JPH103904A - Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Info

Publication number
JPH103904A
JPH103904A JP8154588A JP15458896A JPH103904A JP H103904 A JPH103904 A JP H103904A JP 8154588 A JP8154588 A JP 8154588A JP 15458896 A JP15458896 A JP 15458896A JP H103904 A JPH103904 A JP H103904A
Authority
JP
Japan
Prior art keywords
negative electrode
tin oxide
active material
electrolyte secondary
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154588A
Other languages
Japanese (ja)
Inventor
Shinichi Saito
慎一 齊藤
Hiroya Yamashita
博也 山下
Shoji Tachibana
昇二 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8154588A priority Critical patent/JPH103904A/en
Publication of JPH103904A publication Critical patent/JPH103904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode excellent in the cycle characteristic, preservation stability, wettability with an electrolyte, and strength by connecting a negative electrode active material containing tin oxide fibers in a carbon material capable of storing/discharging lithium to a current collector. SOLUTION: A positive electrode, a negative electrode, and a reference electrode are suspended from an upper lid in a glass cylinder container, LiPF6 is dissolved in an equivolume mixed solvent of ethylene carbonate and diethylene carbonate for use as a nonaqueous electrolyte. LiCoO2 serving as a positive electrode active material, acetylene black, and a binder are kneaded at the ratio of 90:5:5wt.% to form a slurry, and this slurry is applied on a current collector of a copper foil and dried to obtain the positive electrode. Tin oxide fibers and the binder are kneaded into graphite powder serving as a negative electrode powder to form a slurry, and this slurry is applied to a current collector of the copper foil and dried to obtain a negative electrode. A lithium metal is used for the reference electrode, and a polypropylene fine porous film is arranged to surround the negative electrode as a separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な非水電解液
二次電池用負極、及びこれを使用した非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年の電子機器の急速な小型軽量化に伴
い、小型、軽量で高エネルギー密度を持つ二次電池が求
められるようになってきた。これらの要求を満たす二次
電池としてはいろいろ考えることが出来るが、特に非水
電解液二次電池が有望である。
2. Description of the Related Art With the rapid reduction in size and weight of electronic devices in recent years, there has been a demand for a secondary battery having a small size, light weight and high energy density. Although various types of secondary batteries satisfying these requirements can be considered, non-aqueous electrolyte secondary batteries are particularly promising.

【0003】非水電解液二次電池としては、Ti、M
o、Nb、Cr、Mn、V、Ni及びCo等の金属とリ
チウムとの酸化物、硫化物、セレン化物、あるいはポリ
アニリン、ポリアセン等の導電性高分子物質などのリチ
ウムを吸蔵、放出することが可能な材料からなる正極活
物質を有する正極と、リチウムを吸蔵、放出することが
可能な炭素材料よりなる負極活物質を有する負極、Li
ClO4やLiPF6等のリチウム塩をプロピレンカーボ
ネートやエチレンカーボネート、1,2−ジメトキシエ
タン等の非水溶媒に溶解してなる非水電解液と正・負極
を隔たせるセパレータ等より構成される二次電池が挙げ
られる。この非水電解液二次電池は電解液が非水溶媒で
あるため、水の分解電圧以上の起電力が得られるため、
エネルギー密度を非常に大きくすることが可能である。
[0003] Non-aqueous electrolyte secondary batteries include Ti, M
O, Nb, Cr, Mn, V, Ni and Co can absorb and release lithium such as oxides, sulfides, selenides, and conductive polymers such as polyaniline and polyacene of metals and lithium. A positive electrode having a positive electrode active material composed of a possible material, a negative electrode having a negative electrode active material composed of a carbon material capable of inserting and extracting lithium, Li
A non-aqueous electrolyte obtained by dissolving a lithium salt such as ClO 4 or LiPF 6 in a non-aqueous solvent such as propylene carbonate, ethylene carbonate, or 1,2-dimethoxyethane; and a separator configured to separate the positive and negative electrodes. The following batteries are listed. In this non-aqueous electrolyte secondary battery, since the electrolyte is a non-aqueous solvent, an electromotive force higher than the decomposition voltage of water is obtained,
Very high energy densities are possible.

【0004】この非水電解液二次電池に用いられる負極
活物質としては、エネルギー密度の観点からいえば金属
リチウムを用いることが望ましい。しかし、金属リチウ
ムを用いると、充電時にリチウムが負極表面に均一に析
出せず、樹枝状の析出物、いわゆるデントライトを形成
する。このデントライトが形成されると、これがセパレ
ータを貫通して正極と短絡したり、放電時にリチウムが
脱落したりしてサイクル寿命を短かくする原因となる。
As the negative electrode active material used in the nonaqueous electrolyte secondary battery, it is desirable to use metallic lithium from the viewpoint of energy density. However, when metallic lithium is used, lithium does not uniformly deposit on the surface of the negative electrode during charging, and forms a dendritic deposit, so-called dendrites. When the dentite is formed, it penetrates through the separator and short-circuits with the positive electrode, or lithium is dropped at the time of discharging, thereby shortening the cycle life.

【0005】このような現象を防ぐために、負極活物質
として金属リチウムではなく、リチウム合金を用いるこ
とが検討されている。負極活物質としてリチウム合金を
用いると、負極表面へのリチウムの析出を防ぐことが可
能となる。
In order to prevent such a phenomenon, use of a lithium alloy instead of lithium metal as a negative electrode active material has been studied. When a lithium alloy is used as the negative electrode active material, precipitation of lithium on the negative electrode surface can be prevented.

【0006】しかし、負極活物質としてリチウム合金を
用いると放電末期において負極電位が+3V(vs.L
i/LI+)付近まで上昇するという現象が生じる。負
極電位がこの様な値になると、負極表面で非水電解液の
分解が生じ、更には集電体の溶出が生じる。特に集電体
として銅を用いた場合、その溶出は著しい。このため、
サイクル寿命や保存安定性があまり良くない。
However, when a lithium alloy is used as the negative electrode active material, the negative electrode potential becomes +3 V (vs. L
i / LI + ). When the negative electrode potential has such a value, the nonaqueous electrolytic solution is decomposed on the negative electrode surface, and further, the current collector is eluted. In particular, when copper is used as the current collector, the elution is remarkable. For this reason,
Cycle life and storage stability are not very good.

