with solar radiation 4
The heat storage tank 501 buried underground for storing the cold storage liquid cooled by the adsorption type refrigerator by operating the adsorption type refrigerator with the electric power supplied from 00 and the hot water heated by the solar water heater having the heat storage type tank. The cold storage liquid in the heat storage tank 501 is sent to the temperature control coil 205 by the pump 504 according to the temperature of the hydroponic liquid in the hydroponic liquid tank 202, and is stored in the hydroponic liquid tank 202. The heat exchange may be performed. Thus, the solar power generation device 400 can be made smaller while effectively using solar energy as heat.

【0032】図3は吸着式冷凍機を用いた水耕液温調節
装置のシステム構成を示す図であるる。本水耕液温調節
装置500は吸着式冷凍機510、冷却塔511、冷熱
用の蓄熱槽501、温熱用の蓄熱槽513、太陽光51
5を熱に変換して集める集熱板514を具備する構成で
あり、蓄熱槽513の温水をポンプ519で集熱板51
4に送り、加熱し水温50℃〜80℃の温水を得て蓄熱
槽513に蓄える。該蓄熱槽513の温水を熱源として
ポンプ518で吸着式冷凍機510に送る。蓄熱槽50
1の蓄冷液をポンプ517で吸着式冷凍機510に送
り、該冷却した蓄冷液を蓄熱槽501に蓄える。冷却塔
511からの冷却水はポンプ516で吸着式冷凍機51
0に送られ、加温されて冷却塔511に戻り冷却され
る。
FIG. 3 is a diagram showing a system configuration of a water culture liquid temperature control device using an adsorption type refrigerator. The hydroponic liquid temperature control device 500 includes an adsorption refrigerator 510, a cooling tower 511, a heat storage tank 501 for cooling, a heat storage tank 513 for heating, and sunlight 51.
The heat collecting plate 514 is provided with a heat collecting plate 514 that converts the heat into heat and collects the heat.
4 and heated to obtain hot water having a water temperature of 50 ° C. to 80 ° C. and store it in the heat storage tank 513. The hot water in the heat storage tank 513 is sent to the adsorption refrigerator 510 by the pump 518 as a heat source. Thermal storage tank 50
The cold storage liquid of No. 1 is sent to the adsorption refrigerator 510 by the pump 517, and the cooled cold storage liquid is stored in the heat storage tank 501. The cooling water from the cooling tower 511 is supplied to the adsorption refrigerator 51
0, heated and returned to the cooling tower 511 to be cooled.

【0033】水耕液温調節装置を上記の如く構成するこ
とにより、消費電力が少なく、低い温度の駆動熱源で冷
熱を取り出せると共に、低い温度の駆動熱源は集熱板5
14で太陽光515から容易に取り出せる。なお、冷熱
用の蓄熱槽501は地下埋設型とする。また、冷却塔5
11は他の冷却源であっても良い。なお、本実施の形態
では蓄冷液に水を用いたが藻の発生や菌増殖防止等のた
めに必要に応じて添加物を添加した水溶液等を使用して
も何ら問題はない。
By configuring the hydroponic liquid temperature control device as described above, power consumption is low, cold heat can be taken out by a low-temperature driving heat source, and the low-temperature driving heat source is a heat collecting plate 5.
At 14, it can be easily extracted from sunlight 515. In addition, the heat storage tank 501 for cold heat is an underground buried type. The cooling tower 5
11 may be another cooling source. In the present embodiment, water is used as the cold storage liquid. However, there is no problem even if an aqueous solution to which an additive is added as necessary is used to prevent the generation of algae and the prevention of bacterial growth.

【0034】図4(a)は栽培室とその屋根に配設され
た太陽光発電パネルの一例を示す図、図4(b)は北半
球における太陽軌道を説明するための図である。栽培室
は図4(a)に示すように、その屋根101の日射を受
ける傾斜面をおよそ南に向くように配置されている。ま
た、太陽の軌道10は北半球に於いては、北半球におけ
る日本近辺での太陽軌道の図4(b)に示すように緯度
に対して傾斜角θを持つ円弧を描くが、代表して図4
(a)の栽培室100の屋根に配設された太陽光発電パ
ネルの図に示す太陽軌道10で表現する。
FIG. 4A is a view showing an example of a cultivation room and a photovoltaic power generation panel provided on a roof thereof, and FIG. 4B is a view for explaining a solar orbit in the northern hemisphere. As shown in FIG. 4A, the cultivation room is arranged so that the inclined surface of the roof 101 that receives the solar radiation is directed substantially south. In the northern hemisphere, the orbit 10 of the sun draws an arc having an inclination angle θ with respect to the latitude as shown in FIG. 4B of the sun orbit near Japan in the northern hemisphere.
This is represented by the solar orbit 10 shown in the figure of the solar power generation panel arranged on the roof of the cultivation room 100 in (a).

