JPH1041435A - Structure-manufacturing wiring body substrate and manufacture thereof - Google Patents

Structure-manufacturing wiring body substrate and manufacture thereof

Info

Publication number
JPH1041435A
JPH1041435A JP8189192A JP18919296A JPH1041435A JP H1041435 A JPH1041435 A JP H1041435A JP 8189192 A JP8189192 A JP 8189192A JP 18919296 A JP18919296 A JP 18919296A JP H1041435 A JPH1041435 A JP H1041435A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
wiring body
main axis
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8189192A
Other languages
Japanese (ja)
Inventor
Michio Horiuchi
道夫 堀内
Hiroshi Miyagawa
弘志 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP8189192A priority Critical patent/JPH1041435A/en
Publication of JPH1041435A publication Critical patent/JPH1041435A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture the wiring body having excellent dimensional precision and sufficient strength without contraction, at low cost by a method wherein a number of metallic fine wires are buried in parallel with the main axis in a columnar body comprising a composition made of an organic insulator as a continuous phase, and an inorganic insulator as a discontinuous phase. SOLUTION: A material is prepared by mixing a varnish organic insulator 12 and inorganic insulator so as to inject this prepared material in a vessel wherein metallic fine wires 14 are disposed in tension in parallel with one another through the intermediary of upper and lower wide guides to be heated for cuiring the organic insulator 12 and manufacturing the columnar body 10. Through these procedures, the thick columnar body 10 in sufficient thickness with numerous metallic fine wires 14 buried in parallel with a main axis can be manufactured so easily within a short time to greatly improve the productivity. Furthermore, the manufactured columnar body 10 is subject to almost no dimensional contraction thereby enabling the dimensional precision to be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基板製造用配線体、
基板およびこれらの製造方法に関する。
TECHNICAL FIELD The present invention relates to a wiring body for manufacturing a substrate,
The present invention relates to a substrate and a manufacturing method thereof.

【0002】[0002]

【背景技術】発明者は先に、容器中に銅等の金属細線を
多数容器の主軸と平行になるように配置し、この容器内
にアルミナ等の高温焼成セラミック粉末の分散液を充填
し、乾燥後、高温焼成セラミック粉末が十分緻密に焼結
するに必要十分な、金属細線の融点以上の高温条件で焼
成して、緻密な柱状の焼結体を得、この柱状体を主軸に
垂直にスライスして貫通したビア導体を有する基板を得
る方法を開発した。この方法によれば、金属細線は高温
焼成セラミック粉末の焼結時に液化するので、焼成時の
セラミックの収縮によっても断線等せず、密なパターン
のビア導体を有する基板を製造することができる。また
液化した金属細線がセラミック中に拡散してしまわない
ことも確認されている。
BACKGROUND OF THE INVENTION The inventor has previously arranged a number of fine metal wires such as copper in a container so as to be parallel to the main axis of the container, and filled the container with a dispersion of a high-temperature fired ceramic powder such as alumina. After drying, the high-temperature fired ceramic powder is fired under high-temperature conditions that are sufficient and sufficient for sintering the metal dense enough to obtain a dense columnar sintered body, and this columnar body is perpendicular to the main axis. A method for obtaining a substrate having a via conductor penetrated by slicing was developed. According to this method, since the thin metal wires are liquefied during sintering of the high-temperature fired ceramic powder, a substrate having a dense pattern of via conductors can be manufactured without disconnection due to shrinkage of the ceramic during firing. It has also been confirmed that the liquefied fine metal wires do not diffuse into the ceramic.

【0003】さらに発明者は、容器中に銅等の金属細線
を多数容器の主軸と平行になるように配置し、この容器
内にガラスを主成分とする低温焼成セラミック粉末を充
填し、金属細線の融点以下の低温で焼成して、柱状の焼
結体を得、この柱状体を主軸に垂直にスライスして貫通
したビア導体を有する基板を得る方法を開発した。この
方法によれば、逆にガラスを主成分とする低温焼成セラ
ミック粉末が焼成時に融解するので、金属細線にストレ
スを与えず、やはり断線のないビア導体を有する基板を
得ることができる。
Further, the inventor arranges a large number of fine metal wires such as copper in a container so as to be parallel to the main axis of the container, and fills the container with a low-temperature fired ceramic powder containing glass as a main component. A method for obtaining a substrate having via conductors penetrating by sintering at a low temperature equal to or lower than the melting point to obtain a columnar sintered body and slicing the columnar body perpendicularly to the main axis. According to this method, on the contrary, since the low-temperature fired ceramic powder mainly composed of glass is melted at the time of firing, no stress is applied to the thin metal wires, and a substrate having via conductors which are not broken can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記前
者の方法によるときは、高温焼成セラミックが収縮率約
40%もの大きさで収縮するために、寸法精度がでない
という課題がある。また緻密に焼成するため、極めて硬
度が高く、容易にスライスができない。硬度を下げるた
めに添加物を添加すると逆に強度が低下するという課題
がある。また後者の方法によるときは、ガラスを主成分
とする低温焼成セラミックを用いるために、脆弱で強度
がでないという課題がある。そこで、本発明は上記課題
を解決すべくなされたものであり、その目的とするとこ
ろは、寸法精度がよく、機械加工性にも優れ、さらに安
価な基板製造用柱状体、基板およびこれらを生産性よく
製造できる製造方法を提供するにある。
However, in the case of the former method, there is a problem that the dimensional accuracy is not high because the high-temperature fired ceramic shrinks with a shrinkage ratio of about 40%. In addition, since it is baked densely, it has extremely high hardness and cannot be easily sliced. There is a problem that when an additive is added to lower the hardness, the strength is reduced. In the latter method, since a low-temperature fired ceramic mainly composed of glass is used, there is a problem that it is fragile and has low strength. Therefore, the present invention has been made to solve the above problems, and has as its object to provide a columnar body for manufacturing a substrate, which has good dimensional accuracy, is excellent in machinability, and is inexpensive, and in which these are manufactured. It is an object of the present invention to provide a production method capable of producing the composition with good efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、本発明に係る基
板製造用配線体では、有機絶縁物を連続相、無機絶縁物
を不連続相とする組成物から成る柱状体中に、その主軸
に平行に金属細線が多数埋設されていることを特徴とし
ている。有機絶縁物中に無機絶縁物が分散されているの
で、収縮がほとんどなく、寸法精度に優れ、強度も大き
く、また安価な配線体が提供できる。
The present invention has the following arrangement to achieve the above object. That is, in the wiring body for manufacturing a substrate according to the present invention, a large number of fine metal wires are buried in parallel with the main axis in a columnar body made of a composition having an organic insulator as a continuous phase and an inorganic insulator as a discontinuous phase. It is characterized by having. Since the inorganic insulator is dispersed in the organic insulator, it is possible to provide an inexpensive wiring body that hardly shrinks, has excellent dimensional accuracy, has high strength, and is inexpensive.

