JPH1038690A - Device for spectroscopic analysis avoiding temperature drift - Google Patents

Device for spectroscopic analysis avoiding temperature drift

Info

Publication number
JPH1038690A
JPH1038690A JP21609396A JP21609396A JPH1038690A JP H1038690 A JPH1038690 A JP H1038690A JP 21609396 A JP21609396 A JP 21609396A JP 21609396 A JP21609396 A JP 21609396A JP H1038690 A JPH1038690 A JP H1038690A
Authority
JP
Japan
Prior art keywords
frequency
signal
temperature
birefringent crystal
superposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21609396A
Other languages
Japanese (ja)
Inventor
Hiroshi Amano
啓史 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT GIKEN KK
Original Assignee
OPT GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT GIKEN KK filed Critical OPT GIKEN KK
Priority to JP21609396A priority Critical patent/JPH1038690A/en
Publication of JPH1038690A publication Critical patent/JPH1038690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a spectroscopically split ray of light by avoiding the fluctuation of the spectroscopically split wavelength caused by the temperature fluctuation of a spectroscope element composed of a birefringent crystal by measuring the temperature fluctuation of the element and correcting the frequency of the ray of light by using the difference between the measured temperature of the element and a reference temperature as a frequency controlling and correcting signal. SOLUTION: A temperature measuring element 4 measures the temperature of a spectroscope element 1 composed of a birefringent crystal and outputs a frequency controlling and correcting signal a2 . A frequency controlling signal superposing circuit 5 inputs the signal a2 and outputs a frequency controlling superposing signal a3 by superposing the signal a2 upon a frequency controlling signal a1 . A frequency generating device 3 applies acoustic vibrations to the element 1 by impressing a high frequency generated based on the signal a3 upon a high-frequency vibrator 2. Since the signal a1 is inputted to the generating device 3 as a superposing signal a3 ' corrected with a correcting signal a2 ' and the generated high frequency is corrected when the temperature of the element 1 detected with the measuring element 4 is higher than a reference temperature, the same spectrally split wavelength as the frequency at the reference temperature is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチックをは
じめ、種々の有機化合物の材質の判別、素性の識別を行
うもので、生産過程における品質管理、廃棄物の再利用
のための分別・分離作業、あるいは環境査察、等の現場
にて用いる分光分析装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to discrimination of materials and identification of various organic compounds such as plastics, quality control in a production process, and separation / separation work for reusing waste. The present invention relates to a spectroscopic analyzer used in the field of environmental inspection or the like.

【0002】[0002]

【従来の技術】一般に分光分析装置は振動、周囲温度、
等の使用環境条件が厳しく、生産現場、或いは廃棄物処
理現場、等では取り扱いにくい分析装置であるが、可動
部分の無い音響光学分光方式(AOTF方式:Acoust-O
ptic Tunable Filter )にて耐震性の問題を解決し、強
力な冷却ファンにて分光波長の温度ドリフト源となる複
屈折結晶分光素子を冷却して恒温化することで対処し、
用途範囲の拡大が図られて居る。
2. Description of the Related Art Generally, a spectroscopic analyzer is used for vibration, ambient temperature,
Although it is an analyzer that is difficult to use in production sites or waste disposal sites, etc. due to severe use environment conditions such as acousto-optical spectroscopy (AOTF: Acoust-O) without moving parts
Ptic Tunable Filter) solves the problem of seismic resistance, and uses a powerful cooling fan to cool the birefringent crystal spectroscopy element, which is the temperature drift source of the spectral wavelength, to keep it at a constant temperature.
The range of applications is being expanded.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この冷
却方法では生産、或いは処理現場等の幅広く急激な周囲
温度変動に対応しきれずに分光波長変動を生じて測定誤
差、すなわち材質判別ミスが発生しやすく、本来の分光
分析装置の性能の発揮に限界がある。なお、始動時にウ
ォ−ミングアップ時間、あるいは、たびたび校正操作を
要し、また、強力な冷却ファンは装置の小型化、簡便性
を欠く、等の不都合があった。
However, in this cooling method, it is difficult to cope with a wide and sudden change in ambient temperature in a production or processing site and the like, so that a spectral wavelength change occurs and a measurement error, that is, a material discrimination error easily occurs. However, the performance of the original spectroscopic analyzer is limited. In addition, a warming-up time at the time of starting or a calibration operation is frequently required, and a powerful cooling fan has disadvantages such as a reduction in size and simplicity of the device.