【0007】これに対し、負極活物質として炭素材料を
用いることも検討されている。炭素材料としては、黒鉛
や結晶化度の低い炭素が用いられている。この様な炭素
材料を用いると、リチウム合金等を負極に用いる場合と
比較して、放電末期における負極電位の上昇を低く抑え
ることが出来る。
On the other hand, the use of a carbon material as a negative electrode active material has been studied. As the carbon material, graphite or carbon with low crystallinity is used. When such a carbon material is used, an increase in the negative electrode potential at the end of discharge can be suppressed lower than when a lithium alloy or the like is used for the negative electrode.

【0008】しかし、それでも放電末期における負極電
位は+2V(vs.Li/Li+)以上となり、やはり
負極表面における非水電解液の分解や集電体の溶出が生
じるといった問題があった。
However, the negative electrode potential at the end of the discharge is still +2 V (vs. Li / Li + ) or more, and there is a problem that the nonaqueous electrolyte is decomposed on the negative electrode surface and the current collector is eluted.

【0009】また、負極に黒鉛粉末を用いると、黒鉛粉
末は非水電解液との濡れ性が悪いため、負極中に非水電
解液が充分に浸漬せず、反応面積が減少するため利用率
が低下し、更に充電時に負極表面にリチウムの析出が起
こり、安全性及びサイクル特性が低下するといった問題
があった。
When graphite powder is used for the negative electrode, the graphite powder has poor wettability with the non-aqueous electrolyte, so that the non-aqueous electrolyte is not sufficiently immersed in the negative electrode and the reaction area is reduced. , And lithium is deposited on the surface of the negative electrode during charging, which causes a problem that safety and cycle characteristics are reduced.

【0010】この様な現象を防ぐため、負極に繊維状の
黒鉛等を添加することが行われているが、繊維状黒鉛は
かさ高いため、負極の強度が低下する。負極の強度は、
結着剤の量を増量する事により向上させることが出来る
が、負極活物質である黒鉛量が低下し、結果として負極
の電気容量が低下するといった問題があった。
In order to prevent such a phenomenon, fibrous graphite or the like is added to the negative electrode. However, since the fibrous graphite is bulky, the strength of the negative electrode decreases. The strength of the negative electrode is
It can be improved by increasing the amount of the binder, but there is a problem that the amount of graphite as the negative electrode active material decreases, and as a result, the electric capacity of the negative electrode decreases.

【0011】[0011]

【発明が解決しようとする課題】そこで、放電末期にお
いても負極電位が急激に上昇せず、保存安定性に優れ、
非水電解液との濡れ性も良好であり、結着剤を増量せず
とも充分な強度を持ち、かつサイクル特性に優れた非水
電解液二次電池用負極が強く望まれていた。
Therefore, even at the end of discharge, the potential of the negative electrode does not rise sharply and is excellent in storage stability.
There has been a strong demand for a negative electrode for a non-aqueous electrolyte secondary battery having good wettability with a non-aqueous electrolyte, having sufficient strength without increasing the amount of a binder, and having excellent cycle characteristics.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記技術
課題を解決するべく、鋭意研究を行ってきた。その結
果、リチウムを吸蔵、放出することが可能な炭素材料中
に酸化錫繊維を含有してなる負極活物質を集電体に接合
した非水電解液二次電池用負極は、放電末期において負
極電位が急激に上昇することがなく、保存安定性に優
れ、また電解液との濡れ性が良好で、かつ炭素材料との
絡み性も良好であるため結着剤の増量が必要なく、サイ
クル特性も良好である事を見いだして、本発明を完成
し、ここに提案するに至った。
Means for Solving the Problems The present inventors have intensively studied to solve the above technical problems. As a result, a negative electrode for a non-aqueous electrolyte secondary battery in which a negative electrode active material containing tin oxide fibers in a carbon material capable of inserting and extracting lithium is bonded to a current collector, There is no sudden rise in potential, excellent storage stability, good wettability with electrolyte, and good entanglement with carbon materials, so there is no need to increase the amount of binder, and cycle characteristics The present invention has been completed, and the present invention has been proposed.

【0013】即ち、本発明は、リチウムを吸蔵、放出す
ることが可能な炭素材料中に酸化錫繊維を含有してなる
負極活物質が集電体に接合されていることを特徴とする
非水電解液二次電池用負極に関する。他の発明は、当該
非水電解液二次電池用負極と、リチウムを吸蔵、放出す
ることが可能な材料からなる正極活物質を集電体に接合
してなる正極とが、セパレータを介して非水電解液と共
に容器内に収納されていることを特徴とする非水電解液
二次電池に関する。
That is, the present invention is characterized in that a negative electrode active material containing tin oxide fibers in a carbon material capable of inserting and extracting lithium is bonded to a current collector. The present invention relates to a negative electrode for an electrolyte secondary battery. Another invention provides a non-aqueous electrolyte secondary battery negative electrode and a positive electrode obtained by bonding a positive electrode active material made of a material capable of inserting and extracting lithium to a current collector through a separator. The present invention relates to a non-aqueous electrolyte secondary battery which is housed in a container together with a non-aqueous electrolyte.

【0014】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】本発明における非水電解液二次電池におい
て、非水電解液、正極を構成する正極活物質、負極を構
成する負極活物質及びセパレータとしては、特に制限さ
れず公知のものが使用できる。
In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte, the positive electrode active material forming the positive electrode, the negative electrode active material forming the negative electrode, and the separator are not particularly limited, and known materials can be used. .

【0016】負極活物質としてはリチウムを吸蔵、放出
することが可能な炭素材料が使用され、具体的には黒鉛
や結晶化度の低い炭素等が挙げられる。本発明において
は、当該炭素材料からなる負極活物質中に酸化錫繊維が
含有されることが特徴である。
As the negative electrode active material, a carbon material capable of occluding and releasing lithium is used, and specific examples thereof include graphite and carbon having low crystallinity. The present invention is characterized in that a tin oxide fiber is contained in the negative electrode active material made of the carbon material.

【0017】正極活物質としてはリチウムを吸蔵、放出
することが可能な材料が使用され、具体的にはTi
2、MoS2、FeS2等の硫化物、NbSe3等のセレ
ン化物等のカルコゲン化合物、あるいはCr25、Cr
38、V38、V25、V613等の遷移金属の酸化
物、LiMn24、Li2MnO4、LiV35、LiN
iO2、LiCoO2等のリチウムと遷移金属との複合酸
化物等、あるいはポリアニリン、ポリアセチレン、ポリ
パラフェニリン、ポリフェニレンビニレン、ポリピロー
ル、ポリチオフェン等の共役系高分子、ジスルフィド結
合を有する架橋高分子等が挙げられる。
As the positive electrode active material, a material capable of occluding and releasing lithium is used.
Chalcogen compounds such as sulfides such as S 2 , MoS 2 and FeS 2 , selenides such as NbSe 3 , or Cr 2 O 5 , Cr
Oxides of transition metals such as 3 O 8 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiMn 2 O 4 , Li 2 MnO 4 , LiV 3 O 5 , LiN
Composite oxides of lithium and transition metals such as iO 2 and LiCoO 2 , or conjugated polymers such as polyaniline, polyacetylene, polyparaphenylene, polyphenylenevinylene, polypyrrole, and polythiophene, and crosslinked polymers having disulfide bonds, etc. No.