【0006】前記柱状体中にその軸線と平行に、セラミ
ック、金属あるいはセラミックと金属との複合体から成
る棒状体を埋設することにより、スライスして基板に形
成した際、該セラミック、金属あるいはこれらの複合体
部分を搭載する半導体チップの放熱体とすることができ
る。前記柱状体中にその軸線と平行に貫通孔を設けるこ
とにより、スライスして基板に形成した際、この貫通孔
部を搭載する半導体チップのキャビティとすることがで
きる。
By embedding a rod made of ceramic, metal or a composite of ceramic and metal in the columnar body in parallel with the axis thereof, when the substrate is sliced and formed on a substrate, the ceramic, metal, or metal or metal may be used. Can be used as a heat radiator of a semiconductor chip on which the composite portion of the above is mounted. By providing a through-hole in the columnar body in parallel with the axis thereof, when the substrate is sliced and formed on a substrate, a cavity of a semiconductor chip having the through-hole can be mounted.

【0007】前記有機絶縁物の配合量は30体積%以上
60体積%以下が好ましい。有機絶縁物の配合量が30
体積%未満であると、無機絶縁物の混入が難しくなり、
有機絶縁物の配合量が60体積よりも多くなると、配線
体の強度が低下するおそれがある。前記無機絶縁物に窒
化アルミニウム、炭化ケイ素、窒化ケイ素、酸化アルミ
ニウム、ムライト、コーディエライト、酸化ケイ素の内
のいずれか1種以上を用いると好適である。窒化アルミ
ニウムを用いれば放熱性に優れる配線体を提供できる。
また、前記有機絶縁物には、ポリイミド系、ベンゾシク
ロブテン系、ビスマレイミドトリアジン系、エポキシ
系、ポリフェニレンエーテル系のいずれかの樹脂を好適
に用いることができる。前記有機絶縁物をBステージ状
態に硬化させておくことによって、スライスして基板に
形成した際に、加熱することによって容易に接着性が得
られ、多層基板に形成するのが容易となる。
[0007] It is preferable that the compounding amount of the organic insulator is 30 vol% or more and 60 vol% or less. The amount of the organic insulator is 30
If it is less than the volume percentage, it becomes difficult to mix the inorganic insulating material,
If the amount of the organic insulator is more than 60 volumes, the strength of the wiring body may be reduced. It is preferable to use at least one of aluminum nitride, silicon carbide, silicon nitride, aluminum oxide, mullite, cordierite, and silicon oxide as the inorganic insulator. If aluminum nitride is used, a wiring body having excellent heat dissipation properties can be provided.
Further, as the organic insulator, any one of a polyimide resin, a benzocyclobutene resin, a bismaleimide triazine resin, an epoxy resin, and a polyphenylene ether resin can be suitably used. By curing the organic insulator in the B-stage state, when sliced and formed on a substrate, adhesiveness can be easily obtained by heating, and it is easy to form the substrate on a multilayer substrate.

【0008】上記基板製造用配線体をその主軸に垂直に
スライスすることにより、貫通したビア導体を有する基
板を提供できる。上記基板製造用配線体は、金属細線を
容器の主軸に平行に多数配置した該容器内に無機絶縁物
粉末を分散させた有機絶縁物未硬化物を充填した後、硬
化を行うことにより容易に製造することができる。その
際、前記容器内に前記金属細線と共に容器の主軸に平行
にセラミック、金属あるいはセラミックと金属との複合
物からなる棒状体を配置することにより、棒状体入りの
基板製造用配線体を得ることができる。また、前記容器
内に前記金属細線と共に容器の主軸に平行にセラミック
あるいは金属からなる筒状体を配置することにより、貫
通孔を有する基板製造用配線体を提供できる。さらに、
前記有機絶縁物の硬化をBステージ状態のままで完了す
ることにより、スライスした際に接着性を有する基板を
提供できる。
By slicing the wiring body for manufacturing a substrate perpendicularly to its main axis, a substrate having a penetrating via conductor can be provided. The wiring body for manufacturing a substrate is easily filled with an uncured organic insulating material in which an inorganic insulating powder is dispersed in a container in which a large number of fine metal wires are arranged in parallel to the main axis of the container, and then easily cured. Can be manufactured. At that time, by disposing a rod made of ceramic, metal, or a composite of ceramic and metal in parallel with the main axis of the container together with the thin metal wire in the container, to obtain a wiring body for manufacturing a substrate containing the rod. Can be. Further, by disposing a cylindrical body made of ceramic or metal in the container together with the thin metal wires in parallel with the main axis of the container, a wiring body for manufacturing a substrate having a through hole can be provided. further,
By completing the curing of the organic insulator in the B-stage state, a substrate having an adhesive property when sliced can be provided.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳細に説明する。図1は基板製造
用配線体たる柱状体10の概略的な断面図を示す。柱状
体10についてその製造方法と共に説明する。12は連
続相をなす有機絶縁物であり、全体として棒状の柱状体
に形成されている。この有機絶縁物中には、粉体状の無
機絶縁物が混入されている(不連続相)。14はこの有
機絶縁物12中に軸線に平行に多数埋設された銅、アル
ミニウム等からなる金属細線である。この柱状体10を
軸線に垂直に適宜厚さでスライスすることによって、金
属細線14による貫通したビア導体18を有する基板2
0(図2)が得られる。柱状体10は有機絶縁物、粉体
状の無機絶縁物からなるので、適当な切断刃により容易
にスライスでき、機械加工性に優れる。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of a columnar body 10 which is a wiring body for manufacturing a substrate. The columnar body 10 will be described together with its manufacturing method. Reference numeral 12 denotes a continuous phase organic insulator, which is formed as a rod-shaped column as a whole. A powdery inorganic insulator is mixed in the organic insulator (discontinuous phase). Reference numeral 14 denotes a thin metal wire made of copper, aluminum, or the like buried in the organic insulator 12 in parallel with the axis. By slicing the columnar body 10 at an appropriate thickness perpendicular to the axis, the substrate 2 having the via conductor 18 penetrated by the thin metal wire 14 is formed.
0 (FIG. 2) is obtained. Since the columnar body 10 is made of an organic insulator or a powdery inorganic insulator, it can be easily sliced with an appropriate cutting blade and has excellent machinability.