【0004】本発明は上記問題点を解消し、温度変化に
よる分光波長の変動を回避し安定した分光光線を得るこ
とができ、使用環境に制約を受けない温度ドリフトを回
避した分光分析装置を提供することをその課題とする。
The present invention solves the above-mentioned problems, and provides a spectroscopic analyzer which can avoid a fluctuation of a spectral wavelength due to a temperature change, obtain a stable spectral beam, and avoid a temperature drift which is not restricted by a use environment. Is the task.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明に係る温度ドリフトを回避した分光分析装置
は、温度ドリフト源となる複屈折結晶分光素子の温度変
動を測定し、基準値との温度差を周波数制御補正信号と
して高周波発生装置に加え周波数補正を行い分光光線の
波長を安定化するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a spectroscopic analyzer which avoids temperature drift according to the present invention measures temperature fluctuation of a birefringent crystal spectroscopic element serving as a temperature drift source, and measures a reference value and a reference value. Is applied to a high-frequency generator as a frequency control correction signal to perform frequency correction to stabilize the wavelength of the spectral beam.

【0006】[0006]

【発明の実施の形態】以下、図面によって本発明の実施
の形態について説明する。図1は分光分析装置の一例を
示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an example of the spectroscopic analyzer.

【0007】この分光分析装置は高周波発生装置3で発
生させた高周波を高周波振動子2に印加して複屈折結晶
分光素子1に音響振動を加え、音響振動を加えた複屈折
結晶分光素子1に光源7からの光b1を入射して得られ
る分光光線b2を有機化合物である測定対象8に照射
し、反射光b3を受光器9で受光し、受光した反射光の
吸光スペクトルをパターン化し、パターン化したデータ
を、予めデータファイルに保存されている有機化合物の
パターンと比較・照合し、測定対象である有機化合物の
材質を判別するものである。
In this spectroscopic analyzer, a high frequency generated by a high frequency generator 3 is applied to a high frequency oscillator 2 to apply acoustic vibration to the birefringent crystal spectroscopic element 1, and to the birefringent crystal spectroscopic element 1 to which the acoustic vibration is applied. A light beam b1 from a light source 7 is incident on the object to be measured 8, which is an organic compound, and a reflected light b3 is received by a light receiver 9, and an absorption spectrum of the received reflected light is patterned. The converted data is compared and collated with the pattern of the organic compound stored in the data file in advance to determine the material of the organic compound to be measured.

【0008】ところで、この分光分析装置には複屈折結
晶分光素子1の温度ドリフトを回避するために図2示す
ように複屈折結晶分光素子1の温度を測定する温度測定
素子4と、この温度測定素子4の計測結果に基づいて高
周波振動子2に印加する高周波を補正する周波数制御信
号重畳回路5が設けられている。なお、図2において、
符号1は分光を行う複屈折結晶分光素子、2は複屈折結
晶分光素子1に30 MHz〜80 MHzの振動を与える高周波振
動子(ピエゾ素子)、3は高周波発生装置、6は周波数
制御回路を示す。
In this spectroscopic analyzer, a temperature measuring element 4 for measuring the temperature of the birefringent crystal spectroscopic element 1 as shown in FIG. A frequency control signal superimposing circuit 5 for correcting a high frequency applied to the high frequency oscillator 2 based on the measurement result of the element 4 is provided. In FIG. 2,
Reference numeral 1 denotes a birefringent crystal spectroscopic element for performing spectroscopy, 2 denotes a high-frequency vibrator (piezo element) that applies vibration of 30 MHz to 80 MHz to the birefringent crystal spectroscopic element 1, 3 denotes a high frequency generator, and 6 denotes a frequency control circuit. Show.