【0018】非水電解液としては、プロピレンカーボネ
ート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリル等の単独あるいは2種類以上の混合非水溶媒に、
LiClO4、LiPF6、LiAsF6、LiBF4、L
iB(C654、LiCl、LiBr、CH3SO3
i、CF3SO3Li等のリチウム塩が溶解してなる非水
電解液がいずれの組合せにおいても使用可能である。
Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
In a single non-aqueous solvent such as tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, etc.,
LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , L
iB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 L
A non-aqueous electrolyte in which a lithium salt such as i, CF 3 SO 3 Li or the like is dissolved can be used in any combination.

【0019】セパレータとしては、イオンの移動に対し
て低抵抗であり、かつ溶液保持性に優れたものであれば
なんら制限なく用いることができる。例えば、ガラス繊
維フィルターやポリプロピレン、ポリエチレン、ポリエ
ステル、ポリフロン等の高分子ポアフィルター、不織
布、あるいはガラス繊維フィルターとこれらの高分子か
らなる不織布が使用可能である。更に、電池内部が高温
になったとき、溶融して細孔をふさぎ正・負極のショー
トを防ぐ材料が好ましい。
As the separator, any material can be used without any limitation as long as it has low resistance to the movement of ions and is excellent in solution retention. For example, a glass fiber filter, a polymer pore filter such as polypropylene, polyethylene, polyester and polyflon, a nonwoven fabric, or a nonwoven fabric made of a glass fiber filter and these polymers can be used. Further, it is preferable to use a material that melts and closes the pores when the temperature inside the battery becomes high to prevent a short circuit between the positive electrode and the negative electrode.

【0020】本発明に好適に使用される酸化錫繊維とし
ては、直径が1〜50μmの範囲にあり、かつ直径に対
する繊維の長手方向の長さの比、即ちアスペクト比が1
0以上の繊維形状物が挙げられる。ここで直径とは、酸
化錫繊維の長手方向に対して垂直方向の断面が、円形で
あればその直径であり、楕円形であればその短径と長径
との平均とする。三角形である場合は三辺の平均とし、
四角形以上の多角形である場合は、2本以上の対角線の
平均とする。
The tin oxide fiber preferably used in the present invention has a diameter in the range of 1 to 50 μm and a ratio of the length in the longitudinal direction of the fiber to the diameter, that is, an aspect ratio of 1.
Zero or more fiber-shaped objects are mentioned. Here, the diameter is the diameter of the cross section in the direction perpendicular to the longitudinal direction of the tin oxide fiber if the cross section is circular, and the average of the minor axis and the major axis if the cross section is elliptical. If it is a triangle, it is the average of the three sides,
In the case of a quadrangle or more polygon, the average of two or more diagonal lines is used.

【0021】上記直径及び長手方向の長さの値は、少な
くとも10本以上の酸化錫繊維の平均値とする。直径及
び長手方向の長さの測定は、写真撮影装置を付属した走
査型電子顕微鏡、光学顕微鏡などで撮影された該酸化錫
繊維の写真を用いて容易に行うことが出来る。
The values of the diameter and the length in the longitudinal direction are average values of at least 10 or more tin oxide fibers. The measurement of the diameter and the length in the longitudinal direction can be easily performed using a photograph of the tin oxide fiber taken with a scanning electron microscope, an optical microscope, or the like provided with a photographing device.

【0022】該酸化錫繊維中の酸化錫は、二酸化錫(S
nO2)、一酸化錫(SnO)、酸素欠陥を有する酸化
錫(SnO2-x、但し0<x<1)などの錫の酸化物と
して存在し、これら化学組成の異なる酸化錫が複数混在
していることもある。酸化錫繊維中にどの化学組成の酸
化錫が含有されているかは、焼成時の雰囲気などの製造
条件によって変わる。例えば、焼成時の雰囲気が酸素、
空気などの酸化性雰囲気であれば、酸化錫のほとんどが
二酸化錫であったり、二酸化錫の含有量が多い酸化錫繊
維となる。また、アルゴンガス、ヘリウムガスなどの不
活性雰囲気、あるいは一酸化炭素などの還元性雰囲気な
どの非酸化性雰囲気であれば、二酸化錫の他に一酸化
錫、酸素欠陥を有する酸化錫が含有されたり、酸化錫の
ほとんどが一酸化錫あるいは酸素欠陥を有する酸化錫で
ある酸化錫繊維となる。中でも酸化錫のほとんどが二酸
化錫である酸化錫繊維は、機械的強度が高いため好まし
い。
The tin oxide in the tin oxide fiber is tin dioxide (S
nO 2 ), tin monoxide (SnO), tin oxide having oxygen defects (SnO 2-x , where 0 <x <1), and a plurality of tin oxides having different chemical compositions are mixed. Sometimes I do. Which chemical composition of tin oxide is contained in the tin oxide fiber varies depending on manufacturing conditions such as the atmosphere during firing. For example, the atmosphere during firing is oxygen,
In the case of an oxidizing atmosphere such as air, tin oxide is mostly tin dioxide or tin oxide fibers having a high tin dioxide content. In addition, in an inert atmosphere such as an argon gas or a helium gas or a non-oxidizing atmosphere such as a reducing atmosphere such as carbon monoxide, tin monoxide and tin oxide having oxygen defects are contained in addition to tin dioxide. Almost all tin oxide is tin oxide or tin oxide fiber having oxygen deficiency. Among them, tin oxide fibers in which most of tin oxide is tin dioxide are preferable because of high mechanical strength.

【0023】該酸化錫繊維中の酸化錫の量は、機械的強
度、リチウムの吸蔵量を向上させるため、60モル%以
上が好ましく、さらには70モル%以上が望ましい。
The amount of tin oxide in the tin oxide fiber is preferably at least 60 mol%, more preferably at least 70 mol%, in order to improve the mechanical strength and the amount of absorbed lithium.

