JPH1040916A - Hydrogen absorbing electrode and nickel hydrogen secondary battery using it - Google Patents

Hydrogen absorbing electrode and nickel hydrogen secondary battery using it

Info

Publication number
JPH1040916A
JPH1040916A JP8208902A JP20890296A JPH1040916A JP H1040916 A JPH1040916 A JP H1040916A JP 8208902 A JP8208902 A JP 8208902A JP 20890296 A JP20890296 A JP 20890296A JP H1040916 A JPH1040916 A JP H1040916A
Authority
JP
Japan
Prior art keywords
hydrogen storage
paste
polyvinyl alcohol
hydrogen
polyvinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8208902A
Other languages
Japanese (ja)
Inventor
Hideki Tsubata
英樹 津幡
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8208902A priority Critical patent/JPH1040916A/en
Publication of JPH1040916A publication Critical patent/JPH1040916A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve productivity of a hydrogen absorbing electrode and a nickel hydrogen secondary battery using it as a negative electrode by securing a long-term preservability of paste containing hydrogen absorbing alloy powder. SOLUTION: In a hydrogen absorbing electrode formed by holding hydrogen absorbing alloy powder by a binder, a mixture of polyvinyl alcohol and polyvinyl pyrolidone is used as the binder. A percentage is the whole binder of polyvinyl pyrolodine is 5 to 25wt.% and 10 to 16wt.% is particularly preferably, and an average polymerization degree of polyvinyl alcohol is preferably 100 to 10000, and an average polymerization degree of polyvinyl pyrolidone is preferably 1000 to 50000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を可逆的に吸
脱蔵することができる水素吸蔵合金粉末を用いた水素吸
蔵電極および該水素吸蔵電極を負極に用いたニッケル水
素二次電池に関する。
The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy powder capable of reversibly storing and desorbing hydrogen, and a nickel-hydrogen secondary battery using the hydrogen storage electrode as a negative electrode.

【0002】[0002]

【従来の技術】従来、水素吸蔵電極の作製にあたり、水
素吸蔵合金粉末を支持体に保持させるためのバインダー
兼増粘剤としては、一般にポリビニルアルコールが用い
られていた。
2. Description of the Related Art Conventionally, in producing a hydrogen storage electrode, polyvinyl alcohol has generally been used as a binder and a thickener for holding a hydrogen storage alloy powder on a support.

【0003】しかしながら、このポリビニルアルコール
を単独でバインダーとして用いたペーストは、放置する
とポリビニルアルコールが水素吸蔵合金粉末に吸着する
ため、水素吸蔵合金と水とに分離してしまい、その結
果、ペーストの粘度が低下して、ペーストの性質が大き
く変化するため、ペーストの長期保存ができず、水素吸
蔵電極の生産性が低下するという問題があった。
However, when the paste using polyvinyl alcohol alone as a binder is left to stand, the polyvinyl alcohol is adsorbed on the hydrogen storage alloy powder, so that the paste is separated into a hydrogen storage alloy and water. And the properties of the paste change greatly, so that the paste cannot be stored for a long period of time, and the productivity of the hydrogen storage electrode is reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の水素
吸蔵合金粉末を含有するペーストの保存性が悪かったと
いう問題点を解決し、水素吸蔵合金粉末を含有するペー
ストの長期保存性を確保して、水素吸蔵電極の生産性を
向上させることを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problem that the conventional paste containing a hydrogen storage alloy powder was poor in preservability, and ensures long-term storage of a paste containing a hydrogen storage alloy powder. Thus, an object is to improve the productivity of the hydrogen storage electrode.

【0005】[0005]

【課題を解決するための手段】本発明は、水素吸蔵合金
粉末を含有するペーストの調製にあたり、バインダーと
してポリビニルアルコールとポリビニルピロリドンの混
合物を用いることによって、ペースト保存中のポリビニ
ルアルコールの水素吸蔵合金表面への吸着を防止して、
ペーストの粘度低下を抑制し、長期保存後でもペースト
を使用できるようにして、上記目的を達成したものであ
る。
According to the present invention, in preparing a paste containing a hydrogen-absorbing alloy powder, a mixture of polyvinyl alcohol and polyvinylpyrrolidone is used as a binder, whereby the surface of the hydrogen-absorbing alloy of polyvinyl alcohol is stored during paste storage. To prevent adsorption to
The object has been achieved by suppressing a decrease in the viscosity of the paste so that the paste can be used even after long-term storage.