【0009】また、矢印a1は分光分析計測のスペクト
ル採取する分光波長の切替のための周波数制御信号、矢
印a2は複屈折結晶分光素子1の温度に基づく周波数制
御補正信号、矢印a3は矢印a1と矢印a2の信号の重
畳された結果の周波数制御重畳信号が与えられることを
示す。
An arrow a1 is a frequency control signal for switching a spectral wavelength for sampling a spectrum for spectroscopic measurement, an arrow a2 is a frequency control correction signal based on the temperature of the birefringent crystal spectroscopic element 1, and an arrow a3 is an arrow a1. This shows that a frequency control superimposed signal resulting from the superposition of the signal of arrow a2 is provided.

【0010】つぎに、図3は複屈折結晶分光素子1の周
波数対分光波長の特性図を示す。この特性図は横軸に高
周波振動周波数、縦軸に分光波長を示し、曲線1は基準
温度における複屈折結晶分光素子の特性を示し、曲線
2、曲線3はそれぞれ複屈折結晶分光素子1の温度が基
準温度より高い場合と、低い場合との特性を示す。基準
温度との温度差が大きい程、曲線2、曲線3は曲線1と
の距離が拡大する。
Next, FIG. 3 shows a characteristic diagram of frequency versus spectral wavelength of the birefringent crystal spectral element 1. In this characteristic diagram, the horizontal axis represents the high-frequency vibration frequency, the vertical axis represents the spectral wavelength, curve 1 represents the characteristic of the birefringent crystal spectral element at the reference temperature, and curves 2 and 3 represent the temperature of the birefringent crystal spectral element 1, respectively. Shows characteristics when the temperature is higher than the reference temperature and when the temperature is lower than the reference temperature. As the temperature difference from the reference temperature increases, the distance between the curves 2 and 3 and the curve 1 increases.

【0011】図3において、基準温度時に複屈折結晶分
光素子1は縦線1の位置の高周波振動周波数f1に対
し、縦線1と曲線1の交点で定まる分光波長w1を出力
する。温度上昇時には同一の高周波振動周波数f1にて
縦線1と曲線2との交点で定まる分光波長w2は基準温
度時の分光波長w1より低下し、低温時には同一の高周
波振動周波数f1にて縦線1と曲線3との交点で定まる
分光波長w3は基準温度時の分光波長w1より増長する
ことを示している。
In FIG. 3, at the reference temperature, the birefringent crystal spectroscopy element 1 outputs a spectral wavelength w1 determined by the intersection of the vertical line 1 and the curve 1 with respect to the high frequency vibration frequency f1 at the position of the vertical line 1. When the temperature rises, the spectral wavelength w2 determined by the intersection of the vertical line 1 and the curve 2 at the same high-frequency vibration frequency f1 is lower than the spectral wavelength w1 at the reference temperature, and the vertical line 1 at the same high-frequency vibration frequency f1 at a low temperature. This indicates that the spectral wavelength w3 determined by the intersection of the curve 3 and the curve 3 is longer than the spectral wavelength w1 at the reference temperature.