【0010】もちろん半導体チップ15を搭載する基板
にするには、図3に示すように基板に配線パターン17
を形成する必要がある。あるいは必要に応じてコンデン
サ用の誘電体皮膜(図示せず)を形成する必要がある。
配線パターン17は、基板上にスパッタリング等の薄膜
法により皮膜を形成し、パターンニングして後、アディ
ティブ法により所要の厚さの配線パターンに形成する方
法、あるいは基板上に銅箔等の金属箔を接着してパター
ンニングする方法などがある。上記のように基板20に
配線パターン17を形成し、半導体チップ15を搭載
し、はんだボール等のバンプ19を形成してBGAタイ
プの半導体装置21に形成できる。
Of course, in order to make the substrate on which the semiconductor chip 15 is mounted, as shown in FIG.
Need to be formed. Alternatively, it is necessary to form a dielectric film (not shown) for the capacitor as needed.
The wiring pattern 17 is formed by forming a film on a substrate by a thin film method such as sputtering and patterning, and then forming a wiring pattern of a required thickness by an additive method, or a metal foil such as a copper foil on the substrate. There is a method of bonding and patterning. As described above, the BGA type semiconductor device 21 can be formed by forming the wiring pattern 17 on the substrate 20, mounting the semiconductor chip 15, and forming the bump 19 such as a solder ball.

【0011】上記有機絶縁物12には、ポリイミド系、
ベンゾシクロブテン系、ビスマレイミドトリアジン系、
エポキシ系、ポリフェニレンエーテル系の内のいずれか
の樹脂を用いることができる。ポリイミド系、ベンゾシ
クロブテン系の樹脂は耐熱性に優れる。無機絶縁物に
は、窒化アルミニウム、炭化ケイ素、窒化ケイ素、酸化
アルミニウム、ムライト、コーディエライト、酸化ケイ
素の内のいずれか1種以上を用いることができる。
The organic insulator 12 is made of polyimide,
Benzocyclobutene-based, bismaleimide-triazine-based,
Either an epoxy resin or a polyphenylene ether resin can be used. Polyimide-based and benzocyclobutene-based resins have excellent heat resistance. As the inorganic insulator, any one or more of aluminum nitride, silicon carbide, silicon nitride, aluminum oxide, mullite, cordierite, and silicon oxide can be used.

【0012】これら無機絶縁物を上記有機絶縁物12と
混合するには、粉体状の無機絶縁物をシランカップリン
グ剤のようなカップリング剤中に浸漬してカップリング
剤を無機絶縁物の表面に付着させ、次いでワニス状の有
機絶縁物と混合するようにするとよい。カップリング剤
を無機絶縁物表面に付着させることで、無機絶縁物と有
機絶縁物との混合が良好にできる。特に、無機絶縁物を
多量に有機絶縁物12と混合するためには、無機絶縁物
をカップリング剤で前処理することが必要となる。有機
絶縁物12と無機絶縁物を混合後、有機絶縁物を硬化さ
せることによって柱状体10を得ることができる。
In order to mix these inorganic insulators with the organic insulator 12, the powdery inorganic insulator is immersed in a coupling agent such as a silane coupling agent, and the coupling agent is mixed with the inorganic insulator. It is advisable to adhere it to the surface and then mix it with a varnish-like organic insulator. By adhering the coupling agent to the surface of the inorganic insulator, the inorganic insulator and the organic insulator can be mixed well. In particular, in order to mix a large amount of the inorganic insulator with the organic insulator 12, it is necessary to pretreat the inorganic insulator with a coupling agent. After mixing the organic insulator 12 and the inorganic insulator, the columnar body 10 can be obtained by curing the organic insulator.