【0024】該酸化錫繊維中には、導電性あるいは機械
的強度を向上させることを目的として酸化錫以外の添加
成分を含有しうる。
The tin oxide fiber may contain additional components other than tin oxide for the purpose of improving conductivity or mechanical strength.

【0025】該添加成分としては、カルシウム、マグネ
シウムなどの第2族元素を含有する酸化物、イットリウ
ム、ランタノイド(ランタン、セリウムなどの原子番号
57〜71までの元素)などの第3族元素を含有する酸
化物、チタン、ジルコニウムなどの第4族元素を含有す
る酸化物、バナジウム、ニオブなどの第5族元素を含有
する酸化物、クロムなどの第6族元素を含有する酸化
物、マンガンなどの第7族元素を含有する酸化物、亜鉛
などの第12族元素を含有する酸化物、アルミニウム、
インジウムなどの第13族元素を含有する酸化物、ケイ
素、ゲルマニウムなどの第14族元素(錫を除く)を含
有する酸化物、アンチモン、ビスマスなどの第15族元
素を含有する酸化物などがある。この中で、ケイ素、ゲ
ルマニウムなどの第14族元素(錫を除く)を含有する
酸化物、アルミニウム、インジウムなどの第13族元素
を含有する酸化物、チタンなどの第4族元素を含有する
酸化物は、機械的強度を向上させる効果が高いため好ま
しい。また、バナジウム、ニオブなどの第5族元素を含
有する酸化物、アンチモン、ビスマスなどの第15族元
素を含有する酸化物は、導電性を向上させる効果が高い
ため好ましい。
As the additional components, oxides containing Group 2 elements such as calcium and magnesium, and Group 3 elements such as yttrium and lanthanoids (elements having an atomic number of 57 to 71 such as lanthanum and cerium) are contained. Oxides containing Group 4 elements such as titanium, zirconium, oxides containing Group 5 elements such as vanadium and niobium, oxides containing Group 6 elements such as chromium, and manganese. An oxide containing a Group 7 element, an oxide containing a Group 12 element such as zinc, aluminum,
There are oxides containing a Group 13 element such as indium, oxides containing a Group 14 element (excluding tin) such as silicon and germanium, and oxides containing a Group 15 element such as antimony and bismuth. . Among them, oxides containing Group 14 elements (excluding tin) such as silicon and germanium, oxides containing Group 13 elements such as aluminum and indium, and oxides containing Group 4 elements such as titanium An object is preferable because it has a high effect of improving mechanical strength. Further, an oxide containing a Group 5 element such as vanadium or niobium, or an oxide containing a Group 15 element such as antimony or bismuth is preferably used because it has a high effect of improving conductivity.

【0026】添加成分の量は非水電解液二次電池の性能
とコストに応じて、その都度最適な量が選択されるが、
一般に多すぎると分相などが起こり、かえって機械的強
度を低下させるなどの不都合が生じる。よって添加成分
の量は錫と添加成分の合計モル数に対して40モル%未
満が望ましく、30モル%以下がより好ましい。但し、
該添加成分は添加しなくとも構わない。
The optimal amount of the additive component is selected in each case according to the performance and cost of the nonaqueous electrolyte secondary battery.
In general, if the amount is too large, phase separation or the like occurs, which causes problems such as lowering the mechanical strength. Therefore, the amount of the additional component is preferably less than 40 mol%, more preferably 30 mol% or less, based on the total number of moles of tin and the additional component. However,
The additional component need not be added.

【0027】該酸化錫繊維の形状は、上記条件を満たし
ていれば、どの様な形状でも構わない。しかし、あまり
に長手方向の長さが短すぎると負極活物質に添加した
際、その強度を維持する効果が少ないため、該酸化錫繊
維のアスペクト比が10以上であることが好ましい。ま
た、該酸化錫繊維の直径はあまりに大きすぎると可とう
性を失うため強度が低下し、あまりに小さすぎると取り
扱いが困難になり、強度も充分ではなくなるため、該酸
化錫繊維の直径は1〜50μmであることが好ましい。
更に該酸化錫繊維の長手方向の長さに対して垂直方向の
断面が多角形である場合は、その角の部分において応力
が集中し、負極の強度を低下させる可能性がある。その
ため、酸化錫繊維の長手方向に対して垂直方向の断面の
形状は円形、あるいは楕円形であることが望ましい。
The shape of the tin oxide fiber may be any shape as long as the above conditions are satisfied. However, if the length in the longitudinal direction is too short, the effect of maintaining the strength when added to the negative electrode active material is small, so that the aspect ratio of the tin oxide fiber is preferably 10 or more. In addition, if the diameter of the tin oxide fiber is too large, the strength is reduced due to loss of flexibility, and if the diameter is too small, handling becomes difficult, and the strength is not sufficient. It is preferably 50 μm.
Further, when the cross section in the direction perpendicular to the length in the longitudinal direction of the tin oxide fiber is polygonal, stress is concentrated at the corners, and the strength of the negative electrode may be reduced. Therefore, it is desirable that the shape of the cross section of the tin oxide fiber in the direction perpendicular to the longitudinal direction is circular or elliptical.

【0028】該酸化錫繊維は、製造条件によっても異な
るが、非晶質、又は多結晶、又は単結晶の酸化錫からな
る。但し、上記添加成分が分相することもある。該酸化
錫繊維の構造は、エックス線回折分析などによって確認
することが出来る。例えば、非晶質の場合、エックス線
回折パターンはハローとなる。また、多結晶の場合には
酸化錫あるいは分相した添加成分のエックス線回折パタ
ーンが現れる。
The tin oxide fiber is made of amorphous, polycrystalline, or single-crystal tin oxide, depending on the production conditions. However, the above-mentioned additional components may be phase-separated. The structure of the tin oxide fiber can be confirmed by X-ray diffraction analysis or the like. For example, in the case of amorphous, the X-ray diffraction pattern becomes halo. In the case of polycrystal, an X-ray diffraction pattern of tin oxide or an additional component obtained by phase separation appears.

【0029】負極活物質中に添加される該酸化錫繊維の
量は、あまりにも少量であると、放電末期の負極電位の
上昇を抑える効果が少なく、またあまりにも多量である
と負極活物質の量の割合が低下し、負極の電気容量は低
下する。そのため、該酸化錫繊維の添加量は、通常負極
活物質と酸化錫繊維及び結着剤を合わせた重量を100
重量%とした時、1〜20重量%の範囲が採用される。
If the amount of the tin oxide fiber added to the negative electrode active material is too small, the effect of suppressing the increase in the negative electrode potential at the end of discharge is small. The proportion of the amount decreases, and the electric capacity of the negative electrode decreases. Therefore, the addition amount of the tin oxide fiber is usually 100 weight of the total of the anode active material, the tin oxide fiber and the binder.
When the weight% is used, a range of 1 to 20% by weight is employed.