【0035】栽培室100の屋根101に太陽光発電パ
ネル401を太陽の軌道10に直交する方向に平行に所
定の間隔(スリット)を設けて設置する。屋根101及
び太陽光発電パネル401の傾斜角度αは太陽光入射角
θに対して最適傾斜角度になるように設置する。ここ
で、屋根101の傾斜角度αは、Sakumatu.Y,clean and
safe energy forever,3(1989),2037に記載のOptimum Ti
lt Angle of a South Oriented Surface for Annual In
solation in Degreeに示される設置地域のデータを参考
に条件を合わせて決定される。
A photovoltaic panel 401 is provided on the roof 101 of the cultivation room 100 at a predetermined interval (slit) parallel to a direction orthogonal to the orbit 10 of the sun. The roof 101 and the photovoltaic panel 401 are installed so that the inclination angle α is an optimum inclination angle with respect to the sunlight incident angle θ. Here, the inclination angle α of the roof 101 is Sakumatu.Y, clean and
Optimum Ti described in safe energy forever, 3 (1989), 2037
lt Angle of a South Oriented Surface for Annual In
The conditions are determined by referring to the data of the installation area shown in solation in Degree.

【0036】このように太陽光発電パネル401を屋根
101に配設することにより、別に太陽光発電パネル4
01を設置するスペースが不要になり省スペース化が図
れると同時に、日射が強い地域においては遮光により日
射量の低減ができる。更に、栽培室100内の異常な温
度上昇を防止することができる。
By arranging the photovoltaic power generation panel 401 on the roof 101 in this way, the photovoltaic power generation panel 4
In addition, the space for installing 01 is not required, so that the space can be saved. At the same time, in an area where sunlight is strong, the amount of sunlight can be reduced by shading. Furthermore, abnormal temperature rise in the cultivation room 100 can be prevented.

【0037】また、屋根101と太陽光発電パネル40
1の傾斜角度を同じにしているため、屋根101の一部
を太陽光発電パネル401で代用し更に一体化できるの
で、構造が簡略化され、取り付け工事が容易になり、軽
量化が図れる。
The roof 101 and the solar panel 40
Since the angle of inclination of 1 is the same, a part of the roof 101 can be replaced with the photovoltaic power generation panel 401 and further integrated, so that the structure is simplified, the installation work is easy, and the weight can be reduced.

【0038】図5は太陽光発電パネルの温度上昇による
効率低下及び栽培室内の温度上昇をより防ぐために工夫
し、太陽光発電パネルを栽培室の屋根に取り付けた状態
を示す図である。図示するように、太陽光発電パネル4
01を栽培室100の屋根101の縦方向の梁111の
上に取付部材112を介在させて配置する。これによ
り、栽培室100の屋根101の傾斜面と太陽光発電パ
ネル401との間にトンネル状の隙間Gが形成される。
この隙間Gを設けることにより、空気断熱層が形成され
高温となっている太陽光発電パネル401の熱が栽培室
100内に浸入するのを防ぐことができる。
FIG. 5 is a view showing a state in which the photovoltaic power generation panel is mounted on the roof of the cultivation room, which is devised so as to further prevent the efficiency decrease and the temperature increase in the cultivation room due to the temperature rise of the solar power generation panel. As shown, the solar panel 4
01 is arranged on the vertical beam 111 of the roof 101 of the cultivation room 100 with the attachment member 112 interposed therebetween. Thereby, a tunnel-shaped gap G is formed between the inclined surface of the roof 101 of the cultivation room 100 and the solar panel 401.
By providing the gap G, it is possible to prevent the heat of the solar power generation panel 401, which has an air heat insulating layer and is high in temperature, from entering the cultivation room 100.

【0039】更に、太陽光発電パネル401の裏面から
の放熱により隙間G内の空気が加熱され屋根101の傾
斜面に沿って隙間G内に上昇気流が発生し、煙突効果が
得られる。この煙突効果で太陽光発電パネル401を冷
却する空気が該太陽光発電パネル401の裏面に接触し
ながらスムーズに流れ、太陽光発電パネル401を効果
的に冷却する。このことは同時に栽培室100の屋根1
01を冷却することになる。なお、太陽光発電パネル4
01の裏面に方熱フィン113を冷却空気の流れと平行
に取り付けることにより、より一層空気の流れがスムー
ズになると同時に放熱面積の増加により冷却効果がさら
に増大する。
Further, the air in the gap G is heated by heat radiation from the back surface of the photovoltaic power generation panel 401, and an ascending air current is generated in the gap G along the inclined surface of the roof 101, so that a chimney effect is obtained. Due to this chimney effect, air for cooling the solar power generation panel 401 flows smoothly while contacting the back surface of the solar power generation panel 401, and effectively cools the solar power generation panel 401. This means that the roof 1
01 will be cooled. In addition, the solar panel 4
By mounting the heating fins 113 on the back surface of the cooling fan 01 in parallel with the flow of the cooling air, the flow of the air becomes smoother and at the same time, the cooling effect is further increased by the increase of the heat radiation area.