【0013】無機絶縁物の配合割合は35体積%以上6
0体積%以下が好適である。無機絶縁物の配合割合が高
いほど、全体の強度が高くなって好適であるが、無機絶
縁物の配合割合が60体積%を超えると、バインダー的
にも機能する有機絶縁物の割合が少なくなるから、有機
絶縁物との混合が困難になる。また無機絶縁物の配合割
合が35体積%未満の場合には強度的に不満足なものと
なる。なお、無機絶縁物の粒径は多量に配合する場合比
較的に大きいものの方が、有機絶縁物との混合が良好と
なり有利である。また粒径の大きい無機絶縁物を用いた
方が強度的にも優れる。無機絶縁物の粒径は約40μm
程度、およびそれ以上が好ましい。金属細線14には、
銅、金、アルミニウム等を用いることができる。
The mixing ratio of the inorganic insulator is 35% by volume or more and 6% by volume.
0 vol% or less is suitable. The higher the blending ratio of the inorganic insulator, the higher the overall strength is preferable, but when the blending ratio of the inorganic insulator exceeds 60% by volume, the proportion of the organic insulator that also functions as a binder decreases. Therefore, mixing with an organic insulator becomes difficult. If the mixing ratio of the inorganic insulating material is less than 35% by volume, the strength becomes unsatisfactory. In addition, when the particle size of the inorganic insulator is large, a relatively large particle size is advantageous because it can be mixed well with the organic insulator. Also, the use of an inorganic insulator having a large particle size is superior in strength. Particle size of inorganic insulator is about 40μm
Degrees and higher are preferred. In the thin metal wire 14,
Copper, gold, aluminum, or the like can be used.

【0014】上記柱状体10を製造するには、上記のよ
うにしてワニス状の有機絶縁体と無機絶縁体とを混合し
て材料を調整し、この調整した材料を、図4に示すよう
に、上下のワイヤガイド板2、4を介して金属細線14
を平行に張設した容器6中に注入し、加温して有機絶縁
物を硬化させればよい。したがって、製造は極めて容易
で、十分な厚さの厚物の柱状体10の製造が短時間で可
能となった。これにより生産性が大幅に向上した。ま
た、得られる柱状体10、あるいは基板の収縮による寸
法変化はほとんどなく、寸法精度に優れる柱状体あるい
は基板が得られる。なお、有機絶縁物の硬化は、Bステ
ージ、すなわち半硬化の状態で停止するようにすること
も好適である。Bステージ段階で硬化を完了するには、
硬化剤にアロマティックポリアミン系のものを用いると
よい。このように、Bステージ段階の硬化のものに調整
することで、基板として形成した場合に、加熱すること
によって容易に接着性を示すから多層の回路基板形成用
の基板として好適に用いることができる。以下説明する
各実施の形態の場合も同様にBステージ段階で硬化を停
止するようにすることができる。図5はBステージ段階
硬化の基板を用いて多層回路基板21aに形成した例を
示す。すなわち、それぞれ別種の柱状体をスライスし
て、基板20a、20b、20cを形成し、各基板20
a、20b、20c上に配線パターン17を形成する。
有機絶縁物12はBステージ状態にしておく。この基板
20a、20b、20cを積層して加熱・加圧して、多
層回路基板21aを得る。各層の基板20a、20b、
20cを一括して製造でき、またこの各基板20a、2
0b、20cを加熱・加圧するだけで、多層回路基板2
1aを得ることができるので、生産性が向上する。
In order to manufacture the columnar body 10, a material is prepared by mixing a varnish-like organic insulator and an inorganic insulator as described above, and the prepared material is mixed as shown in FIG. , The fine metal wires 14 via the upper and lower wire guide plates 2, 4.
May be poured into the container 6 stretched in parallel and heated to cure the organic insulator. Therefore, the production was extremely easy, and the production of the columnar body 10 having a sufficient thickness was made possible in a short time. This has greatly improved productivity. Also, there is almost no dimensional change due to shrinkage of the obtained columnar body 10 or substrate, and a columnar body or substrate excellent in dimensional accuracy can be obtained. It is also preferable to stop the curing of the organic insulator in the B stage, that is, in a semi-cured state. To complete the curing at the B stage stage,
It is preferable to use an aromatic polyamine-based curing agent. As described above, by adjusting to a cured material at the B-stage, when formed as a substrate, it easily exhibits adhesiveness when heated, and thus can be suitably used as a substrate for forming a multilayer circuit board. . In each of the embodiments described below, the curing can be similarly stopped at the B stage stage. FIG. 5 shows an example in which a multi-layer circuit board 21a is formed using a board that has been cured in a B-stage. That is, different types of columnar bodies are sliced to form substrates 20a, 20b, and 20c.
a, a wiring pattern 17 is formed on 20b, 20c.
The organic insulator 12 is kept in a B stage state. The substrates 20a, 20b, and 20c are stacked and heated and pressed to obtain a multilayer circuit board 21a. Substrates 20a, 20b of each layer,
20c can be manufactured collectively, and each of the substrates 20a,
0b and 20c are simply heated and pressurized, and the multilayer circuit board 2
Since 1a can be obtained, productivity is improved.

【0015】図6は柱状体10の他の実施の形態を示
す。本実施の形態は上記と同様の構造であるが、柱状体
10中に金属細線14の他に、銅、アルミニウム、42
−合金、コバール合金等の金属、あるいはアルミナ、窒
化アルミニウム等のセラミック、または炭化ケイ素とア
ルミニウムのコンポジット等のセラミック−金属複合体
からなる放熱性に優れる棒状体22が柱状体10の軸線
と平行に埋設されている。このような柱状体10を得る
には、図4に示す容器6中に金属細線14と共に棒状体
を配置すればよいことはもちろんである(図示せず)。
図7は上記柱状体10をカッターで適宜厚さにスライス
して基板20に形成した実施の形態を示す。棒状体22
がスライスされて形成された放熱体22a上に半導体チ
ップを搭載することができる。これにより放熱性に優れ
る基板20が提供される。
FIG. 6 shows another embodiment of the columnar body 10. The present embodiment has the same structure as described above, except that copper, aluminum, 42
The rod-shaped body 22 having excellent heat dissipation properties is made of a metal such as an alloy, a Kovar alloy, or a ceramic such as alumina or aluminum nitride, or a ceramic-metal composite such as a composite of silicon carbide and aluminum. It is buried. Needless to say, in order to obtain such a columnar body 10, a rod-like body may be arranged together with the thin metal wire 14 in the container 6 shown in FIG. 4 (not shown).
FIG. 7 shows an embodiment in which the columnar body 10 is sliced to a suitable thickness by a cutter and formed on a substrate 20. Rod 22
The semiconductor chip can be mounted on the heat radiator 22a formed by slicing. This provides the substrate 20 having excellent heat dissipation.