【0012】次に、上述の分光分析装置の作動態様につ
いて説明する。図2において複屈折結晶分光素子1の温
度は温度測定素子4で計測され、この温度測定素子4は
計測結果から周波数制御補正信号a2を出力する。この
周波数制御補正信号a2は周波数制信号重畳回路5に入
力され、この周波数制信号重畳回路5は周波数制御信号
a1に周波数制御補正信号a2を重畳して周波数制御重
畳信号a3を出力する。この周波数制御重畳信号a3は
高周波発生装置3に入力され、高周波発生装置3は周波
数制御重畳信号a3に基づいて発生した高周波を高周波
振動子2に印加し、複屈折結晶分光素子1に音響振動を
加えるが、上記温度測定素子4が複屈折結晶分光素子1
の温度が基準温度より高いことを検出した場合は、周波
数制御信号a1は周波数制御補正信号a2’により補正
された周波数制御重畳信号a3’として高周波発生装置
3に入力され、高周波発生装置3が発生する高周波の周
波数はf2(図3参照)に補正されるので、縦線2と曲
線2との交点から定まる分光波長はw1となり、基準温
度における周波数f1と同一の分光波長を得ることがで
きる。
Next, the operation of the above-mentioned spectroscopic analyzer will be described. In FIG. 2, the temperature of the birefringent crystal spectroscopic element 1 is measured by a temperature measuring element 4, and the temperature measuring element 4 outputs a frequency control correction signal a2 from the measurement result. The frequency control correction signal a2 is input to the frequency control signal superimposing circuit 5, and the frequency control signal superimposition circuit 5 superimposes the frequency control correction signal a2 on the frequency control signal a1, and outputs a frequency control superimposition signal a3. This frequency control superimposed signal a3 is input to the high frequency generator 3, and the high frequency generator 3 applies the high frequency generated based on the frequency control superimposed signal a3 to the high frequency vibrator 2, and applies acoustic vibration to the birefringent crystal spectroscopic element 1. In addition, the temperature measuring element 4 is the birefringent crystal
Is higher than the reference temperature, the frequency control signal a1 is input to the high frequency generator 3 as the frequency control superimposed signal a3 'corrected by the frequency control correction signal a2', and the high frequency generator 3 Since the frequency of the high frequency is corrected to f2 (see FIG. 3), the spectral wavelength determined from the intersection of the vertical line 2 and the curve 2 is w1, and the same spectral wavelength as the frequency f1 at the reference temperature can be obtained.

【0013】また、複屈折結晶分光素子1の温度が基準
温度より低いことを温度測定素子4が検出した場合は、
周波数制御信号a1は周波数制御補正信号a2”により
補正された周波数制御重畳信号a3”として高周波発生
装置3に入力され、高周波発生装置3が発生する高周波
の周波数はf3に補正されるので、縦線3と曲線3との
交点から定まる分光波長はw1となり、基準温度におけ
る周波数f1と同一の分光波長を得ることができる。
When the temperature measuring element 4 detects that the temperature of the birefringent crystal spectroscopic element 1 is lower than the reference temperature,
The frequency control signal a1 is input to the high frequency generator 3 as a frequency control superimposed signal a3 "corrected by the frequency control correction signal a2", and the frequency of the high frequency generated by the high frequency generator 3 is corrected to f3. The spectral wavelength determined from the intersection of 3 and curve 3 is w1, and the same spectral wavelength as frequency f1 at the reference temperature can be obtained.

【0014】なお、この分光波長の変動は分光素子とし
て近赤外領域(波長:0.9 μm〜2.5 μm)で用いられ
る複屈折結晶(例えば、二酸化テルル)の場合は温度変
動により結晶体の質量の変化を生じることから1℃につ
き0.0001μm程度の波長変動(温度上昇にて波長低下の
方向)を生ずるが、振動周波数を数キロヘルツ(2 KHz
〜3 KHz )程度、補正制御(温度上昇に対し降下)する
ことによって波長変動を回避することができる。
In the case of a birefringent crystal (for example, tellurium dioxide) used in the near-infrared region (wavelength: 0.9 μm to 2.5 μm) as a spectral element, the change in the spectral wavelength is caused by the change in mass of the crystal due to temperature fluctuation. Due to the change, a wavelength fluctuation of about 0.0001 μm per 1 ° C. (in a direction of decreasing the wavelength with an increase in temperature) occurs, but the vibration frequency is changed to several kilohertz (2 KHz).
変 動 3 KHz), wavelength fluctuation can be avoided by performing correction control (falling with temperature rise).

【0015】以上説明したように、高周波振動周波数を
複屈折結晶分光素子の温度の関数として高周波振動周波
数を、高温時には高周波振動周波数を下げるように、低
温時には高周波振動周波数を上げるように補正制御を行
うことにより、縦線2と曲線2との交点、あるいは縦線
3と曲線3との交点が定まり、変動の無い分光波長を出
力することができ、この分光波長を測定対象に照射して
得られた吸光スペクトルを解析することにより、温度ド
リフトによる測定誤差を回避した測定結果を得る分光分
析装置を実現することができる。
As described above, the correction control is performed so that the high-frequency vibration frequency is reduced as a function of the temperature of the birefringent crystal spectroscopic element, the high-frequency vibration frequency is reduced at a high temperature, and the high-frequency vibration frequency is increased at a low temperature. By doing so, the intersection of the vertical line 2 and the curve 2 or the intersection of the vertical line 3 and the curve 3 is determined, and a spectral wavelength that does not fluctuate can be output. By analyzing the obtained absorption spectrum, it is possible to realize a spectroscopic analyzer that obtains a measurement result avoiding a measurement error due to a temperature drift.

【0016】[0016]

【発明の効果】本発明によれば、耐震性に優れた音響光
学分光方式の複屈折結晶分光素子に音響振動を与える高
周波発生装置において、温度ドリフトによる測定誤差を
解決したので、従来は振動、周囲温度の制約から分光分
析装置の使用が適さなかった種々の生産過程、プロセス
ライン、廃棄物処理等、の現場にても小型、簡便な装置
として分光分析技術を活用し、プラスチックをはじめ、
製薬・食品の材料および製品、環境汚染物質等、種々の
有機化合物を対象として材質の判別、素性の認識を行う
ことを可能とするものである。
According to the present invention, in a high-frequency generator for applying acoustic vibration to a birefringent crystal spectroscopy element of an acousto-optic spectroscopic method excellent in earthquake resistance, a measurement error due to a temperature drift is solved. Utilizing spectral analysis technology as a compact and simple device even in various production processes, process lines, waste treatment, etc. where the use of spectroscopic analyzers was not suitable due to the restriction of ambient temperature, including plastics,
It is possible to discriminate the materials and recognize the characteristics of various organic compounds such as pharmaceutical and food materials and products, and environmental pollutants.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分光分析装置の一例を示すブロッ
ク図
FIG. 1 is a block diagram showing an example of a spectroscopic analyzer according to the present invention.

【図2】上記分光分析装置の温度補正を説明するブロッ
ク図
FIG. 2 is a block diagram illustrating temperature correction of the spectroscopic analyzer.

【図3】複屈折結晶分光素子の周波数対分光波長の温度
特性図
FIG. 3 is a temperature characteristic diagram of frequency versus spectral wavelength of a birefringent crystal spectroscopic element.

【符号の説明】[Explanation of symbols]

1 複屈折結晶分光素子 2 高周波振動子 3 高周波発生装置 4 温度測定素子 5 周波数制御信号重畳回路 a1 周波数制御信号 a2 周波数制御補正信号 a3 周波数制御重畳信号 DESCRIPTION OF SYMBOLS 1 Birefringence crystal spectroscopy element 2 High frequency oscillator 3 High frequency generator 4 Temperature measuring element 5 Frequency control signal superimposing circuit a1 Frequency control signal a2 Frequency control correction signal a3 Frequency control superimposing signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音響光学分光方式の複屈折結晶分光素子
に音響振動を与える高周波発生装置において、分光波長
を可変制御する周波数制御信号に複屈折結晶分光素子の
温度変動を関数とする周波数制御補正信号を重畳するこ
とを特徴とする温度ドリフトを回避した分光分析装置。
1. A high-frequency generator for applying acoustic vibration to an acousto-optic spectroscopic birefringent crystal spectroscopic element, wherein a frequency control signal for variably controlling a spectral wavelength has a frequency control correction functioning as a function of temperature fluctuation of the birefringent crystal spectroscopic element. A spectrometer that avoids temperature drift characterized by superimposing a signal.
JP21609396A 1996-07-29 1996-07-29 Device for spectroscopic analysis avoiding temperature drift Pending JPH1038690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21609396A JPH1038690A (en) 1996-07-29 1996-07-29 Device for spectroscopic analysis avoiding temperature drift

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21609396A JPH1038690A (en) 1996-07-29 1996-07-29 Device for spectroscopic analysis avoiding temperature drift

Publications (1)

Publication Number Publication Date
JPH1038690A true JPH1038690A (en) 1998-02-13

Family

ID=16683145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21609396A Pending JPH1038690A (en) 1996-07-29 1996-07-29 Device for spectroscopic analysis avoiding temperature drift

Country Status (1)

Country Link
JP (1) JPH1038690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524628A (en) * 2004-12-20 2008-07-10 ハネウェル・インターナショナル・インコーポレーテッド Sensor and method for measuring selected components in a sheet manufacturing system
WO2018056208A1 (en) * 2016-09-20 2018-03-29 長野計器株式会社 Light wavelength measurement device
CN108042148A (en) * 2017-11-30 2018-05-18 江苏赛诺格兰医疗科技有限公司 The method of the real time correction of pet detector spectrum drift and spectrum drift correction system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524628A (en) * 2004-12-20 2008-07-10 ハネウェル・インターナショナル・インコーポレーテッド Sensor and method for measuring selected components in a sheet manufacturing system
WO2018056208A1 (en) * 2016-09-20 2018-03-29 長野計器株式会社 Light wavelength measurement device
CN108042148A (en) * 2017-11-30 2018-05-18 江苏赛诺格兰医疗科技有限公司 The method of the real time correction of pet detector spectrum drift and spectrum drift correction system
CN108042148B (en) * 2017-11-30 2020-11-10 江苏赛诺格兰医疗科技有限公司 Real-time correction method and system for PET detector spectrum drift

Similar Documents

Publication Publication Date Title
US5120961A (en) High sensitivity acousto-optic tunable filter spectrometer
US4622845A (en) Method and apparatus for the detection and measurement of gases
US7805980B2 (en) Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency
Shindo Application of polarized modulation technique in polymer science
US20030231302A1 (en) Nonlinear optical system for sensing the presence of contamination on a semiconductor wafer
US20120212744A1 (en) Laser gas analyzer
JP2003043533A (en) Automatic tracking device for keeping fixed direction of second higher harmonic of laser
US20090244516A1 (en) Combination of ellipsometry and optical stress generation and detection
Saito et al. Polarization‐resolved coherent anti‐Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio
JP2744742B2 (en) Gas concentration measuring method and its measuring device
JPH1038690A (en) Device for spectroscopic analysis avoiding temperature drift
US6882414B2 (en) Broadband infrared spectral surface spectroscopy
JP2003014641A (en) Infrared analyzer
GB2274163A (en) Gas analyser
US5373358A (en) Excitation wavelength sweeping type raman spectroscopic apparatus
CN116893165A (en) Apparatus and method for multisource excitation raman spectroscopy
US6411388B1 (en) System and method for frequency domain interferometric second harmonic spectroscopy
JP2004061411A (en) Method and apparatus for nonlinear raman spectroscopy
Cheng et al. Characterization of a noncolinear acousto-optic tunable filter and its resolution enhancement as a near-infrared spectrometer
JPS60202329A (en) Light-path-noise suppressing modulation system in spectrochemical analysis device using variable wavelength laser
Müller et al. Feedback stabilization of quantum cascade laser beams for stand-off applications
Gandhi et al. Infrared (IR) Spectroscopy
JPH0377030A (en) Reaction vapor phase monitor device
Ujj Contribution to the development of low frequency terahertz coherent Raman micro-spectroscopy and microscopy
Buijs et al. Evolution of FTIR technology as applied to chemical detection and quantification