【0030】酸化錫繊維を含有する負極活物質を有する
負極の代表的な製造方法を以下説明する。まず混練機、
混合機等を用いて、炭素材料と酸化錫繊維及び結着剤を
N−メチルピロリドン等の溶媒と混練し、酸化錫繊維を
含有する負極活物質のペーストを製造する。先に炭素材
料及び結着剤を溶媒と混練し、その後酸化錫繊維と混練
しても構わない。ペースト製造後、集電体にペーストを
塗布、含浸させ、溶媒を乾燥した後、加圧、切断などを
行って所望の形状に加工して負極とする。ペースト製造
時に酸化錫繊維が若干、粉砕または切断されることがあ
るがアスペクト比が10以上であればその効果はほとん
ど損なわれることはない。また、溶液法から作製し、添
加成分を含む酸化錫繊維は可とう性に優れているので高
アスペクト比を維持し易い。
A typical method for producing a negative electrode having a negative electrode active material containing tin oxide fibers will be described below. First, a kneading machine,
Using a mixer or the like, the carbon material, tin oxide fiber, and the binder are kneaded with a solvent such as N-methylpyrrolidone to produce a paste of a negative electrode active material containing tin oxide fiber. The carbon material and the binder may be kneaded with the solvent first, and then kneaded with the tin oxide fiber. After the paste is manufactured, the current collector is coated and impregnated with the paste, the solvent is dried, and then pressure, cutting, and the like are performed to form a desired shape to obtain a negative electrode. Tin oxide fibers may be slightly crushed or cut during paste production, but if the aspect ratio is 10 or more, the effect is hardly impaired. In addition, tin oxide fibers produced by a solution method and containing additional components are excellent in flexibility, and thus easily maintain a high aspect ratio.

【0031】本発明に用いられる酸化錫繊維は、どの様
な方法で製造されたものでもよい。例えば、酸化錫の前
駆体を含む溶液から製造する溶液法、または酸化錫を含
有するターゲットをアルゴンプラズマ下でスパッタリン
グし、溝を有する基板状に酸化錫を堆積させるスパッタ
法、さらには一酸化錫などの錫化合物又は錫を密閉容器
中又は密閉状態に近い容器中で加熱、昇華させ、酸化錫
(二酸化錫)のウィスカーとして再結晶させる析出法な
どによって製造される。この中で溶液法は、酸化錫繊維
の直径と長さを簡単に制御でき、大量生産性に優れ、か
つ歩留まりも高いなどの理由より好ましい。
The tin oxide fiber used in the present invention may be produced by any method. For example, a solution method of manufacturing from a solution containing a precursor of tin oxide, a sputtering method in which a target containing tin oxide is sputtered under argon plasma, and tin oxide is deposited on a substrate having a groove, and further a tin monoxide Such a tin compound or tin is heated and sublimated in a closed container or a container close to a closed state, and is produced by a precipitation method of recrystallizing tin oxide (tin dioxide) whiskers. Among these, the solution method is preferable because the diameter and length of the tin oxide fiber can be easily controlled, the mass productivity is excellent, and the yield is high.

【0032】溶液法としては、例えば、特願平7−33
5547あるいは特願平7−255395などに記載の
方法がよく用いられる。概略は以下の通りである。
As the solution method, for example, Japanese Patent Application No. 7-33
5547 or the method described in Japanese Patent Application No. 7-255395 is often used. The outline is as follows.

【0033】ハロゲン化錫などの錫化合物あるいは金属
錫と、添加成分を含む化合物をメタノールなどのアルコ
ールに順次溶解する。溶解後、不要な有機溶媒を減圧下
で濃縮し、粘稠な紡糸液とする。直径数μm〜数mm程
度の穴を多数有するノズルから紡糸液を押し出すか、又
は吸い出して紡糸を行い、ゲル繊維とした後、500〜
1000℃程度の温度で焼成を行う。
A tin compound such as tin halide or metal tin and a compound containing additional components are sequentially dissolved in an alcohol such as methanol. After dissolution, unnecessary organic solvents are concentrated under reduced pressure to obtain a viscous spinning solution. The spinning solution is extruded from a nozzle having a large number of holes having a diameter of several μm to several mm, or is drawn out and spun to form a gel fiber.
The firing is performed at a temperature of about 1000 ° C.

【0034】リチウムイオンを吸蔵、放出することが可
能な炭素材料を負極活物質として用いる非水電解液二次
電池用負極において、上記負極活物質中に酸化錫繊維が
含有されていると、放電末期に負極電位を急激に上昇さ
せることがなく、保存安定性にも優れ、負極中への非水
電解液の浸漬性も向上し、負極活物質との絡み性も良好
であるため結着剤を増量する必要がなく、サイクル特性
にも優れたものとなる。これは、以下の理由によるもの
と考えられる。
In a negative electrode for a non-aqueous electrolyte secondary battery using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material, if the negative electrode active material contains tin oxide fibers, discharge occurs. It does not suddenly raise the negative electrode potential at the end, has excellent storage stability, improves the immersion of the nonaqueous electrolyte in the negative electrode, and has good entanglement with the negative electrode active material. Does not need to be increased, and the cycle characteristics are also excellent. This is considered to be due to the following reasons.

【0035】負極活物質中に酸化錫繊維が添加されてい
ると、放電末期において負極電位が急激な上昇を示さな
い。この理由は本発明者等も充分に説明することはでき
ないが、負極を充電する際に、負極中に添加されていた
酸化錫繊維にも同時にリチウムが吸蔵され、負極中の炭
素材料に吸蔵されていたリチウムがほとんど放出した放
電末期において、いまだ酸化錫繊維中に吸蔵されていた
リチウムが徐々に放出されることにより、負極電位が急
激に上昇することを防いでいるものと推測される。この
ため、負極電位はその放電末期において徐々に上昇する
ことになり、その結果負極表面において非水電解液が分
解する前に放電を停止し、充電を行う事が容易となる。
この結果、非水電解液が分解されることがなくなるた
め、サイクル寿命が向上する。
When tin oxide fibers are added to the negative electrode active material, the negative electrode potential does not show a sharp rise at the end of discharge. Although the present inventors cannot fully explain the reason, when charging the negative electrode, lithium is simultaneously absorbed in the tin oxide fiber added in the negative electrode, and is stored in the carbon material in the negative electrode. It is presumed that, at the end of discharge, when almost all the released lithium had been released, the lithium that had been occluded in the tin oxide fibers was gradually released, thereby preventing the negative electrode potential from rapidly increasing. For this reason, the negative electrode potential gradually increases at the end of the discharge, and as a result, the discharge is stopped before the nonaqueous electrolyte is decomposed on the negative electrode surface, and it becomes easy to charge.
As a result, the non-aqueous electrolyte is not decomposed, and the cycle life is improved.