【0016】この場合にも、図8に示すように、基板2
0に図3に示したと同様の方法により配線パターン17
を形成し、半導体チップ15を放熱体22a上に搭載
し、半導体チップ15と配線パターン17とをワイヤに
より接続し、封止樹脂23にて封止し、バンプ19を形
成することにより半導体装置21に形成できる。なお、
前記実施の形態でも同様であるが、基板20上には1つ
の半導体チップを搭載する場合だけでなく、複数の半導
体チップを搭載し得るMCM用の基板としても提供でき
ることはもちろんである。
In this case as well, as shown in FIG.
0, the wiring pattern 17 is formed by the same method as shown in FIG.
Is formed, the semiconductor chip 15 is mounted on the heat radiator 22a, the semiconductor chip 15 and the wiring pattern 17 are connected by wires, sealed with the sealing resin 23, and the bumps 19 are formed to form the semiconductor device 21. Can be formed. In addition,
The same applies to the above-described embodiment, but it goes without saying that it can be provided not only when one semiconductor chip is mounted on the substrate 20 but also as an MCM substrate on which a plurality of semiconductor chips can be mounted.

【0017】図9はさらに他の実施の形態を示す。本実
施の形態は上記と同様の構造であるが、柱状体10中に
金属細線14の他にセラミックあるいは金属等からな
る、四角あるいは円形等の適宜な断面形状を有する筒状
体24が埋没されてなる。これにより柱状体10に貫通
孔を形成できる。筒体24は銅等の金属を用いることが
できる。このような柱状体10を得る場合にも、容器6
中に金属細線14と共に筒状体24を配設して硬化すれ
ばよい。図10はこの柱状体10をカッター等で適宜厚
さにスライスして基板20に形成した実施の形態を示
す。これにより貫通孔24aを有する基板20を得るこ
とができる。
FIG. 9 shows still another embodiment. The present embodiment has the same structure as described above, except that a cylindrical body 24 made of ceramic, metal, or the like and having an appropriate cross-sectional shape such as a square or a circle is embedded in the columnar body 10 in addition to the thin metal wires 14. It becomes. Thereby, a through hole can be formed in the columnar body 10. Metal such as copper can be used for the cylinder 24. Even when such a columnar body 10 is obtained, the container 6
What is necessary is just to arrange | position the cylindrical body 24 with the metal thin wire 14, and to harden it. FIG. 10 shows an embodiment in which the columnar body 10 is sliced to a suitable thickness with a cutter or the like and formed on a substrate 20. Thereby, the substrate 20 having the through holes 24a can be obtained.

【0018】なお、筒状体24はそのまま残しておいて
もよいし、製造工程中の適宜段階で抜き取ってもよい。
製造工程中で抜き取る場合、シリコーンゴム等の棒状体
を用いて貫通孔を形成してもよい。もちろん、貫通孔を
形成するには、柱状体10をスライスして基板を形成し
て後、該基板にドリル加工により貫通孔を形成するよう
にしてもよい。貫通孔24aは搭載する半導体チップ用
のキャビティとして用いることができる。すなわち、基
板20に貫通孔24aを覆って放熱板を取り付け、貫通
孔24a内に位置して放熱板上に半導体チップを搭載す
るようにするのである。この場合にも、図11に示すよ
うに、基板20に図3に示したと同様の方法により配線
パターン17を形成し、半導体チップ15を放熱板25
a上に搭載し、半導体チップ15と配線パターン17と
をワイヤにより接続し、封止樹脂23にて封止し、バン
プ19を形成することにより半導体装置21に形成でき
る。
The cylindrical body 24 may be left as it is, or may be extracted at an appropriate stage during the manufacturing process.
When extracting during the manufacturing process, a through hole may be formed using a rod-shaped body such as silicone rubber. Of course, in order to form a through hole, the columnar body 10 may be sliced to form a substrate, and then the through hole may be formed in the substrate by drilling. The through hole 24a can be used as a cavity for a mounted semiconductor chip. That is, a heat sink is attached to the substrate 20 so as to cover the through hole 24a, and the semiconductor chip is mounted on the heat sink in the through hole 24a. Also in this case, as shown in FIG. 11, the wiring pattern 17 is formed on the substrate 20 by the same method as shown in FIG.
The semiconductor device 21 can be formed on the semiconductor device 21 by mounting the semiconductor chip 15 and the wiring pattern 17 by wires, sealing with a sealing resin 23, and forming bumps 19.