【0006】上記のように、ペースト中にポリビニルピ
ロリドンを含有させると、ポリビニルピロリドンがまず
水素吸蔵合金の表面に吸着して、水素吸蔵合金の表面に
ポリビニルピロリドン層を形成する。このポリビニルピ
ロリドン層が水素吸蔵合金表面へのポリビニルアルコー
ルの吸着を阻害し、ペーストの粘性を支配しているポリ
ビニルアルコールをペースト調製時のまま保つので、ペ
ーストの粘度が低下せず、長期保存後でもペーストが使
用できるようになる。
[0006] As described above, when polyvinylpyrrolidone is contained in the paste, polyvinylpyrrolidone is first adsorbed on the surface of the hydrogen storage alloy to form a polyvinylpyrrolidone layer on the surface of the hydrogen storage alloy. This polyvinylpyrrolidone layer inhibits the adsorption of polyvinyl alcohol on the surface of the hydrogen storage alloy, and keeps the polyvinyl alcohol that governs the viscosity of the paste at the time of paste preparation, so that the viscosity of the paste does not decrease and even after long-term storage. Paste can be used.

【0007】[0007]

【発明の実施の形態】本発明において、ポリビニルピロ
リドンの全バインダー中の分率としては5〜25重量
%、特に10〜16重量%であることが好ましい。すな
わち、ポリビニルアルコールが75〜95重量%で、ポ
リビニルピロリドンが5〜25重量%であることが好ま
しく、特にポリビニルアルコールが84〜90重量%
で、ポリビニルピロリドンが10〜16重量%であるこ
とが好ましい。ポリビニルピロリドンの分率が5重量%
より少ない場合は、ポリビニルアルコールの水素吸蔵合
金表面への吸着を防止して、ペーストの粘度を適切に保
つ効果が充分に発現しなくなるおそれがあり、ポリビニ
ルピロリドンが25重量%より多い場合は、それに伴う
ポリビニルアルコールの減少によって、ポリビニルアル
コールにより保たれているペーストの流動性が低下し
て、ペーストを支持体に塗着する際の作業性が悪くなる
おそれがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the fraction of polyvinylpyrrolidone in the total binder is preferably 5 to 25% by weight, particularly preferably 10 to 16% by weight. That is, it is preferable that the polyvinyl alcohol is 75 to 95% by weight and the polyvinyl pyrrolidone is 5 to 25% by weight, and particularly, the polyvinyl alcohol is 84 to 90% by weight.
It is preferable that polyvinyl pyrrolidone is 10 to 16% by weight. 5% by weight of polyvinylpyrrolidone
If the amount is less, the effect of preventing the adsorption of polyvinyl alcohol on the surface of the hydrogen storage alloy may not be sufficiently exhibited to maintain the viscosity of the paste properly. If the amount of polyvinylpyrrolidone is more than 25% by weight, Due to the accompanying decrease in polyvinyl alcohol, the fluidity of the paste held by the polyvinyl alcohol is reduced, and the workability when applying the paste to the support may be deteriorated.

【0008】本発明において用いるポリビニルアルコー
ルは、その平均重合度が100〜10000であること
が好ましい。ポリビニルアルコールの平均重合度が10
0より小さい場合は、粘度が低くなりすぎ、増粘剤とし
ての効果が充分に発現しなくなるおそれがあり、ポリビ
ニルアルコールの平均重合度が10000より大きい場
合は、粘度が高くなりすぎて流動性が悪くなり、ペース
ト塗着時の作業性が低下するおそれがある。
The average degree of polymerization of the polyvinyl alcohol used in the present invention is preferably 100 to 10,000. Average degree of polymerization of polyvinyl alcohol is 10
If it is less than 0, the viscosity becomes too low, and the effect as a thickener may not be sufficiently exhibited. If the average polymerization degree of polyvinyl alcohol is more than 10,000, the viscosity becomes too high and the fluidity becomes too high. It may worsen, and the workability at the time of paste application may decrease.