【0040】通年の一日の太陽の軌道10及び栽培室1
00の設置位置を考慮して太陽光発電パネル401は該
栽培室100の屋根101に太陽軌道10に略直交する
方向に対向して平行に配置する。その時のスリット幅L
1と太陽光パネル401により生じる遮光幅L2(図4
参照)の比率を最適にする。この最適比率の割合は、栽
培槽201上に生じる暗周期を極力短くなるようにする
ことと、強い日射を遮光し栽培に適した日射量に調整す
ることから決定される。これにより図6に示すように、
栽培槽201に一日の積算日射量が略一様で且つ適量に
なるようにしている。
The orbit 10 of the sun and the cultivation room 1 throughout the year
The solar power generation panel 401 is disposed on the roof 101 of the cultivation room 100 so as to be opposed to and parallel to the direction substantially orthogonal to the solar track 10 in consideration of the installation position of the solar cell 100. The slit width L at that time
4 and a light blocking width L2 generated by the solar panel 401 (FIG. 4).
Optimize the ratio). The ratio of this optimal ratio is determined by shortening the dark cycle generated on the cultivation tank 201 as much as possible and adjusting the amount of sunlight suitable for cultivation by shielding the strong sunlight from light. Thereby, as shown in FIG.
In the cultivation tank 201, the integrated amount of solar radiation per day is substantially uniform and appropriate.

【0041】また、図2に示すように栽培面上部に半透
光性の材質からなるカーテン103を設置することによ
り、日射光をやわらげ、散乱させることにより、太陽光
発電パネル401の設置により生じる栽培槽201面上
の明暗を減じ、栽培面に極力一様に日射を供給すること
ができた。
Also, as shown in FIG. 2, by installing a curtain 103 made of a semi-translucent material above the cultivation surface, the solar light is softened and scattered, so that the solar power generation panel 401 is provided. The light and darkness on the cultivation tank 201 surface was reduced, and the solar radiation could be supplied to the cultivation surface as uniformly as possible.

【0042】図7は水耕栽培設備200の構成例を示す
図で、ここでは水耕液タンク202内の水耕液を水耕液
循環ポンプ213で栽培槽201に送り、栽培槽201
からの水耕液が水耕液タンク202内に戻るようになっ
ている。また、酸素供給器206からの酸素又は空気は
図8に示すように、栽培槽201の底部に配置した散気
管214から植物11の根近傍に供給する。この場合、
酸素濃度を空気中の酸素濃度より高くすることにより、
少量の供給量で根近傍の水耕液中の溶存酸素量を増やし
植物11に十分な酸素を片寄りなく均一に供給できるよ
うにする。なお、図7においては水耕液の冷却装置は省
略してある。
FIG. 7 is a view showing an example of the configuration of the hydroponic cultivation equipment 200. Here, the hydroponic liquid in the hydroponic liquid tank 202 is sent to the cultivation tank 201 by the hydroponic liquid circulation pump 213, and
From the tank returns to the inside of the tank 202. As shown in FIG. 8, oxygen or air from the oxygen supply unit 206 is supplied to the vicinity of the root of the plant 11 from the air diffuser 214 disposed at the bottom of the cultivation tank 201. in this case,
By making the oxygen concentration higher than the oxygen concentration in the air,
With a small amount of supply, the amount of dissolved oxygen in the hydroponic solution near the root is increased so that sufficient oxygen can be supplied to the plant 11 uniformly without unevenness. In FIG. 7, the cooling device for the hydroponic solution is omitted.

【0043】栽培槽201は大きい外表面を有し、外部
からの熱浸入による吸熱量も多いことから、水耕液の保
冷のために、槽全体を発砲スチロール又はポリウレタン
等の断熱性に優れた材料で造る。これにより水耕液の冷
却に必要な冷熱量を格段に減少させ栽培室100に必要
なユーティリティ量(電力量)の大部分を占める冷却源
の負荷の軽減を図り、植物11の栽培に必要なユーティ
リティ量(電力量)を全体的に抑えることができる。
Since the cultivation tank 201 has a large outer surface and has a large amount of heat absorption due to heat penetration from the outside, the entire tank is excellent in heat insulation such as foamed styrene or polyurethane for keeping the water culture liquid cool. Made of materials. This significantly reduces the amount of cold required for cooling the hydroponic solution, reduces the load on a cooling source that accounts for most of the utility amount (electricity) required for the cultivation room 100, and reduces the load on the plant 11. The utility amount (electric power amount) can be reduced as a whole.