【0019】[0019]

【実施例】【Example】

実施例1 表面硬化処理した平均粒径約40μmの窒化アルミニウ
ム粉末をシランカップリング剤で表面疏水化処理し、得
られた粉末80重量部にビスフェノール系エポキシをベ
ースに、DDSA(ドデカニルサクシニックアンハイド
ライド)、MNA(メチルナディックアンハイドライ
ド)およびDMP−30(2.4.6-トリス(ジメチルアミ
ノエチル)フェノール)を配合した混合物20重量部を
添加混合し、脱泡処理した。これを上下のワイヤガイド
板を介して内部に径0.3mmの銅線を張った円筒容器
内に充填し、60℃、80℃、150℃の各温度で段階
的に処理して硬化させた。得られた柱状体をその主軸に
垂直に切り出し、厚さ約0.7mmのビア付き基板を得
た。
Example 1 A surface-hardened aluminum nitride powder having an average particle diameter of about 40 μm was subjected to surface hydrophobic treatment with a silane coupling agent, and 80 parts by weight of the obtained powder was based on a bisphenol-based epoxy and DDSA (dodecanyl succinic anhydride). Hydride), MNA (methylnadic anhydride) and DMP-30 (2.4.6-tris (dimethylaminoethyl) phenol) in an amount of 20 parts by weight were mixed and defoamed. This was filled into a cylindrical container having a copper wire having a diameter of 0.3 mm stretched through the upper and lower wire guide plates, and was gradually treated at 60 ° C., 80 ° C., and 150 ° C. to be cured. . The obtained columnar body was cut out perpendicular to its main axis to obtain a substrate with a via having a thickness of about 0.7 mm.

【0020】実施例2 平均粒径約60μmのアルミナ球状粉末をシランカップ
リング剤で表面疏水処理して得た粉末85重量部に、縮
合型多核芳香族樹脂を60重量%含むメチルエチルケト
ン溶液を25重量部添加混合し、真空脱泡処理した。こ
れを上下のワイアガイド板を介して内部に径約0.3m
mの銅線および径約12mmの窒化アルミニウム円柱を
配置した円筒容器内に充填し、100℃、230℃の各
温度で段階的に処理して硬化させた。得られた柱状体を
その主軸に垂直に切り出し、厚さ約0.7mmのビアお
よび放熱部を有する基板を得た。上記のように球状粉末
を使用すると粉末の充填性が向上し、基板の強度が向上
した。
Example 2 25 parts by weight of a methyl ethyl ketone solution containing 60% by weight of a condensed polynuclear aromatic resin was added to 85 parts by weight of a powder obtained by subjecting spherical alumina powder having an average particle size of about 60 μm to surface hydrophobic treatment with a silane coupling agent. The mixture was mixed and vacuum defoamed. This is about 0.3m inside through upper and lower wire guide plates
A copper wire having a diameter of about 12 mm and an aluminum nitride cylinder having a diameter of about 12 mm were filled in a cylindrical container, and were gradually processed at 100 ° C. and 230 ° C. for curing. The obtained columnar body was cut out perpendicular to its main axis to obtain a substrate having a via and a heat radiating portion with a thickness of about 0.7 mm. When the spherical powder is used as described above, the filling property of the powder is improved, and the strength of the substrate is improved.

【0021】平均粒径約40μmのムライト粉末をシラ
ンカップリング剤で表面疏水処理して得た粉末80重量
部に、ポリイミドワニス25重量部を添加混合し、真空
脱泡処理した。これを上下のワイアガイド板を介して内
部に径約0.3mmの銅線および径約17mmのシリコ
ン樹脂円柱を配置した円筒容器内に充填し、80℃、1
50℃の各温度で段階的に処理した後、シリコン樹脂円
柱を引き抜き、次いで200℃で処理した。得られた柱
状体をその主軸に垂直に切り出し、厚さ約0.7mmの
ビアおよび貫通孔を有する基板を得た。
25 parts by weight of a polyimide varnish was added to 80 parts by weight of powder obtained by subjecting mullite powder having an average particle diameter of about 40 μm to a surface hydrophobic treatment with a silane coupling agent, followed by vacuum defoaming. This was filled into a cylindrical container having a copper wire having a diameter of about 0.3 mm and a silicon resin cylinder having a diameter of about 17 mm disposed therein via upper and lower wire guide plates.
After the stepwise treatment at each temperature of 50 ° C., the silicon resin cylinder was pulled out and then treated at 200 ° C. The obtained columnar body was cut out perpendicular to its main axis to obtain a substrate having a via and a through hole having a thickness of about 0.7 mm.

【0022】[0022]

【発明の効果】本発明に係る基板製造用配線体では、有
機絶縁物を連続相、無機絶縁物を不連続相とする組成物
から成る柱状体中に、その主軸に平行に金属細線を多数
埋設しているので、収縮がほとんどなく、寸法精度に優
れ、強度も大きく、また安価な配線体が提供できる。前
記柱状体中にその軸線と平行に、セラミック、金属ある
いはセラミックと金属との複合体から成る棒状体を埋設
することにより、スライスして基板に形成した際、該セ
ラミック、金属あるいはこれらの複合体部分を搭載する
半導体チップの放熱体とすることができる。前記柱状体
中にその軸線と平行に貫通孔を設けることにより、スラ
イスして基板に形成した際、この貫通孔部を搭載する半
導体チップのキャビティとすることができる。
According to the wiring body for manufacturing a substrate according to the present invention, a large number of fine metal wires are arranged in parallel to the main axis in a columnar body composed of a composition having an organic insulator as a continuous phase and an inorganic insulator as a discontinuous phase. Since it is embedded, it is possible to provide an inexpensive wiring body that hardly shrinks, has excellent dimensional accuracy, has high strength, and is inexpensive. By embedding a rod made of ceramic, metal or a composite of ceramic and metal in the columnar body in parallel with the axis thereof, when the substrate is sliced and formed on a substrate, the ceramic, metal or a composite of these It can be used as a heat radiator of the semiconductor chip on which the portion is mounted. By providing a through-hole in the columnar body in parallel with the axis thereof, when the substrate is sliced and formed on a substrate, a cavity of a semiconductor chip having the through-hole can be mounted.