【0036】また、負極活物質中に酸化錫繊維が添加さ
れていると、負極が充電された状態で長期間放置され、
放電末期まで自己放電を起こしても、酸化錫繊維中に吸
蔵されているリチウムが徐々に放出されるため負極電位
が急激に上昇せず、電解液の分解が生じない。このた
め、非水電解液二次電池の保存安定性が向上する。
When tin oxide fiber is added to the negative electrode active material, the negative electrode is left in a charged state for a long time,
Even if self-discharge occurs until the end of discharge, the lithium occluded in the tin oxide fibers is gradually released, so that the negative electrode potential does not rise sharply and the electrolyte does not decompose. For this reason, the storage stability of the non-aqueous electrolyte secondary battery is improved.

【0037】また、負極に黒鉛を用いる場合、黒鉛は非
水電解液との濡れ性が悪いため、負極中に電解液が充分
に浸漬できない。このため、充放電々流が局所的に集中
してしまう等の理由により、サイクル寿命を短くする。
しかし、負極活物質である黒鉛中に非水電解液との濡れ
性が良好な酸化錫繊維を添加すると、負極中に充分に非
水電解液が浸漬でき、サイクル寿命が向上する。また、
該酸化錫繊維は負極活物質である炭素材料との絡み性も
良好であるため、結着剤を増量する事なく負極強度を維
持することが可能となる。
When graphite is used for the negative electrode, the graphite cannot be sufficiently immersed in the negative electrode because the graphite has poor wettability with the nonaqueous electrolyte. Therefore, the cycle life is shortened, for example, because the charge and discharge flows are locally concentrated.
However, when tin oxide fiber having good wettability with the non-aqueous electrolyte is added to graphite as the negative electrode active material, the non-aqueous electrolyte can be sufficiently immersed in the negative electrode, and the cycle life is improved. Also,
Since the tin oxide fiber has good entanglement with the carbon material as the negative electrode active material, it is possible to maintain the negative electrode strength without increasing the amount of the binder.

【0038】[0038]

【発明の効果】本発明の酸化錫繊維を添加した非水電解
液二次電池用負極は、放電末期に負極電位を急激に上昇
させることがなく、保存安定性にも優れ、負極中への非
水電解液の浸漬性も向上し、結着剤の増量の必要がな
く、サイクル特性に優れるという効果を有する。
The negative electrode for a non-aqueous electrolyte secondary battery to which the tin oxide fiber has been added according to the present invention does not suddenly raise the negative electrode potential at the end of discharge, has excellent storage stability, and has excellent storage stability. The immersion property of the non-aqueous electrolyte is also improved, and there is no need to increase the amount of the binder, which has an effect that the cycle characteristics are excellent.

【0039】[0039]

【実施例】以下、実施例を示すが、本発明はなんらこれ
に限定されない。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0040】以下の実施例及び比較例において、非水溶
媒にはエチレンカーボネートとジエチルカーボネートと
の等体積混合溶媒を使用し、リチウム塩にはLiPF6
を使用し、これを前記溶媒中に1モル/リットルとなる
ように溶解し、非水電解液とした。また電池セルには、
ガラス製の円筒容器を使用し、正極、負極並びに参照極
を上部蓋から吊り下げて使用した。この電池セルをそれ
ぞれ2個作製し、以下の2種類の充放電特性を測定し
た。
In the following Examples and Comparative Examples, an equal volume mixed solvent of ethylene carbonate and diethyl carbonate was used as the non-aqueous solvent, and LiPF 6 was used as the lithium salt.
Was dissolved in the above-mentioned solvent at a concentration of 1 mol / liter to obtain a non-aqueous electrolyte. The battery cells also
A positive electrode, a negative electrode, and a reference electrode were used by suspending from a top lid using a cylindrical container made of glass. Two battery cells were produced, and the following two types of charge / discharge characteristics were measured.

【0041】1つは、負極活物質のサイクル特性を測定
するために、市販の充放電装置(北斗電工製)にて負極
活物質の放電々気容量を測定した。なお、充放電々流密
度を0.5mA/cm2とし、参照電極に対して0Vに
達した時点で充電を終了し、参照電極に対して+1.0
Vに達した時点で放電を終了し、放電々流と放電時間か
ら負極1g当りの放電容量を算出した。以降、同一条件
で充放電試験を繰り返し、下記式より100サイクル目
容量維持率を求め、この値が高いものほどサイクル特性
が優れていると判断した。但し、充電後並びに放電後に
はそれぞれ1時間のレストをとった。
First, in order to measure the cycle characteristics of the negative electrode active material, the discharge capacity of the negative electrode active material was measured using a commercially available charge / discharge device (manufactured by Hokuto Denko). The charge / discharge current density was set to 0.5 mA / cm 2 , the charging was terminated when the voltage reached 0 V with respect to the reference electrode, and +1.0 with respect to the reference electrode.
When the voltage reached V, the discharge was terminated, and the discharge capacity per 1 g of the negative electrode was calculated from the discharge current and the discharge time. Thereafter, the charge / discharge test was repeated under the same conditions, and the capacity maintenance ratio at the 100th cycle was obtained from the following equation. It was determined that the higher this value, the better the cycle characteristics. However, after charging and after discharging, a rest was taken for one hour.

【0042】[0042]

【数1】 (Equation 1)

【0043】また、もう1つの電池セルにおいては、初
回放電後に充電を行い、その後60℃で10日間放置し
た。その直後に電池セルの負極電位を測定した。その
後、0.5mA/cm2の電流密度で参照極に対して0
Vまで充電を行い、その後0.5mA/cm2の電流密
度で参照極に対して+1.0Vまで放電するという1サ
イクルの充放電試験を行い放電々気容量を測定した。下
記式により10日間放置後の容量維持率を算出し、この
値が高いものほど保存安定性に優れていると判断した。
The other battery cell was charged after the first discharge, and then left at 60 ° C. for 10 days. Immediately thereafter, the negative electrode potential of the battery cell was measured. Thereafter, at a current density of 0.5 mA / cm 2 , 0
The battery was charged to V and then subjected to a one-cycle charge / discharge test in which the battery was discharged to +1.0 V with respect to the reference electrode at a current density of 0.5 mA / cm 2 , and the discharge capacity was measured. The capacity retention rate after standing for 10 days was calculated by the following formula, and it was determined that the higher this value, the better the storage stability.