【0044】図9は本発明の植物水耕栽培装置で使用す
る淡水化装置のシステム構成例を示す図であり、本淡水
化装置は太陽エネルギーを利用した淡水化装置の一例で
ある。図示するように、淡水化装置300は太陽エネル
ギー利用の真空蒸留淡水化装置301、淡水槽302、
淡水槽303、真空排気制御装置304、海水タンク3
05、前処理装置306を具備する構成である。ポンプ
307により海水308を汲み上げ前処理装置306に
送り、前処理を施した海水をポンプ309で高所に設置
した海水タンク305に蓄えて置く。真空蒸留淡水化装
置301内には海水槽311が配置されており、その海
水が常に一定のレベルになるように海水タンク305か
ら海水が流下するようになっている。
FIG. 9 is a diagram showing an example of a system configuration of a desalination apparatus used in the plant hydroponics apparatus of the present invention. The desalination apparatus is an example of a desalination apparatus using solar energy. As shown in the figure, the desalination apparatus 300 includes a vacuum distillation desalination apparatus 301 utilizing solar energy, a desalination tank 302,
Freshwater tank 303, evacuation controller 304, seawater tank 3
05, a configuration including a pre-processing device 306. The seawater 308 is pumped up by the pump 307 and sent to the pretreatment device 306, and the pretreated seawater is stored in the seawater tank 305 installed at a high place by the pump 309. A seawater tank 311 is disposed in the vacuum distillation desalination apparatus 301, and the seawater flows down from the seawater tank 305 so that the seawater always has a constant level.

【0045】真空蒸留淡水化装置301は後に詳述する
ようにこの海水から蒸留水を得るようになっており、得
られた蒸留水は淡水槽302に流れ込むようになってい
る。該真空蒸留淡水化装置301は図示は省略するが複
数台設置されており、複数の淡水槽302の蒸留水は淡
水槽303に集められるようになっている。また、海水
槽311内の濃縮海水や後述する真空蒸発缶内の濃縮海
水は適宜系外に排出されるようになっている。
The vacuum distillation desalination apparatus 301 is adapted to obtain distilled water from this seawater, as will be described later in detail, and the obtained distilled water flows into the freshwater tank 302. Although not shown, a plurality of vacuum distillation desalination apparatuses 301 are provided, and the distilled water in the plurality of freshwater tanks 302 is collected in a freshwater tank 303. Further, the concentrated seawater in the seawater tank 311 and the concentrated seawater in a vacuum evaporator described later are appropriately discharged to the outside of the system.

【0046】真空蒸留淡水化装置301は全体を空気遮
蔽体312で覆われた構造で、その側面及び底面には放
熱用のフィン313が設けられている。内部には太陽エ
ネルギーを利用して蒸留水を得る真空蒸留部を構成する
真空蒸発缶315や太陽エネルギーを集め熱に変換する
集熱板316が配置されている。
The vacuum distillation desalination apparatus 301 has a structure in which the whole is covered with an air shield 312, and radiating fins 313 are provided on the side and bottom surfaces. Inside, a vacuum evaporator 315 constituting a vacuum distillation unit for obtaining distilled water using solar energy and a heat collecting plate 316 for collecting solar energy and converting it to heat are arranged.

【0047】図10は上記集熱板や真空蒸発缶等で構成
される真空蒸留部のシステム構成の概要を示す図であ
る。図示するように、真空蒸留部は複数個の真空蒸発缶
315(図では3個の真空蒸発缶315−1,315−
2,315−3)と各真空蒸発缶315内に配置された
伝熱管321、322、323等を具備している。ま
た、各真空蒸発缶315内には海水槽311から海水が
真空排気制御装置304の制御により一定水位に収容さ
れている。
FIG. 10 is a diagram showing an outline of a system configuration of a vacuum distillation section composed of the heat collecting plate, the vacuum evaporator and the like. As shown in the figure, the vacuum distillation unit includes a plurality of vacuum evaporators 315 (three vacuum evaporators 315-1 and 315-315 in the figure).
2, 315-3) and heat transfer tubes 321, 322, 323 arranged in each vacuum evaporator 315. In each of the vacuum evaporators 315, seawater is stored at a fixed water level from a seawater tank 311 under the control of the vacuum exhaust control device 304.

【0048】集熱板316と伝熱管321は配管325
で接続されており、集熱板316で熱媒体である水が加
熱され、発生した水蒸気324は伝熱管321に送ら
れ、真空蒸発缶315−1内の海水と熱交換し、自身は
凝縮水となって集熱板316に戻る。即ち、サーモサイ
フォンの作用により、集熱板316と伝熱管321の間
を熱媒体である水は循環する。
The heat collecting plate 316 and the heat transfer tube 321 are connected to a pipe 325.
The water as a heat medium is heated by the heat collecting plate 316, and the generated water vapor 324 is sent to the heat transfer tube 321 and exchanges heat with seawater in the vacuum evaporator 315-1. And returns to the heat collecting plate 316. That is, the water as the heat medium circulates between the heat collecting plate 316 and the heat transfer tube 321 by the action of the thermosiphon.