【0009】また、ポリビニルピロリドンは、その平均
重合度が1000〜50000であることが好ましい。
ポリビニルピロリドンの平均重合度が1000より小さ
い場合は、粘度が低くなりすぎて増粘剤としての作用を
充分に果たし得なくなるおそれがあり、ポリビニルピロ
リドンの平均重合度が5000より大きい場合は、ペー
ストの粘度が高くなりすぎて流動性が低下し、作業性が
悪くなるおそれがある。
The average degree of polymerization of polyvinylpyrrolidone is preferably from 1,000 to 50,000.
When the average degree of polymerization of polyvinylpyrrolidone is less than 1000, the viscosity may be too low to sufficiently act as a thickener, and when the average degree of polymerization of polyvinylpyrrolidone is more than 5,000, There is a possibility that the viscosity becomes too high, the fluidity is reduced, and the workability is deteriorated.

【0010】ペーストの調製にあたり、上記バインダー
は、バインダー全体として水素吸蔵合金粉末との総量中
で0.1〜25重量%程度使用するのが好ましい。
In preparing the paste, the binder is preferably used in an amount of about 0.1 to 25% by weight based on the total amount of the binder and the hydrogen storage alloy powder.

【0011】[0011]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て、濃度や量を示す%は重量%である。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following examples,% indicating the concentration or amount is% by weight.

【0012】実施例1 水素吸蔵合金粉末100gに対して平均重合度1000
0のポリビニルピロリドンの1%水溶液13.0gおよ
び平均重合度1500のポリビニルアルコールの3%水
溶液32gを順次添加し攪拌混合してペーストを調製し
た。使用した水素吸蔵合金はMmNi3.55Co0.75Mn
0.4 Al0.3 Mo0.04(Mmはミッシュメタル系合金)
であり、水素吸蔵合金と全バインダーとの総量中の全バ
インダーの分率は1.08%で、全バインダー中におけ
るポリビニルピロリドンの分率は11.8%であった。
Example 1 100 g of hydrogen storage alloy powder had an average degree of polymerization of 1000
Then, 13.0 g of a 1% aqueous solution of polyvinylpyrrolidone and 32 g of a 3% aqueous solution of polyvinyl alcohol having an average degree of polymerization of 1500 were sequentially added, followed by stirring and mixing to prepare a paste. The hydrogen storage alloy used was MmNi 3.55 Co 0.75 Mn
0.4 Al 0.3 Mo 0.04 (Mm is a misch metal alloy)
And the fraction of all binders in the total amount of the hydrogen storage alloy and all binders was 1.08%, and the fraction of polyvinylpyrrolidone in all binders was 11.8%.

【0013】上記のようにして調製したペーストを厚み
600μmのニッケル発泡体からなる支持体に乾燥後の
全体の厚みが650μmになるように塗布し、乾燥した
後、ロールプレスで圧縮して、厚み300μmの水素吸
蔵電極を作製した。
The paste prepared as described above is applied to a support made of nickel foam having a thickness of 600 μm so that the total thickness after drying becomes 650 μm, dried, and then compressed by a roll press to obtain a thickness. A 300 μm hydrogen storage electrode was produced.

【0014】実施例2 実施例1と同様の水素吸蔵合金粉末100gに対して平
均重合度10000のポリビニルピロリドンの1%水溶
液5.8gおよび平均重合度1500のポリビニルアル
コールの3%水溶液32gを順次添加し攪拌混合してペ
ーストを調製した。水素吸蔵合金と全バインダーとの総
量中の全バインダーの分率は1.01%であり、全バイ
ンダー中におけるポリビニルピロリドンの分率は5.8
%であった。
Example 2 5.8 g of a 1% aqueous solution of polyvinylpyrrolidone having an average degree of polymerization of 10,000 and 32 g of a 3% aqueous solution of polyvinyl alcohol having an average degree of polymerization of 1500 were sequentially added to 100 g of the hydrogen storage alloy powder as in Example 1. Then, the mixture was stirred and mixed to prepare a paste. The fraction of all binders in the total amount of the hydrogen storage alloy and all binders was 1.01%, and the fraction of polyvinylpyrrolidone in all binders was 5.8.
%Met.

【0015】上記のようにして調製したペーストを用い
たほかは、実施例1と同様にして水素吸蔵電極を作製し
た。
A hydrogen storage electrode was prepared in the same manner as in Example 1 except that the paste prepared as described above was used.

【0016】実施例3 実施例1と同様の水素吸蔵合金粉末100gに対して平
均重合度10000のポリビニルピロリドンの1.5%
水溶液10gおよび平均重合度1500のポリビニルア
ルコールの3%水溶液27gを順次添加し攪拌混合して
ペーストを調製した。水素吸蔵合金と全バインダーとの
総量中の全バインダーの分率は0.95%で、全バイン
ダー中におけるポリビニルピロリドンの分率は15.6
%であった。
Example 3 1.5% of polyvinylpyrrolidone having an average degree of polymerization of 10,000 based on 100 g of the same hydrogen storage alloy powder as in Example 1.
A paste was prepared by sequentially adding 10 g of an aqueous solution and 27 g of a 3% aqueous solution of polyvinyl alcohol having an average degree of polymerization of 1500, followed by stirring and mixing. The fraction of all binders in the total amount of the hydrogen storage alloy and all binders was 0.95%, and the fraction of polyvinylpyrrolidone in all binders was 15.6.
%Met.

【0017】上記のようにして調製したペーストを用い
たほかは、実施例1と同様にして水素吸蔵電極を作製し
た。
A hydrogen storage electrode was produced in the same manner as in Example 1 except that the paste prepared as described above was used.

【0018】実施例4 実施例1と同様の水素吸蔵合金粉末100gに対して平
均重合度10000のポリビニルピロリドンの2.5%
水溶液10gおよび平均重合度1500のポリビニルア
ルコールの3%水溶液27gを順次添加し攪拌混合して
ペーストを調製した。水素吸蔵合金と全バインダーとの
総量中の全バインダーの分率は1.07%で、全バイン
ダー中におけるポリビニルピロリドンの分率は23.5
%であった。
Example 4 2.5% of polyvinylpyrrolidone having an average degree of polymerization of 10,000 based on 100 g of the hydrogen storage alloy powder as in Example 1.
A paste was prepared by sequentially adding 10 g of an aqueous solution and 27 g of a 3% aqueous solution of polyvinyl alcohol having an average degree of polymerization of 1500, followed by stirring and mixing. The fraction of all binders in the total amount of the hydrogen storage alloy and all binders was 1.07%, and the fraction of polyvinylpyrrolidone in all binders was 23.5.
%Met.

【0019】上記のようにして調製したペーストを用い
たほかは、実施例1と同様にして水素吸蔵電極を作製し
た。
A hydrogen storage electrode was produced in the same manner as in Example 1 except that the paste prepared as described above was used.

【0020】比較例1 実施例1と同様の水素吸蔵合金粉末100gに対して平
均重合度1500のポリビニルアルコールの2.6%水
溶液42gを添加し攪拌混合してペーストを調製した。
水素吸蔵合金と全バインダーとの総量中の全バインダー
の分率は1.08%であるが、この比較例1のペースト
は、上記実施例1〜4のペーストとは異なり、ポリビニ
ルピロリドンをまったく含有していない。
Comparative Example 1 A paste was prepared by adding 42 g of a 2.6% aqueous solution of polyvinyl alcohol having an average degree of polymerization of 1500 to 100 g of the same hydrogen absorbing alloy powder as in Example 1, followed by stirring and mixing.
Although the fraction of the total binder in the total amount of the hydrogen storage alloy and all the binders is 1.08%, the paste of Comparative Example 1 is different from the pastes of Examples 1 to 4 in that it contains no polyvinyl pyrrolidone at all. I haven't.

【0021】上記のようにして調製したペーストと該ペ
ーストを用いて作製した水素吸蔵電極について次の試験
を行った。
The following tests were conducted on the paste prepared as described above and the hydrogen storage electrode produced using the paste.

【0022】ペーストの経時変化:上記のようにして調
製したペーストの調製直後の粘度と流動性を調べた後、
上記ペーストを20℃で放置し、1日後、2日後および
6日後の粘度と流動性を調べた。ペーストの粘度の経時
変化を図1に示す。また、ペーストの流動性の経時変化
を表1に示す。
Paste change with time: After examining the viscosity and fluidity of the paste prepared as described above immediately after preparation,
The paste was left at 20 ° C., and the viscosity and fluidity after 1, 2, and 6 days were examined. FIG. 1 shows the change over time in the viscosity of the paste. Table 1 shows the change over time in the fluidity of the paste.

【0023】ペーストの粘度の測定は温度30℃でB型
粘度計により測定し、流動性は温度20℃でサンプルビ
ンにペーストを注入して所定期間放置した後、これを傾
斜させることによって調べた。そして、表1への表示に
あたっては、次の評価基準により表示した。
The viscosity of the paste was measured by a B-type viscometer at a temperature of 30 ° C., and the fluidity was examined by injecting the paste into a sample bottle at a temperature of 20 ° C., allowing the paste to stand for a predetermined period, and then tilting the paste. . Then, in the display in Table 1, the following evaluation criteria were used.

【0024】評価基準: ○ : 流動性あり × : 流動性なし Evaluation criteria: ○: fluidity ×: no fluidity

【0025】[0025]

【表1】 [Table 1]

【0026】水素吸蔵電極の重量分布の測定:前記のよ
うにして作製した水素吸蔵電極(サイズ=100mm×
40mm)の重量の分布状況を調べた。その結果を図2
に示す。なお、サンプル数は各水素吸蔵電極とも100
0個ずつである。
Measurement of weight distribution of hydrogen storage electrode : Hydrogen storage electrode prepared as described above (size = 100 mm ×
(40 mm). Figure 2 shows the result.
Shown in The number of samples was 100 for each hydrogen storage electrode.
0 each.

【0027】電池の放電容量:つぎに、上記実施例1〜
4および比較例1の水素吸蔵電極のそれぞれと公知のペ
ースト式ニッケル電極とを組み合わせ、30%水酸化カ
リウム水溶液を電解液として用いて公称容量580mA
hの密閉型ニッケル水素二次電池を作製した。得られた
電池を0.145Aで公称容量の120%まで充電し、
1時間の休止後110mAで電池電圧が1.0Vになる
まで放電し、放電容量を求めた。その結果を表2に示
す。
Discharge capacity of battery:
No. 4 and each of the hydrogen storage electrodes of Comparative Example 1 and a well-known paste-type nickel electrode were combined, and a 30% aqueous solution of potassium hydroxide was used as an electrolytic solution to a nominal capacity of 580 mA.
h of the sealed nickel-metal hydride secondary battery. The obtained battery is charged at 0.145 A to 120% of the nominal capacity,
After a one-hour pause, the battery was discharged at 110 mA until the battery voltage reached 1.0 V, and the discharge capacity was determined. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】表1に示すように、実施例1〜4のペース
トは、6日間放置後も流動性を有していたが、比較例1
のペーストは1日放置しただけで流動性を失っていた。
すなわち、比較例1のペーストでは、ポリビニルアルコ
ールが水素吸蔵合金粉末に吸着して、水素吸蔵合金と水
とに分離し、粘度が低下するとともに、水素吸蔵合金が
底部に沈殿してペーストとしての流動性を失っていた。
As shown in Table 1, the pastes of Examples 1 to 4 had fluidity even after being left for 6 days.
The paste had lost fluidity after only one day of standing.
That is, in the paste of Comparative Example 1, polyvinyl alcohol was adsorbed on the hydrogen storage alloy powder and separated into the hydrogen storage alloy and water, the viscosity decreased, and the hydrogen storage alloy precipitated at the bottom and flowed as the paste. Had lost sex.

【0030】また、図1に示すように、実施例1〜4の
ペーストは、比較例1のペーストに比べて、経時に伴う
粘度低下が少なかった。つまり、本発明の実施例1〜4
のペーストは、保存中の粘度低下が少なく、長期保存が
可能であった。なお、比較例1のペーストは2日放置後
には水素吸蔵合金粉末が固化してしまって粘度の測定が
できなかったため、図1には6日放置後の粘度は示して
いない。
Further, as shown in FIG. 1, the pastes of Examples 1 to 4 showed less decrease in viscosity over time than the paste of Comparative Example 1. That is, Examples 1-4 of the present invention
The paste of Example 1 showed a small decrease in viscosity during storage and was capable of long-term storage. The viscosity of the paste of Comparative Example 1 after standing for two days was not shown in FIG. 1 because the hydrogen-absorbing alloy powder was solidified and the viscosity could not be measured after standing for two days.

【0031】そして、図2に示すように、実施例1〜4
の水素吸蔵電極は、比較例1の水素吸蔵電極に比べて、
重量のバラツキが少なかった。これは実施例1〜4のペ
ーストが比較例1のペーストより塗布機のタンク内での
分離が進行せず、より均一な状態を保っているという理
由によるものである。また、表2に示すように、実施例
1〜4の電池は、比較例1の電池と同等の放電容量を有
し、ペーストのバインダー組成を変更したことによる放
電容量の低下は認められなかった。なお、実施例3の水
素吸蔵電極と実施例4の水素吸蔵電極は、ほぼ同様の重
量分布を示したので、図2には重量分布を示す1本の曲
線に実施例3,4の文字を付している。
Then, as shown in FIG.
Of the hydrogen storage electrode of Comparative Example 1
There was little variation in weight. This is because the pastes of Examples 1 to 4 did not progress in the tank of the coating machine compared to the paste of Comparative Example 1, and maintained a more uniform state. Further, as shown in Table 2, the batteries of Examples 1 to 4 had the same discharge capacity as the battery of Comparative Example 1, and no decrease in the discharge capacity due to the change in the binder composition of the paste was observed. . Since the hydrogen storage electrode of Example 3 and the hydrogen storage electrode of Example 4 showed almost the same weight distribution, FIG. 2 shows the curves of Examples 3 and 4 on one curve showing the weight distribution. It is attached.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
水素吸蔵合金粉末を含有するペーストの保存中の粘度低
下を抑制し、ペーストの長期保存を可能にして、水素吸
蔵電極の生産性を向上させることができた。
As described above, according to the present invention,
The decrease in viscosity during storage of the paste containing the hydrogen storage alloy powder was suppressed, the paste could be stored for a long time, and the productivity of the hydrogen storage electrode could be improved.

【0033】また、本発明によれば、上記のようなペー
ストの粘度低下の抑制や水素吸蔵電極の生産性の向上を
放電容量の低下を招くことなく、達成することができ
た。
Further, according to the present invention, it was possible to suppress the above-mentioned decrease in the viscosity of the paste and to improve the productivity of the hydrogen storage electrode without lowering the discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4のペーストおよび比較例1のペー
ストの粘度の経時変化を示す図である。
FIG. 1 is a diagram showing the change over time in the viscosity of the pastes of Examples 1 to 4 and the paste of Comparative Example 1.

【図2】実施例1〜4の水素吸蔵電極および比較例1の
水素吸蔵電極の重量分布を示す図である。
FIG. 2 is a diagram showing the weight distribution of the hydrogen storage electrodes of Examples 1 to 4 and the hydrogen storage electrode of Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末をバインダーで保持し
てなる水素吸蔵電極において、上記バインダーとしてポ
リビニルアルコールとポリビニルピロリドンとの混合物
を含有することを特徴とする水素吸蔵電極。
1. A hydrogen storage electrode comprising a hydrogen storage alloy powder held by a binder, wherein the hydrogen storage electrode contains a mixture of polyvinyl alcohol and polyvinylpyrrolidone as the binder.
【請求項2】 ポリビニルピロリドンの全バインダー中
の分率が5〜25重量%である請求項1記載の水素吸蔵
電極。
2. The hydrogen storage electrode according to claim 1, wherein the fraction of polyvinylpyrrolidone in the total binder is 5 to 25% by weight.
【請求項3】 ポリビニルアルコールの平均重合度が1
00〜10000である請求項1記載の水素吸蔵電極。
3. The average degree of polymerization of polyvinyl alcohol is 1
The hydrogen storage electrode according to claim 1, wherein the number is from 00 to 10,000.
【請求項4】 ポリビニルピロリドンの平均重合度が1
000〜50000である請求項1記載の水素吸蔵電
極。
4. Polyvinylpyrrolidone having an average degree of polymerization of 1
The hydrogen storage electrode according to claim 1, wherein the number of the hydrogen storage electrodes is from 000 to 50,000.
【請求項5】 請求項1、2、3または4記載の水素吸
蔵電極を負極に用いたことを特徴とするニッケル水素二
次電池。
5. A nickel-metal hydride secondary battery using the hydrogen storage electrode according to claim 1, 2, 3, or 4 as a negative electrode.
JP8208902A 1996-07-19 1996-07-19 Hydrogen absorbing electrode and nickel hydrogen secondary battery using it Withdrawn JPH1040916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8208902A JPH1040916A (en) 1996-07-19 1996-07-19 Hydrogen absorbing electrode and nickel hydrogen secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8208902A JPH1040916A (en) 1996-07-19 1996-07-19 Hydrogen absorbing electrode and nickel hydrogen secondary battery using it

Publications (1)

Publication Number Publication Date
JPH1040916A true JPH1040916A (en) 1998-02-13

Family

ID=16564025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8208902A Withdrawn JPH1040916A (en) 1996-07-19 1996-07-19 Hydrogen absorbing electrode and nickel hydrogen secondary battery using it

Country Status (1)

Country Link
JP (1) JPH1040916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906250B1 (en) * 2006-09-04 2009-07-07 주식회사 엘지화학 Electrode Material Containing Mixture of Polyvinyl Alcohol of High Degree of Polymerization and Polyvinyl Pyrrolidone as Binder and Lithium Secondary Battery Employed with the Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906250B1 (en) * 2006-09-04 2009-07-07 주식회사 엘지화학 Electrode Material Containing Mixture of Polyvinyl Alcohol of High Degree of Polymerization and Polyvinyl Pyrrolidone as Binder and Lithium Secondary Battery Employed with the Same
JP2010503174A (en) * 2006-09-04 2010-01-28 エルジー・ケム・リミテッド Electrode material containing a mixture of polyvinyl alcohol and polyvinyl pyrrolidone having a high degree of polymerization as a binder, and a lithium secondary battery using the same
US7846583B2 (en) 2006-09-04 2010-12-07 Lg Chem, Ltd. Electrode material containing mixture of polyvinyl alcohol of high degree of polymerization and polyvinyl pyrrolidone as binder and lithium secondary battery employed with the same

Similar Documents

Publication Publication Date Title
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP2752970B2 (en) Hydrogen storage electrode
JPH1040916A (en) Hydrogen absorbing electrode and nickel hydrogen secondary battery using it
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH11111279A (en) Hydrogen storage alloy electrode and nickel hydrogen secondary battery using it
JP3338226B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
US5401463A (en) Hydrogen-occlusion alloy electrode
JPH08222215A (en) Nonsintered nickel electrode for alkaline storage battery
JPH05225973A (en) Active material for electrode use of chemical battery, supported by three- dimensional porous support body
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JPH03289041A (en) Hydrogen storage alloy electrode
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JP4040799B2 (en) Paste for electrode, paste-type hydrogen storage alloy electrode, method for producing this electrode, and nickel hydrogen storage battery
KR100477730B1 (en) Hydrogen storage alloy for nickel hydrogen battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6243063A (en) Alkaline storage battery
JPH1021904A (en) Alkaline storage battery
JPH0613079A (en) Paste type cadmium negative electrode plate for alkaline storage battery
JPS63314764A (en) Hydrogen absorbing electrode
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
JPH0466636A (en) Hydrogen storage alloy electrode and its manufacture
JPH0756800B2 (en) Method for manufacturing hydrogen storage electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007