【0044】[0044]

【数2】 (Equation 2)

【0045】この時、正極活物質として90重量%のL
iCoO2と、導電性付与剤として5重量%のアセチレ
ンブラック、結着剤に5重量%のポリフッ化ビニリデン
のN−メチルピロリドン溶液とを混練してスラリーを調
製し、このスラリーを正極集電体の銅箔上に塗布し、1
00℃で一晩真空乾燥して正極とした。負極活物質とし
ての黒鉛粉末と添加剤の酸化錫繊維、結着剤としてのポ
リフッ化ビニリデンのN−メチルピロリドン溶液とを混
練してスラリーを作製し、このスラリーを負極集電体の
銅箔上に塗布し、100℃で一晩真空乾燥して負極とし
た。参照極にはリチウム金属を使用した。ポリプロピレ
ン製の微多孔膜をセパレータとして負極を囲むように配
置した。
At this time, 90% by weight of L was used as the positive electrode active material.
A slurry is prepared by kneading iCoO 2 , 5% by weight of acetylene black as a conductivity-imparting agent, and 5% by weight of a polyvinylidene fluoride solution of N-methylpyrrolidone as a binder, and preparing this slurry as a positive electrode current collector. Apply on copper foil
Vacuum drying was performed at 00 ° C. overnight to obtain a positive electrode. A graphite powder as a negative electrode active material, tin oxide fiber as an additive, and an N-methylpyrrolidone solution of polyvinylidene fluoride as a binder are kneaded to prepare a slurry, and this slurry is formed on a copper foil of a negative electrode current collector. And vacuum dried at 100 ° C. overnight to obtain a negative electrode. Lithium metal was used for the reference electrode. A polypropylene microporous membrane was used as a separator so as to surround the negative electrode.

【0046】実施例にて使用した酸化錫繊維は以下の方
法で製造した。
The tin oxide fibers used in the examples were produced by the following method.

【0047】塩化第一錫(SnCl2)639.0g、
金属錫549.6gをメタノール3840g中に順次溶
解した。その後、テトラエトキシシラン(Si(OC2
54)739.6gを加えた。得られた溶液をロータ
リーエバポレーターによって濃縮し、紡糸液を得た。こ
の紡糸液を多数の穴を有するノズルから紡糸し、ゲル繊
維を作製した。このゲル繊維を700℃で2時間焼成し
た後、切断し、平均繊維径33μm、アスペクト比30
0の酸化錫繊維を得た。蛍光エックス線を用いた検量線
による元素分析の結果、Sn/Siモル比=70.0/
30.0であった。また、酸化錫繊維の長手方向に対し
て垂直方向の断面の形状は、円形であった。
639.0 g of stannous chloride (SnCl 2 ),
549.6 g of metallic tin were sequentially dissolved in 3840 g of methanol. Then, tetraethoxysilane (Si (OC 2
It was added H 5) 4) 739.6g. The obtained solution was concentrated by a rotary evaporator to obtain a spinning solution. This spinning solution was spun from a nozzle having many holes to produce a gel fiber. This gel fiber was baked at 700 ° C. for 2 hours, and then cut to obtain an average fiber diameter of 33 μm and an aspect ratio of 30.
0 tin oxide fiber was obtained. As a result of elemental analysis by a calibration curve using a fluorescent X-ray, a Sn / Si molar ratio = 70.0 /
30.0. The shape of the cross section in the direction perpendicular to the longitudinal direction of the tin oxide fiber was circular.