【0023】前記有機絶縁物の配合量を30体積%以上
60体積%以下にすることにより、強度的にも優れ、有
機絶縁物と無機絶縁物との混合が良好で製造が容易とな
る柱状体を提供できる。前記有機絶縁物をBステージ状
態に硬化させておくことによって、スライスして基板に
形成した際に、加熱することによって容易に接着性が得
られ、多層基板に形成するのが容易となる。
By setting the blending amount of the organic insulator to 30% by volume or more and 60% by volume or less, a columnar body which is excellent in strength, has a good mixture of the organic insulator and the inorganic insulator, and is easy to manufacture. Can be provided. By curing the organic insulator in the B-stage state, when sliced and formed on a substrate, adhesiveness can be easily obtained by heating, and it is easy to form the substrate on a multilayer substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】柱状体の第1の実施の形態を示した概略的な断
面図である。
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a columnar body.

【図2】図1の柱状体をスライスして得た基板の説明断
面図である。
FIG. 2 is an explanatory sectional view of a substrate obtained by slicing the columnar body of FIG.

【図3】基板に半導体チップを搭載した状態の説明図で
ある。
FIG. 3 is an explanatory diagram of a state where a semiconductor chip is mounted on a substrate.

【図4】製造装置の説明断面図である。FIG. 4 is an explanatory sectional view of a manufacturing apparatus.

【図5】多層回路基板に形成した説明図である。FIG. 5 is an explanatory diagram formed on a multilayer circuit board.

【図6】柱状体の第2の実施の形態を示した概略的な断
面図である。
FIG. 6 is a schematic sectional view showing a second embodiment of a columnar body.

【図7】図6の柱状体をスライスして得た基板の説明断
面図である。
FIG. 7 is an explanatory sectional view of a substrate obtained by slicing the columnar body of FIG. 6;

【図8】基板に半導体チップを搭載した状態の説明図で
ある。
FIG. 8 is an explanatory diagram of a state where a semiconductor chip is mounted on a substrate.

【図9】柱状体の第3の実施の形態を示した概略的な断
面図である。
FIG. 9 is a schematic sectional view showing a third embodiment of a columnar body.

【図10】図9の柱状体をスライスして得た基板の説明
断面図である。
FIG. 10 is an explanatory sectional view of a substrate obtained by slicing the columnar body of FIG. 9;

【図11】基板に半導体チップを搭載した状態の説明図
である。
FIG. 11 is an explanatory diagram of a state where a semiconductor chip is mounted on a substrate.

【符号の説明】[Explanation of symbols]

2、4 ワイヤガイド板 6 容器 10 柱状体 12 有機絶縁物 14 金属細線 15 半導体チップ 17 配線パターン 18 ビア導体 19 バンプ 20 基板 21 半導体装置 22 棒状体 22a 放熱板 23 封止樹脂 24 筒状体 24a 貫通孔 2, 4 Wire guide plate 6 Container 10 Columnar body 12 Organic insulator 14 Fine metal wire 15 Semiconductor chip 17 Wiring pattern 18 Via conductor 19 Bump 20 Substrate 21 Semiconductor device 22 Rod 22a Heat sink 23 Sealing resin 24 Cylindrical body 24a Penetration Hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:22 B29L 31:34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B29K 105: 22 B29L 31:34

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 有機絶縁物を連続相とし、無機絶縁物を
不連続相とする組成物から成る柱状体中に、その主軸に
平行に金属細線が多数埋設されていることを特徴とする
基板製造用配線体。
1. A substrate comprising a columnar body made of a composition having an organic insulator as a continuous phase and an inorganic insulator as a discontinuous phase, in which a large number of fine metal wires are buried in parallel with a main axis thereof. Wiring body for manufacturing.
【請求項2】 前記金属細線が埋設された柱状体中に該
柱状体の主軸と平行に、セラミック、金属あるいはセラ
ミックと金属との複合体から成る棒状体が埋設されてい
ることを特徴とする請求項1記載の基板製造用配線体。
2. A rod-shaped body made of ceramic, metal, or a composite of ceramic and metal is buried in the pillar in which the thin metal wire is buried, in parallel with a main axis of the pillar. The wiring body for manufacturing a substrate according to claim 1.
【請求項3】 前記金属細線が埋設された柱状体中に該
柱状体の主軸と平行に貫通孔が設けられていることを特
徴とする請求項1記載の基板製造用配線体。
3. The wiring body for manufacturing a substrate according to claim 1, wherein a through hole is provided in the column in which the thin metal wire is buried, in parallel with a main axis of the column.
【請求項4】 前記有機絶縁物が30体積%以上60体
積%以下であることを特徴とする請求項1、2または3
記載の基板製造用配線体。
4. The organic insulating material according to claim 1, wherein the content of the organic insulating material is 30% by volume or more and 60% by volume or less.
The wiring body for manufacturing a substrate according to the above.
【請求項5】 前記無機絶縁物が、窒化アルミニウム、
炭化ケイ素、窒化ケイ素、酸化アルミニウム、ムライ
ト、コーディエライト、酸化ケイ素の内のいずれか1種
以上である請求項1、2、3または4記載の基板製造用
配線体。
5. The method according to claim 1, wherein the inorganic insulator is aluminum nitride,
5. The wiring body according to claim 1, wherein the wiring body is at least one of silicon carbide, silicon nitride, aluminum oxide, mullite, cordierite, and silicon oxide.
【請求項6】 前記有機絶縁物が、ポリイミド系、ベン
ゾシクロブテン系、ビスマレイミドトリアジン系、エポ
キシ系、ポリフェニレンエーテル系のいずれかの樹脂で
あることを特徴とする請求項1、2、3、4または5記
載の基板製造用配線体。
6. The method according to claim 1, wherein the organic insulator is one of a polyimide resin, a benzocyclobutene resin, a bismaleimide triazine resin, an epoxy resin, and a polyphenylene ether resin. 6. The wiring body for manufacturing a substrate according to 4 or 5.
【請求項7】 前記有機絶縁物がBステージ状態に硬化
されていることを特徴とする請求項1、2、3、4、5
または6記載の基板製造用配線体。
7. The organic insulator according to claim 1, wherein the organic insulator is cured to a B-stage state.
Or the wiring body for manufacturing a substrate according to 6.
【請求項8】 請求項1、2、3、4、5、6または7
記載の基板製造用配線体をその主軸に垂直にスライスし
て得られ、貫通したビア導体を有することを特徴とする
基板。
8. The method of claim 1, 2, 3, 4, 5, 6, or 7.
A substrate obtained by slicing the wiring body for substrate manufacture described above in a direction perpendicular to its main axis, and having a penetrating via conductor.
【請求項9】 金属細線を容器の主軸に平行に多数配置
した該容器内に無機絶縁物粉末を分散させた有機絶縁物
未硬化物を充填した後、硬化を行うことを特徴とする基
板製造用配線体の製造方法。
9. A substrate manufacturing method comprising: filling a container in which a large number of thin metal wires are arranged in parallel with the main axis of a container with an uncured organic insulating material in which an inorganic insulating powder is dispersed; Manufacturing method for wiring body.
【請求項10】 前記金属細線を配置した容器内に該容
器の主軸と平行に、セラミック、金属あるいはセラミッ
クと金属との複合物からなる棒状体を配置することを特
徴とする請求項9記載の基板製造用配線体の製造方法。
10. The container according to claim 9, wherein a rod-shaped member made of ceramic, metal, or a composite of ceramic and metal is arranged in the container in which the thin metal wires are arranged in parallel with the main axis of the container. A method for manufacturing a wiring body for manufacturing a substrate.
【請求項11】 前記金属細線を配置した容器内に該容
器の主軸と平行に、セラミックあるいは金属からなる筒
状体を配置することを特徴とする請求項9記載の基板製
造用配線体の製造方法。
11. The production of a wiring body for substrate production according to claim 9, wherein a cylindrical body made of ceramic or metal is arranged in the container in which the thin metal wires are arranged in parallel with the main axis of the container. Method.
【請求項12】 前記有機絶縁物の硬化をBステージ状
態のままで完了することを特徴とする請求項9、10ま
たは11記載の基板製造用配線体の製造方法。
12. The method according to claim 9, wherein the curing of the organic insulator is completed in a B-stage state.
JP8189192A 1996-07-18 1996-07-18 Structure-manufacturing wiring body substrate and manufacture thereof Pending JPH1041435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8189192A JPH1041435A (en) 1996-07-18 1996-07-18 Structure-manufacturing wiring body substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8189192A JPH1041435A (en) 1996-07-18 1996-07-18 Structure-manufacturing wiring body substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1041435A true JPH1041435A (en) 1998-02-13

Family

ID=16237061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8189192A Pending JPH1041435A (en) 1996-07-18 1996-07-18 Structure-manufacturing wiring body substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1041435A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110941A (en) * 1999-10-06 2001-04-20 Meito Chin Semiconductor device
US6403201B1 (en) 1999-07-30 2002-06-11 Ngk Insulators, Ltd. Substrate material for wiring and substrate material for printed circuit using the same
US7656013B2 (en) 2007-09-06 2010-02-02 Shinko Electric Industries Co., Ltd. Multilayer wiring substrate, method of manufacturing the same, and semiconductor device
JP2011023626A (en) * 2009-07-17 2011-02-03 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2017008317A (en) * 2015-06-25 2017-01-12 東レ株式会社 Epoxy resin composition, fiber reinforced composite material, molded article and pressure container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403201B1 (en) 1999-07-30 2002-06-11 Ngk Insulators, Ltd. Substrate material for wiring and substrate material for printed circuit using the same
JP2001110941A (en) * 1999-10-06 2001-04-20 Meito Chin Semiconductor device
US7656013B2 (en) 2007-09-06 2010-02-02 Shinko Electric Industries Co., Ltd. Multilayer wiring substrate, method of manufacturing the same, and semiconductor device
JP2011023626A (en) * 2009-07-17 2011-02-03 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2017008317A (en) * 2015-06-25 2017-01-12 東レ株式会社 Epoxy resin composition, fiber reinforced composite material, molded article and pressure container

Similar Documents

Publication Publication Date Title
KR100285113B1 (en) Wiring board
CN100373605C (en) Electronic component packaging structure and method for producing the same
KR100478984B1 (en) Insulation sheet and multi-layer wiring substrate and production processes thereof
CN1263354C (en) Parts built-in module and its making method
US5277725A (en) Process for fabricating a low dielectric composite substrate
US5492586A (en) Method for fabricating encased molded multi-chip module substrate
EP1814373A1 (en) Multilayer printed wiring board and its manufacturing method
JPH1041435A (en) Structure-manufacturing wiring body substrate and manufacture thereof
US5139851A (en) Low dielectric composite substrate
US5139852A (en) Low dielectric composite substrate
US5919546A (en) Porous ceramic impregnated wiring body
JP3199637B2 (en) Method for manufacturing multilayer wiring board
JP2001015872A (en) Wiring board insulating sheet and manufacture of wiring board using the same
JP3152852B2 (en) Wiring board and manufacturing method thereof
JPH1074858A (en) Wiring board and production thereof
JPH10107448A (en) Multi-layered wiring board and manufacture thereof
JP3292644B2 (en) Wiring board and method of manufacturing the same
JPH09293952A (en) Manufacture of wiring board
JPH08186195A (en) Package for electronic part
US20220336408A1 (en) Semifinished Product for Populating with Components and, Method for Populating Same with Components
JPH10308569A (en) Wiring board and its production
JPH09331134A (en) Wiring board for manufacture of board, board and manufacture thereof
JP2002109956A (en) Conductive paste and manufacturing method of circuit board using the same
JP3297576B2 (en) Wiring board and method of manufacturing the same
JP3292646B2 (en) Wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406