【0049】上記真空蒸発缶315−1内の海水と水蒸
気324との熱交換により、加熱されたた海水から発す
る水蒸気326は配管327を通って真空蒸発缶315
−2内の伝熱管322に送られ、真空蒸発缶315−2
内の海水と熱交換し、自身は凝縮して蒸留水328とな
って淡水槽318に流れ込む。該熱交換で加熱された海
水から発する水蒸気329は配管330を通って真空蒸
発缶315−3内の伝熱管323に送られ、真空蒸発缶
315−3内の海水と熱交換し、自身は凝縮して蒸留水
331となって淡水槽319に流れ込む。
Due to the heat exchange between the seawater in the vacuum evaporator 315-1 and the water vapor 324, the water vapor 326 generated from the heated seawater passes through the pipe 327 and passes through the vacuum evaporator 315.
-2 is sent to the heat transfer tube 322 in the vacuum evaporator 315-2.
It exchanges heat with the seawater inside and condenses itself as distilled water 328 and flows into the freshwater tank 318. The water vapor 329 generated from the seawater heated by the heat exchange is sent to the heat transfer tube 323 in the vacuum evaporator 315-3 through the pipe 330, and exchanges heat with the seawater in the vacuum evaporator 315-3, and condenses itself. Then, it becomes distilled water 331 and flows into the freshwater tank 319.

【0050】該熱交換で加熱された海水から発する水蒸
気332は配管333を通って凝縮器317に送られ
る。該凝縮器317は真空蒸留淡水化装置301内の海
水槽311に配置されており、凝縮器317に送られた
水蒸気332は該海水槽311内の海水と熱交換し、蒸
留水334となって淡水槽320に流れ込む。該淡水槽
318、319、320の蒸留水は適宜淡水槽302
(図9参照)に集められる。なお、上記真空蒸留淡水化
装置301は本出願人が平成8年6月19日付けで出願
した「淡水化装置及びその運転方法」の明細書及び図面
に開示する内容と略同一であるのでここではその詳細な
説明を省略する。
The steam 332 emitted from the seawater heated by the heat exchange is sent to the condenser 317 through the pipe 333. The condenser 317 is disposed in a seawater tank 311 in the vacuum distillation desalination apparatus 301, and the steam 332 sent to the condenser 317 exchanges heat with seawater in the seawater tank 311 to become distilled water 334. It flows into the freshwater tank 320. The distilled water in the freshwater tanks 318, 319, and 320 is appropriately supplied to the freshwater tank 302.
(See FIG. 9). Since the vacuum distillation desalination apparatus 301 is substantially the same as the contents disclosed in the specification and the drawings of the “desalination apparatus and its operation method” filed on June 19, 1996 by the present applicant, Then, the detailed description is omitted.

【0051】なお、淡水化装置は別方式の太陽エネルギ
ーを利用した蒸留装置でもよく、また太陽光発電装置を
単独に設備したRO膜を用いた淡水化装置を用いてもよ
く、何ら限定するものではない。
The desalination apparatus may be a distillation apparatus using solar energy of another type, or a desalination apparatus using an RO membrane provided solely with a photovoltaic power generator may be used. is not.

【0052】太陽光発電装置400は図示は省略する
が、制御盤、蓄電池、DC/ACインバータ等を具備
し、栽培室100の屋根に設置された太陽光発電パネル
401で発電された直流電力を集め、所定電圧の直流電
力や交流電力に変換し、各部に供給する。なお、真空蒸
留淡水化装置301は、本装置に搭載された太陽光発電
パネル402を具備した専用の太陽光発電装置により単
独に電力供給するようにしている。
Although not shown, the photovoltaic power generation device 400 includes a control panel, a storage battery, a DC / AC inverter, and the like, and supplies DC power generated by a photovoltaic power generation panel 401 installed on the roof of the cultivation room 100. They are collected, converted into DC power or AC power of a predetermined voltage, and supplied to each unit. Note that the vacuum distillation desalination apparatus 301 is solely supplied with power by a dedicated photovoltaic power generation apparatus having a photovoltaic power generation panel 402 mounted on the apparatus.

【0053】[0053]

【発明の効果】以上説明したように本願各請求項に記載
の発明によれば、水耕栽培設備で必要とする電力の全部
又は一部を太陽光発電装置から得ると共に、水耕栽培に
必要な水の全部又は一部を淡水化装置で得るように構成
し、水耕栽培設備の水耕液の液温を植物の水耕栽培に適
した所定の温度に調整する水耕液温調節手段を設けたの
で、太陽エネルギーを利用することにより、植物栽培に
必要なユーティリティの外部からの導入を極力減少又は
不要にすることができ、砂漠のような不毛地域或いは孤
島のように外部から所定量ユーティリティを得ることが
できない地域でも植物の栽培ができるだけでなく、日射
量が強く高温下においても植物栽培を可能にするという
優れた効果が得られる。
As described above, according to the invention described in each claim of the present application, all or a part of the electric power required for the hydroponic cultivation equipment is obtained from the photovoltaic power generation device and required for the hydroponic cultivation. Hydroponic liquid temperature adjusting means configured to obtain all or part of fresh water with a desalination apparatus, and to adjust the liquid temperature of the hydroponic liquid of the hydroponic cultivation equipment to a predetermined temperature suitable for hydroponics of plants. By using solar energy, it is possible to minimize or eliminate the need for external installation of utilities necessary for plant cultivation, and to provide a predetermined amount of external resources such as barren areas such as deserts or isolated islands. The excellent effect of not only cultivating plants in an area where utility is not available, but also enabling cultivation of plants even under high sunlight and high temperature is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の植物水耕栽培装置のシステム構成を示
す図である
FIG. 1 is a diagram showing a system configuration of a plant hydroponics apparatus of the present invention.

【図2】栽培室と水耕栽培設備と水耕液温調節装置の概
略構成を示す図である。
FIG. 2 is a diagram illustrating a schematic configuration of a cultivation room, a hydroponic cultivation facility, and a hydroponic liquid temperature control device.

【図3】吸着式冷凍機を用いた水耕液温調節装置のシス
テム構成を示す図である。
FIG. 3 is a diagram showing a system configuration of a water culture liquid temperature control device using an adsorption refrigerator.

【図4】図4(a)は栽培室とその屋根に配設された太
陽光発電パネルを示す図、図4(b)は北半球における
太陽軌道を説明するための図である。
FIG. 4 (a) is a diagram showing a cultivation room and a photovoltaic power generation panel arranged on a roof thereof, and FIG. 4 (b) is a diagram for explaining a solar orbit in the northern hemisphere.

【図5】太陽光発電パネルを栽培室の屋根に取り付けた
状態を示す図である。
FIG. 5 is a diagram showing a state where a solar power generation panel is attached to a roof of a cultivation room.

【図6】栽培室の屋根に配設された太陽光発電パネルの
スリットと日陰部の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a slit of a photovoltaic power generation panel arranged on a roof of a cultivation room and a shaded area.

【図7】水耕栽培設備の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a hydroponic cultivation facility.

【図8】栽培槽と散気管の配置を示す図である。FIG. 8 is a diagram showing an arrangement of a cultivation tank and an air diffuser.

【図9】淡水化装置のシステム構成例を示す図である。FIG. 9 is a diagram showing a system configuration example of a desalination apparatus.

【図10】真空蒸留部のシステム構成の概要を示す図で
ある。
FIG. 10 is a diagram showing an outline of a system configuration of a vacuum distillation unit.

【図11】水耕液温調節装置の蓄冷部のシステム構成例
を示す図である。
FIG. 11 is a diagram illustrating a system configuration example of a cold storage unit of the hydroponic liquid temperature control device.

【符号の説明】[Explanation of symbols]

100 栽培室 200 水耕栽培設備 300 淡水化装置 400 太陽光発電装置 500 水耕液温調節装置 REFERENCE SIGNS LIST 100 cultivation room 200 hydroponic cultivation equipment 300 desalination device 400 solar power generation device 500 hydroponic liquid temperature control device

フロントページの続き (72)発明者 盛下 学 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 南部 浩史 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 岡崎 裕 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 平山 淳 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Continuation of front page (72) Manabu Morishita 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Hiroshi Nambu 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Hiroshi Okazaki 11-1, Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Jun Hirayama 11-1, Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも屋根を有する栽培室、水耕液
温調節手段を有する水耕栽培設備、太陽光発電装置、淡
水化装置を具備した植物水耕栽培装置であって、該植物
水耕栽培装置が必要とする電力の全部又は一部を前記太
陽光発電装置から得ると共に、水耕液に用いる水の全部
又は一部を前記淡水化装置で得るように構成したことを
特徴とする植物水耕栽培装置。
1. A plant hydroponic cultivation apparatus comprising at least a cultivation room having a roof, a hydroponic cultivation facility having a hydroponic liquid temperature control means, a solar power generation device, and a desalination device. A plant water characterized in that all or part of the power required by the device is obtained from the solar power generation device, and all or part of the water used for the hydroponic solution is obtained by the desalination device. Cultivation equipment.
【請求項2】 前記水耕液温調節手段は、日射のある昼
間に前記太陽光発電装置から供給される電力により電動
式冷凍機を作動させ冷熱を造る冷熱製造装置と該冷熱製
造装置からの冷熱媒を蓄える蓄熱槽とを具備し、少なく
とも1日に必要な冷熱量を供給できるように構成すると
共に、前記水耕液の液温に応じて前記蓄熱槽からの冷熱
媒と水耕液との間で熱交換を行なう熱交換部を具備する
ことを特徴とする請求項1に記載の植物水耕栽培装置。
2. The hydroponic liquid temperature control means includes: a cold-heat producing apparatus that operates an electric refrigerator by electric power supplied from the photovoltaic power generator during daytime with solar radiation to produce cold heat; A heat storage tank for storing a cooling medium, configured to be able to supply a required amount of cold energy at least one day, and a cooling medium and a hydroponic solution from the heat storage tank according to the liquid temperature of the hydroponic solution. The plant hydroponic cultivation apparatus according to claim 1, further comprising a heat exchange unit that performs heat exchange between the plants.
【請求項3】 前記水耕液温調節手段は、日射のある昼
間に前記太陽光発電装置及び/又は深海水循環ポンプ専
用に別途設置された太陽光発電装置から供給される電力
により駆動される深海水循環ポンプを有すると共に、該
深海水循環ポンプで汲み上げた低温度の深海水を冷熱媒
との間で熱交換を行なう熱交換部と熱交換した冷熱媒を
蓄える蓄熱槽を備え、少なくとも1日に必要な冷熱量を
供給できるように構成すると共に、前記水耕液の液温に
応じて前記蓄熱槽からの冷熱媒と水耕液との間で熱交換
を行なう熱交換部を具備することを特徴とする請求項1
に記載の植物水耕栽培装置。
3. The hydroponic liquid temperature control means is a deep sea driven by electric power supplied from the photovoltaic power generator and / or a photovoltaic power generator separately installed exclusively for the deep sea water circulation pump during the daytime when solar radiation is present. It has a water circulation pump, a heat exchange unit for exchanging heat between the low-temperature deep seawater pumped by the deep seawater circulation pump and the cooling medium, and a heat storage tank for storing the heat exchanged heat and cooling medium. And a heat exchange unit that exchanges heat between the cooling medium and the hydroponic liquid from the heat storage tank according to the liquid temperature of the hydroponic liquid. Claim 1
The plant hydroponic cultivation apparatus according to 1.
【請求項4】 前記水耕液温調節手段は、日射のある昼
間に前記太陽光発電装置から供給される電力により駆動
され、また蓄熱槽を具備した太陽熱温水器により加熱さ
れた吸着式冷凍機と、該吸着式冷凍機からの冷熱媒を蓄
える蓄熱槽とを具備し、少なくとも1日に必要な冷熱量
を供給できるように構成すると共に、前記水耕液の液温
に応じて前記蓄熱槽からの冷熱媒と水耕液との間で熱交
換を行なう熱交換部を具備することを特徴とする請求項
1に記載の植物水耕栽培装置。
4. An adsorption refrigerator wherein the hydroponic liquid temperature control means is driven by electric power supplied from the photovoltaic power generator in the daytime when sunlight is present, and is heated by a solar water heater having a heat storage tank. And a heat storage tank for storing a cooling medium from the adsorption refrigerator, configured to be able to supply a required amount of cold energy at least for one day, and the heat storage tank according to a liquid temperature of the hydroponic liquid. The plant hydroponic cultivation apparatus according to claim 1, further comprising a heat exchange unit that performs heat exchange between the cooling medium and the hydroponic solution from the plant.
【請求項5】 前記太陽光発電装置の太陽光発電パネル
の一部又は全部を前記栽培室の屋根に太陽軌道と略直交
する方向に平行に設置すると共に、該屋根及び該太陽光
発電パネルの傾斜角度が太陽光入射角に対して最適傾斜
角度になるように設置したことを特徴とする請求項1乃
至4のいずれか1に記載の植物水耕栽培装置。
5. A part or the whole of the solar power generation panel of the solar power generation device is installed on a roof of the cultivation room in parallel to a direction substantially orthogonal to a solar track, and the roof and the solar power generation panel The plant hydroponic cultivation device according to any one of claims 1 to 4, wherein the inclination angle is set so as to be an optimal inclination angle with respect to a sunlight incident angle.
【請求項6】 通年の1日の太陽の軌道及び前記栽培室
の設置位置を考慮して前記太陽光発電装置の太陽光発電
パネルを該栽培室の屋根に太陽軌道と略直交する方向に
平行にスリット状に配置し、そのスリット幅と該太陽光
発電パネルによる遮光の幅の比率を最適にすることによ
り、前記水耕栽培設備の栽培面に1日の積算日射量が略
一様になるようにしたことを特徴とする請求項1乃至5
のいずれか1に記載の植物水耕栽培装置。
6. A solar power generation panel of the solar power generation apparatus is parallel to a roof of the cultivation room in a direction substantially orthogonal to the solar trajectory in consideration of the sun's orbit of the whole year and the installation position of the cultivation room. By arranging in a slit shape and optimizing the ratio of the slit width and the width of light shielding by the photovoltaic panel, the integrated solar radiation per day on the cultivation surface of the hydroponic cultivation equipment becomes substantially uniform. 6. The method according to claim 1, wherein
The plant hydroponics apparatus according to any one of the above.
【請求項7】 栽培面上方に半透光性の材質からなるカ
ーテンを設置することにより、太陽光発電パネル設置に
より生じる栽培面上の明暗を減じ、栽培面に極力一様に
日射が供給できるようにしたことを特徴とする請求項6
に記載の植物水耕栽培装置。
7. By installing a curtain made of a semi-translucent material above the cultivation surface, the brightness on the cultivation surface caused by the installation of the photovoltaic power generation panel can be reduced, and sunlight can be supplied to the cultivation surface as uniformly as possible. 7. The method according to claim 6, wherein
The plant hydroponic cultivation apparatus according to 1.
JP8220590A 1996-08-01 1996-08-01 Water culture apparatus for plant Pending JPH1042730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8220590A JPH1042730A (en) 1996-08-01 1996-08-01 Water culture apparatus for plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220590A JPH1042730A (en) 1996-08-01 1996-08-01 Water culture apparatus for plant

Publications (1)

Publication Number Publication Date
JPH1042730A true JPH1042730A (en) 1998-02-17

Family

ID=16753368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220590A Pending JPH1042730A (en) 1996-08-01 1996-08-01 Water culture apparatus for plant

Country Status (1)

Country Link
JP (1) JPH1042730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193837A (en) * 2009-02-26 2010-09-09 Shimane Prefecture Greenhouse including plurality of solar battery modules arranged therein and method for arranging solar battery modules
JP2013030767A (en) * 2011-06-23 2013-02-07 Aporo Kagaku Kenkyusho:Kk Photovoltaic power generator
JP2014079173A (en) * 2012-10-12 2014-05-08 Asahi Techno Plant Co Ltd Water tank for installation of photovoltaic power generation module and photovoltaic power generation system
KR101468375B1 (en) * 2008-01-01 2014-12-03 주식회사 뉴파워 프라즈마 Plant cultivation equipment using solar power generation equipment
JP2020531013A (en) * 2017-08-23 2020-11-05 チョ ヤン−チャイCHO, Young−chai Plant factory
WO2024123120A1 (en) * 2022-12-07 2024-06-13 지에스건설 주식회사 Desalination aquaculture facility and desalination method for desalination aquaculture facility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468375B1 (en) * 2008-01-01 2014-12-03 주식회사 뉴파워 프라즈마 Plant cultivation equipment using solar power generation equipment
JP2010193837A (en) * 2009-02-26 2010-09-09 Shimane Prefecture Greenhouse including plurality of solar battery modules arranged therein and method for arranging solar battery modules
JP2013030767A (en) * 2011-06-23 2013-02-07 Aporo Kagaku Kenkyusho:Kk Photovoltaic power generator
JP2014079173A (en) * 2012-10-12 2014-05-08 Asahi Techno Plant Co Ltd Water tank for installation of photovoltaic power generation module and photovoltaic power generation system
JP2020531013A (en) * 2017-08-23 2020-11-05 チョ ヤン−チャイCHO, Young−chai Plant factory
WO2024123120A1 (en) * 2022-12-07 2024-06-13 지에스건설 주식회사 Desalination aquaculture facility and desalination method for desalination aquaculture facility

Similar Documents

Publication Publication Date Title
AU706605B2 (en) Solar concentrator for heat and electricity
JP2018509892A (en) Environmentally friendly indoor cultivation
CN108646832B (en) Greenhouse system based on solar energy and ground source heat pump
CN204373270U (en) PV air-conditioner Teat pump boiler
EP0517432A1 (en) Method of and means for conditioning air in an enclosure
CN110268882A (en) Novel agricultural Greenhouse System and solar energy accumulation energy supplying system
KR101324736B1 (en) Mobile homes available for drinking water production using solar power
CN107750763B (en) Warming system of sunlight greenhouse
CN104896769A (en) Tower type solar chimney salt, water and electricity cogeneration system and operation method thereof
KR20210009152A (en) Minimization of residual heat generation and greenhouse structure that can utilize natural energy
CN206061687U (en) A kind of greenhouse of active control soil air humiture
CN208425243U (en) New plant growth system and solar-heating heating refrigeration electricity generation system
CN104944488A (en) Salt-water-electricity cogeneration system of sun-tracking solar chimney and operation method of salt-water-electricity cogeneration system
KR100675785B1 (en) The solar collector and heating system using a solar collector
JPH1042730A (en) Water culture apparatus for plant
Rocamora et al. Aspects of PV/T solar system application for ventilation needs in greenhouses
JP3333380B2 (en) Environmental adjustment equipment
CN116025199A (en) Active and passive coupling heating solar house between additional sunshine
JPH0677489B2 (en) Greenhouse heating system
KR20130058820A (en) Soil heating apparatus using remainded heat of house and heat pump
CN2642032Y (en) High-efficiency energy-saving solar greenhouse
JP2014068624A (en) Solar system
CN105737303B (en) Automatic temperature-control selective cold storage self-circulation cooling system
US8365500B2 (en) Optimized building integrated hybrid roofing system
CN217407212U (en) Plant factory with ultra-low energy consumption