【0048】実施例1 黒鉛粉末90重量%に、添加剤の酸化錫繊維5重量%、
結着剤のポリフッ化ビニリデン5重量%のN−メチルピ
ロリドン溶液とを混練してスラリーを得た。このスラリ
ーを負極集電体である銅箔上に塗布し、100℃で一晩
真空乾燥して負極を作製した。前記のように電池セルを
組み立て、充放電試験を行った。その結果を表1及び表
2に示す。
Example 1 90% by weight of graphite powder, 5% by weight of tin oxide fiber as an additive,
A slurry was obtained by kneading a 5% by weight polyvinylidene fluoride solution of a binder with an N-methylpyrrolidone solution. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0049】実施例2 黒鉛粉末85重量%に、添加剤の酸化錫繊維10重量
%、結着剤のポリフッ化ビニリデン5重量%のN−メチ
ルピロリドン溶液とを混練してスラリーを得た。このス
ラリーを負極集電体である銅箔上に塗布し、100℃で
一晩真空乾燥して負極を作製した。前記のように電池セ
ルを組み立て、充放電試験を行った。その結果を表1及
び表2に示す。
Example 2 A slurry was obtained by kneading 85% by weight of graphite powder with 10% by weight of tin oxide fiber as an additive and a solution of 5% by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0050】実施例3 黒鉛粉末75重量%に、添加剤の酸化錫繊維20重量
%、結着剤のポリフッ化ビニリデン5重量%のN−メチ
ルピロリドン溶液とを混練してスラリーを得た。このス
ラリーを負極集電体である銅箔上に塗布し、100℃で
一晩真空乾燥して負極を作製した。前記のように電池セ
ルを組み立て、充放電試験を行った。その結果を表1及
び表2に示す。
Example 3 A slurry was obtained by kneading 75% by weight of graphite powder with 20% by weight of tin oxide fiber as an additive and a solution of 5% by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0051】比較例1 黒鉛粉末95重量%に、結着剤のポリフッ化ビニリデン
5重量%のN−メチルピロリドン溶液とを混練してスラ
リーを得た。このスラリーを負極集電体である銅箔上に
塗布し、100℃で一晩真空乾燥して負極を作製した。
前記のように電池セルを組み立て、充放電試験を行っ
た。その結果を表1及び表2に示す。
Comparative Example 1 A slurry was obtained by kneading 95% by weight of graphite powder with a solution of 5% by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode.
The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0052】比較例2 黒鉛粉末94.5重量%に、添加剤の酸化錫繊維0.5
重量%、結着剤のポリフッ化ビニリデン5重量%のN−
メチルピロリドン溶液とを混練してスラリーを得た。こ
のスラリーを負極集電体である銅箔上に塗布し、100
℃で一晩真空乾燥して負極を作製した。前記のように電
池セルを組み立て、充放電試験を行った。その結果を表
1及び表2に示す。
Comparative Example 2 Tin oxide fiber 0.5 as an additive was added to 94.5% by weight of graphite powder.
5% by weight of polyvinylidene fluoride as a binder and 5% by weight of N-
The mixture was kneaded with a methylpyrrolidone solution to obtain a slurry. This slurry was applied on a copper foil as a negative electrode current collector,
Vacuum drying was performed overnight at ° C to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0053】比較例3 黒鉛粉末65重量%に、添加剤の酸化錫繊維30重量
%、結着剤のポリフッ化ビニリデン5重量%のN−メチ
ルピロリドン溶液とを混練してスラリーを得た。このス
ラリーを負極集電体である銅箔上に塗布し、100℃で
一晩真空乾燥して負極を作製した。前記のように電池セ
ルを組み立て、充放電試験を行った。その結果を表1及
び表2に示す。
Comparative Example 3 An N-methylpyrrolidone solution containing 65% by weight of graphite powder, 30% by weight of tin oxide fiber as an additive, and 5% by weight of polyvinylidene fluoride as a binder was kneaded to obtain a slurry. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年1月29日[Submission date] January 29, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0052】実施例4 黒鉛粉末94.5重量%に、添加剤の酸化錫繊維0.5
重量%、結着剤のポリフッ化ビニリデン5重量%のN−
メチルピロリドン溶液とを混練してスラリーを得た。こ
のスラリーを負極集電体である銅箔上に塗布し、100
℃で一晩真空乾燥して負極を作製した。前記のように電
池セルを組み立て、充放電試験を行った。その結果を表
1及び表2に示す。
Example 4 94.5% by weight of graphite powder and 0.5% of tin oxide fiber as an additive
5% by weight of polyvinylidene fluoride as a binder and 5% by weight of N-
The mixture was kneaded with a methylpyrrolidone solution to obtain a slurry. This slurry was applied on a copper foil as a negative electrode current collector,
Vacuum drying was performed overnight at ° C to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction target item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0053】実施例5 黒鉛粉末65重量%に、添加剤の酸化錫繊維30重量
%、結着剤のポリフッ化ビニリデン5重量%のN−メチ
ルピロリドン溶液とを混練してスラリーを得た。このス
ラリーを負極集電体である銅箔上に塗布し、100℃で
一晩真空乾燥して負極を作製した。前記のように電池セ
ルを組み立て、充放電試験を行った。その結果を表1及
び表2に示す。
Example 5 An N-methylpyrrolidone solution containing 65% by weight of graphite powder, 30% by weight of tin oxide fiber as an additive, and 5% by weight of polyvinylidene fluoride as a binder was kneaded to obtain a slurry. This slurry was applied on a copper foil as a negative electrode current collector, and vacuum dried at 100 ° C. overnight to prepare a negative electrode. The battery cell was assembled as described above, and a charge / discharge test was performed. The results are shown in Tables 1 and 2.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0054[Correction target item name] 0054

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0054】[0054]

【表1】 [Table 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0055[Correction target item name] 0055

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0055】[0055]

【表2】 [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵、放出することが可能な
炭素材料中に酸化錫繊維を含有してなる負極活物質が集
電体に接合されていることを特徴とする非水電解液二次
電池用負極。
1. A non-aqueous electrolyte secondary battery comprising: a negative electrode active material containing tin oxide fibers in a carbon material capable of inserting and extracting lithium; Negative electrode for battery.
【請求項2】 酸化錫繊維の直径が1〜50μm、アス
ペクト比が10以上であることを特徴とする請求項1記
載の非水電解液二次電池用負極。
2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the tin oxide fiber has a diameter of 1 to 50 μm and an aspect ratio of 10 or more.
【請求項3】 酸化錫繊維の添加量が、負極活物質と酸
化錫繊維及び結着剤を合わせた重量を100重量%とし
た時、1〜20重量%であることを特徴とする請求項1
又は請求項2記載の非水電解液二次電池用負極。
3. The amount of the tin oxide fiber added is 1 to 20% by weight, when the total weight of the anode active material, the tin oxide fiber and the binder is 100% by weight. 1
Or the negative electrode for non-aqueous electrolyte secondary batteries according to claim 2.
【請求項4】 請求項1〜3記載の非水電解液二次電池
用負極と、リチウムを吸蔵、放出することが可能な材料
からなる正極活物質を集電体に接合してなる正極とが、
セパレータを介して非水電解液と共に容器内に収納され
ていることを特徴とする非水電解液二次電池。
4. A negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, and a positive electrode obtained by bonding a positive electrode active material made of a material capable of inserting and extracting lithium to a current collector. But,
A non-aqueous electrolyte secondary battery, which is housed in a container together with a non-aqueous electrolyte through a separator.
JP8154588A 1996-06-14 1996-06-14 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Pending JPH103904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154588A JPH103904A (en) 1996-06-14 1996-06-14 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154588A JPH103904A (en) 1996-06-14 1996-06-14 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH103904A true JPH103904A (en) 1998-01-06

Family

ID=15587483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154588A Pending JPH103904A (en) 1996-06-14 1996-06-14 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH103904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726108A (en) * 1983-11-11 1988-02-23 Danieli & C. Officine Meccaniche Spa Device to replace rolls and apparatus on rolling stands having rolls supported at one end
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726108A (en) * 1983-11-11 1988-02-23 Danieli & C. Officine Meccaniche Spa Device to replace rolls and apparatus on rolling stands having rolls supported at one end
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR101430615B1 (en) Cathode and lithium battery using the same
JP4965790B2 (en) Nonaqueous electrolyte secondary battery
US6872491B2 (en) Positive electrode active material and lithium ion secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP5972513B2 (en) Cathode and lithium battery using the same
EP2953901B1 (en) Mixed oxide of titanium and niobium comprising a trivalent element
JP4954865B2 (en) Negative electrode active material having improved electrochemical characteristics and electrochemical device including the same
KR100982325B1 (en) Rechargeable lithium battery
US5851504A (en) Carbon based electrodes
JP5614307B2 (en) Nonaqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
EP2927996A1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
KR101730955B1 (en) Cathode and lithium battery using same
CN101355146A (en) Anode, battery, and methods of manufacturing them
KR100563705B1 (en) Negative electrode current collector, negative electrode using the same and non-aqueous electrolyte secondary battery
KR100975193B1 (en) Nonaqueous electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
WO2022045128A1 (en) Negative-electrode active material for secondary batteries, and secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JPH103904A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3526695B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH07296795A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using it
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery