JPH10332593A - Electrochemiluminescence detecting cell - Google Patents

Electrochemiluminescence detecting cell

Info

Publication number
JPH10332593A
JPH10332593A JP13643597A JP13643597A JPH10332593A JP H10332593 A JPH10332593 A JP H10332593A JP 13643597 A JP13643597 A JP 13643597A JP 13643597 A JP13643597 A JP 13643597A JP H10332593 A JPH10332593 A JP H10332593A
Authority
JP
Japan
Prior art keywords
working electrode
electrochemiluminescence
bead
beads
recessed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13643597A
Other languages
Japanese (ja)
Other versions
JP3641100B2 (en
Inventor
Yuji Miyahara
裕二 宮原
Tomoharu Kajiyama
智晴 梶山
Hiroyuki Tomita
裕之 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13643597A priority Critical patent/JP3641100B2/en
Publication of JPH10332593A publication Critical patent/JPH10332593A/en
Application granted granted Critical
Publication of JP3641100B2 publication Critical patent/JP3641100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an electrochemiluminescence detecting cell whose reproducibility is high and which obtains a high S/N ratio by a method wherein a recessed part is formed on a working electrode and magnetic beads are captured by the recessed part in a one-to-one manner so as to emit light. SOLUTION: A plurality of recessed parts 9 are formed on a conductive electrode plate 8. The size of every recessed part 9 is matched to the size of every magnetic bead 6. The bottom face 10 and side faces by every recessed part 9 act as electrodes. It is required to completely remove every bead 6 which is captured once when a next measurement is performed. When the area of the bottom face 10 is made smaller than that of an opening part in such a way that a cross-sectional shape is an inverted trapezoid, every bead is removed efficiently. It is required to deliver electrons with reference to every working electrode so that a luminescent reagent can emit light. As a result, only the luminescent reagent which is close of every working electrode out of luminescent reagents which are fixed to every bead 6 participates in luminescence. In every working electrode, at least four places on side faces of every recessed part 9 are obtained as points coming into contact with every bead 6, every bead 6 can come into contact with the bottom face 10 when the structure of every recessed part is made optimum, and every bead 6 owns five contact points in common. Since electrochemiluminescence is generated in every contact point, it can be measured in a high S/N ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気化学発光を利用
した、例えば血液などの生体液中に含まれる成分の定量
分析装置に関し、特にホルモン,ガンマーカー,感染症
を診断する免疫分析装置または遺伝子診断装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for quantitative analysis of components contained in biological fluids such as blood using electrochemiluminescence, and more particularly to an immunoanalyzer or a gene for diagnosing hormones, cancer markers, infectious diseases. It relates to a diagnostic device.

【0002】[0002]

【従来の技術】電気化学発光を利用する免疫分析装置が
クリニカル・ケミストリー第37巻,1991年,第1
534頁から第1539頁(Clin. Chem. Vol.37,
(1991)pp1534−1539)に記載されている。本
文献では、発光試薬が抗体を介して固定化された磁気ビ
ーズを磁石により板状の白金電極上に捕捉し、白金電極
に電圧を印加することによる電気化学発光を、光電子増
倍管により検出している。上記磁気ビーズは直径数ミク
ロンの高分子を主成分とするもので、一回の測定で多数
個のビーズを白金電極上に導入して必要な感度を得てい
る。
2. Description of the Related Art An immunoassay apparatus utilizing electrochemiluminescence is described in Clinical Chemistry, Vol. 37, 1991, No. 1.
534 to 1539 (Clin. Chem. Vol. 37,
(1991) pp1534-139). In this document, a magnetic bead in which a luminescent reagent is immobilized via an antibody is captured on a plate-like platinum electrode by a magnet, and electrochemiluminescence by applying a voltage to the platinum electrode is detected by a photomultiplier tube. doing. The magnetic beads are mainly composed of a polymer having a diameter of several microns, and the required sensitivity is obtained by introducing a large number of beads onto a platinum electrode in one measurement.

【0003】[0003]

【発明が解決しようとする課題】上記文献において、測
定の再現性は電極表面に捕捉されるビーズの再現性によ
り決まる。測定の再現性は、検出下限を決めるパラメー
タでもあるため、ビーズ捕捉の再現性を向上させること
は電気化学発光検出器の高性能化のためには重要であ
る。上記文献では、板状白金電極上への磁気ビーズの捕
捉は磁石により行っている。したがって、測定ごとに捕
捉されるビーズの個数は必ずしも同じではなく、測定の
再現性向上が第1の課題となっている。
In the above document, the reproducibility of measurement is determined by the reproducibility of beads captured on the electrode surface. Since the reproducibility of measurement is also a parameter that determines the lower limit of detection, it is important to improve the reproducibility of capturing beads to improve the performance of the electrochemiluminescence detector. In the above document, the capture of the magnetic beads on the plate-like platinum electrode is performed by a magnet. Therefore, the number of beads captured in each measurement is not always the same, and improving the reproducibility of the measurement is a first problem.

【0004】また、白金電極上に磁気ビーズを導入する
とき、ビーズに固定化されていないフリーな抗体も同時
にセル中に導入される。このフリーな抗体が非特異的に
白金電極表面に吸着し、発光すると、ノイズの原因とな
りS/Nを低下させる。したがって、フリーな抗体(Fr
ee 抗体,F)と、ビーズに固定化された抗体(Bound抗
体,B)を分離するB/F分離過程は重要である。上記
文献では試薬の流れによりフリーな抗体を除去している
が、十分には除去できず、非特異吸着に基づく発光の低
減が第2の課題となっている。
When magnetic beads are introduced onto a platinum electrode, free antibodies not immobilized on the beads are simultaneously introduced into the cell. When this free antibody is nonspecifically adsorbed on the surface of the platinum electrode and emits light, it causes noise and lowers S / N. Therefore, free antibodies (Fr
The B / F separation process for separating the ee antibody (F) and the antibody (Bound antibody, B) immobilized on the beads is important. In the above document, free antibodies are removed by the flow of the reagent, but they cannot be removed sufficiently, and reduction of luminescence based on non-specific adsorption is a second problem.

【0005】本発明は上記第1及び第2の課題を解決
し、高い再現性とS/Nを兼ね備えた電気化学発光検出
セルを提供することを目的としてなされたものである。
An object of the present invention is to solve the first and second problems and to provide an electrochemiluminescence detection cell having high reproducibility and S / N.

【0006】[0006]

【課題を解決するための手段】上記第1の課題は、作用
電極に凹部を設け、上記凹部に磁気ビーズを一対一で捕
捉し、発光させることで解決する。作用電極に形成され
る凹部の数は一定であるため、その中に捕捉されるビー
ズの個数も常に一定に保つことができ、発光の高い再現
性を得ることができる。
The first object is attained by providing a recess in the working electrode, capturing the magnetic beads one-to-one in the recess and emitting light. Since the number of recesses formed in the working electrode is constant, the number of beads captured therein can also be kept constant, and high reproducibility of light emission can be obtained.

【0007】また、上記第2の課題は作用電極上の凹部
以外の表面を絶縁物で被覆することにより解決する。試
料溶液中のフリーな抗体は非特異的に吸着するが、絶縁
物上に吸着した抗体の発光試薬は、電子の授受ができな
いため酸化還元反応を行うことができず、したがって発
光することができない。したがってノイズの発生源を最
小限に抑えることができるため高いS/Nを実現するこ
とができる。
The second problem is solved by covering the surface of the working electrode other than the concave portion with an insulator. The free antibody in the sample solution adsorbs non-specifically, but the luminescent reagent of the antibody adsorbed on the insulator cannot transfer electrons and thus cannot perform an oxidation-reduction reaction and therefore cannot emit light. . Therefore, the source of noise can be minimized, so that a high S / N can be realized.

【0008】[0008]

【発明の実施の形態】図1に免疫分析装置で使用される
ビーズの概念図を示す。ポリスチレンなどの高分子ビー
ズ1の表面にビオチン−アビジン2により抗体3を結合
させる(a)。次に血液などの生体試料を導入し、その中
に含まれる抗原4と抗体3を特異的に反応させる
(b)。次にルテニウム錯体化合物などの発光試薬5を
標識した抗体を反応させ、ビーズ表面に抗体−抗原−抗
体のサンドイッチ構造を形成する(c)。この状態で検出
セルに導入される。磁気ビーズを用いるときは、磁性体
の粉末を高分子中に分散させて製作する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of beads used in an immunoassay apparatus. Antibody 3 is bound to the surface of polymer beads 1 such as polystyrene by biotin-avidin 2 (a). Next, a biological sample such as blood is introduced, and the antigen 4 and the antibody 3 contained therein are specifically reacted (b). Next, an antibody labeled with a luminescent reagent 5, such as a ruthenium complex compound, is reacted to form an antibody-antigen-antibody sandwich structure on the bead surface (c). In this state, it is introduced into the detection cell. When using magnetic beads, the magnetic beads are manufactured by dispersing a magnetic powder in a polymer.

【0009】図2は従来の検出セルにおける発光測定の
概念を示したものである。上記のサンドイッチ構造が形
成されたビーズ6を白金などの作用電極7上に捕捉し、
ビーズを電極上で静止させる。この状態で作用電極と対
電極に電圧を印加して、発光試薬を酸化還元反応させて
発光させる。発光試薬が発光するためには作用電極と電
子の授受が必要であり、ビーズに固定化された発光試薬
の内、作用電極近傍の発光試薬のみが発光に関与する。
FIG. 2 shows the concept of light emission measurement in a conventional detection cell. The beads 6 having the sandwich structure formed thereon are captured on a working electrode 7 such as platinum,
Let the beads rest on the electrodes. In this state, a voltage is applied to the working electrode and the counter electrode, and the luminescent reagent undergoes an oxidation-reduction reaction to emit light. In order for the luminescent reagent to emit light, it is necessary to exchange electrons with the working electrode. Of the luminescent reagent immobilized on the beads, only the luminescent reagent near the working electrode participates in luminescence.

【0010】図3は本発明の第1の実施例である。導電
性電極板8に複数個の凹部9を形成した(a)。凹部は
機械加工の他、フォトリソグラフィー技術とエッチング
技術を組み合わせて形成することができる。凹部の大き
さは、使用するビーズの大きさに合わせて設計する。凹
部の開口部は使用するビーズの直径よりやや大きめに設
定することが望ましい。
FIG. 3 shows a first embodiment of the present invention. A plurality of recesses 9 were formed in the conductive electrode plate 8 (a). The concave portion can be formed by combining photolithography technology and etching technology in addition to machining. The size of the recess is designed according to the size of the beads to be used. It is desirable that the opening of the recess is set slightly larger than the diameter of the beads to be used.

【0011】(a)図のaa′の線で切断したときの断
面図を(b)図に示す。本実施例では導電性材料を加工
して凹部を形成するので、凹部の底面及び側面が電極と
なる。一旦捕捉したビーズは次の測定には完全に除去さ
れる必要があるため、ビーズが除去されやすい構造であ
ることが望ましい。例えば(b)図に示すように、開口
部の面積より底面10の面積を小さくし、逆台形にした
断面形状を有する凹部とすれば、ビーズ除去を効率的に
行うことができる。
FIG. 1B is a sectional view taken along the line aa ′ in FIG. In this embodiment, since the concave portion is formed by processing the conductive material, the bottom surface and the side surface of the concave portion become the electrodes. Since the beads once captured need to be completely removed for the next measurement, it is desirable that the beads have a structure in which the beads are easily removed. For example, as shown in FIG. 6B, if the area of the bottom surface 10 is made smaller than the area of the opening and the recess is formed to have an inverted trapezoidal cross section, beads can be efficiently removed.

【0012】(c)図にビーズ6が捕捉された状態を示
す。前述したように、発光試薬が発光するためには作用
電極と電子の授受が必要であり、ビーズに固定化された
発光試薬の内、作用電極近傍の発光試薬のみが発光に関
与する。図2に示した従来の平板状作用電極ではビーズ
との接点は1箇所のみであり、この接点で電気化学発光
が起こる。一方、本発明の凹部付き作用電極ではビーズ
と接触する点は少なくても凹部の側面の4箇所、凹部構
造を最適化すれば底面10とも接触可能であるため5箇
所の接点をビーズと共有することになる。
FIG. 3C shows a state where the beads 6 are captured. As described above, in order for the luminescent reagent to emit light, it is necessary to exchange electrons with the working electrode. Of the luminescent reagent immobilized on the beads, only the luminescent reagent near the working electrode participates in luminescence. In the conventional flat working electrode shown in FIG. 2, there is only one point of contact with the beads, and electrochemiluminescence occurs at this point of contact. On the other hand, in the working electrode with a concave portion of the present invention, at least four points on the side surface of the concave portion and five contact points can be shared with the bead because the concave portion can be contacted with the bottom surface 10 if the concave portion structure is optimized. Will be.

【0013】従って、各接点で電気化学発光が起こるた
め、高いS/Nの測定が可能となる。上記導電性電極の
材料としては、白金,パラジウム,イリジウム,シリコ
ン,金の中から選択し、単独にまたは複数個を組み合わ
せて製作することができる。白金,パラジウム,イリジ
ウム,金を材料とするときは、凹部の底面を正方形と
し、底面と側面とのなす角度を135度とすることが望
ましい。シリコンを材料とするときは(100)面を用
いる必要があり、正方形のマスクを形成して水酸化カリ
ウム水溶液中で約90度の温度でエッチングすると、凹
部の底面と側面のなす角度は約125度になる。金属及
びシリコンのいずれを用いる場合でも、凹部の底面積を
最適化することによりビーズと凹部の接点を5個とする
ことができ高いS/Nを得ることができる。
Therefore, since electrochemiluminescence occurs at each contact point, a high S / N can be measured. The material of the conductive electrode can be selected from platinum, palladium, iridium, silicon, and gold, and can be manufactured alone or in combination. When platinum, palladium, iridium, or gold is used as the material, it is preferable that the bottom surface of the concave portion is a square, and the angle between the bottom surface and the side surface is 135 degrees. When silicon is used as the material, it is necessary to use the (100) plane. When a square mask is formed and etched in a potassium hydroxide aqueous solution at a temperature of about 90 degrees, the angle between the bottom surface and the side surface of the concave portion is about 125 degrees. It becomes degree. Regardless of whether metal or silicon is used, by optimizing the bottom area of the concave portion, the number of contacts between the bead and the concave portion can be five, and a high S / N can be obtained.

【0014】ビーズの大きさは通常1μmから10μm
の範囲であり、好ましくは約3μmである。ビーズ材料
としては、比重,表面修飾のし易さのためポリスチレン
を用い、磁場に対する感度を付与するために、フェライ
トなどの磁性微粒子をポリスチレン中に分散させる。直
径3μmのビーズ及び上記金属の電極を用いる場合、凹
部の底面の正方形の一辺の長さを1.24μm とし、凹
部の深さを少なくとも0.45μm 以上とすることによ
り、ビーズと凹部の接点を5個とすることができ最大の
S/Nが得られる。一方、直径3μmのビーズ及びシリ
コンの電極を用いる場合、凹部の底面の正方形の一辺の
長さを1.56μm とし、凹部の深さを少なくとも0.
64μm 以上とすることにより、ビーズと凹部の接点
を5個とすることができ最大のS/Nが得られる。
The size of the beads is usually 1 μm to 10 μm
And preferably about 3 μm. As the bead material, polystyrene is used because of its specific gravity and the surface is easily modified, and magnetic fine particles such as ferrite are dispersed in the polystyrene to impart sensitivity to a magnetic field. When using a bead having a diameter of 3 μm and the above-mentioned metal electrode, the length of one side of the square on the bottom surface of the recess is set to 1.24 μm, and the depth of the recess is set to at least 0.45 μm. The number can be set to five, and the maximum S / N is obtained. On the other hand, when beads and silicon electrodes having a diameter of 3 μm are used, the length of one side of the square on the bottom surface of the concave portion is 1.56 μm, and the depth of the concave portion is at least 0.5 μm.
When the thickness is 64 μm or more, the number of contacts between the beads and the concave portions can be five, and the maximum S / N can be obtained.

【0015】ビーズを除去する時の効率を高めるため、
凹部の深さはビーズの直径よりは小さい方が好ましい。
凹部の深さをビーズの直径と同じ3μmとした場合、金
属電極表面における凹部開口部の正方形の一辺の長さは
7.24μm 、シリコンの場合7.56μmとなる。凹
部と隣の凹部との間隔を、金属電極の場合2.76μ
m、シリコン電極の場合2.44μm とし、発光させる
部分の面積を5mm×5mmとすると、250000個のビ
ーズを電極凹部に捕捉することができる。なお、電極の
厚さは0.1から1mmの範囲であり、0.5mmが好まし
い。
In order to increase the efficiency when removing beads,
The depth of the recess is preferably smaller than the diameter of the bead.
If the depth of the recess is 3 μm, which is the same as the diameter of the bead, the length of one side of the square of the opening of the recess on the surface of the metal electrode is 7.24 μm, and that of silicon is 7.56 μm. The distance between the concave portion and the adjacent concave portion is 2.76 μm for a metal electrode.
m, 2.44 μm in the case of a silicon electrode and 5 mm × 5 mm in the area of the light-emitting portion, 250,000 beads can be captured in the electrode recess. The thickness of the electrode ranges from 0.1 to 1 mm, preferably 0.5 mm.

【0016】図4は本発明の第2の実施例である。形状
は図3の実施例と基本的に同じであるが、導電性電極1
1を形成する部分を凹部に局在化したものである。本実
施例でも凹部の底面及び側面が電極となる。板状材料の
凹部以外の部分は絶縁材料12で構築してある。導電性
電極11と外部回路との接続はリード線13により行
い、局在化導電性電極に電圧を印加することができる。
FIG. 4 shows a second embodiment of the present invention. The shape is basically the same as the embodiment of FIG.
The portion forming 1 is localized in the concave portion. Also in this embodiment, the bottom and side surfaces of the concave portion serve as electrodes. Portions other than the concave portions of the plate-like material are constructed of the insulating material 12. The connection between the conductive electrode 11 and the external circuit is performed by the lead wire 13, and a voltage can be applied to the localized conductive electrode.

【0017】本実施例では、ビーズが捕捉される凹部の
みに電圧を印加して、発光試薬の酸化還元反応を行わせ
ることができるので、電気化学発光を凹部のみに局在化
することができる。試料中に存在するフリーな標識抗体
は非特異的にセル内面に吸着するが、絶縁物表面に吸着
したフリー標識抗体は電子の授受を行うことができず、
発光しない。したがって、非特異吸着に基づくノイズを
低減することができ、高いS/Nの測定が可能となる。
In this embodiment, since a voltage can be applied only to the concave portion where the beads are captured, and the oxidation-reduction reaction of the luminescent reagent can be performed, the electrochemiluminescence can be localized only in the concave portion. . The free labeled antibody present in the sample is non-specifically adsorbed on the inner surface of the cell, but the free labeled antibody adsorbed on the insulator surface cannot transfer electrons,
Does not emit light. Therefore, noise based on non-specific adsorption can be reduced, and high S / N can be measured.

【0018】図5は本発明の第3の実施例である。シリ
コン基板14を材料とし、試料溶液と接触する表面に酸
化膜15を形成する。酸化膜にはフォトリソグラフィー
により穴があけられており、凹部9が形成されている。
本実施例も図4と同様に電気化学発光を凹部のみに局在
化し、非特異吸着によるノイズを低減することができる
ので高S/Nの測定が可能である。
FIG. 5 shows a third embodiment of the present invention. An oxide film 15 is formed on a surface of the silicon substrate 14 which is in contact with the sample solution. A hole is formed in the oxide film by photolithography, and a recess 9 is formed.
Also in this embodiment, as in FIG. 4, the electrochemiluminescence is localized only in the concave portions, and noise due to non-specific adsorption can be reduced, so that a high S / N can be measured.

【0019】(a)図のbb′の線で切った断面形状を
(b)図に示す。シリコン基板の結晶面及び異方性エッ
チング技術を用いることにより、図3及び図4と同様に
開口部の面積より底面10の面積を小さくし、台形を逆
にした断面形状を有する凹部を製作することができる。
例えば、基板に(100)面シリコン、エッチング液に
水酸化カリウム水溶液、またはエチレンジアミン/パイ
ロカテコール/水、及び方形状に穴開けされた酸化膜マ
スクを用いることにより図5(b)の形状の凹部を製作
することができる。凹部の底面及び側面16、すなわち
作用電極となる部分はシリコンが直接露出しているか、
または白金,金,イリジウム,パラジウムなどの金属材
料で被覆することが望ましい。シリコン表面に形成する
絶縁膜として、酸化膜の他、窒化珪素,酸化タンタル,
酸化アルミニウムを使用することができる。
FIG. 2B shows a sectional shape taken along the line bb 'in FIG. By using the crystal plane of the silicon substrate and the anisotropic etching technique, as in FIGS. 3 and 4, the area of the bottom surface 10 is made smaller than the area of the opening, and a concave portion having a cross section inverted from a trapezoid is manufactured. be able to.
For example, using a (100) plane silicon as a substrate, an aqueous solution of potassium hydroxide or ethylenediamine / pyrocatechol / water as an etchant, and an oxide film mask having a rectangular hole, a concave portion having a shape shown in FIG. Can be manufactured. The bottom and side surfaces 16 of the concave portion, that is, the portion serving as the working electrode is directly exposed to silicon,
Alternatively, it is desirable to coat with a metal material such as platinum, gold, iridium, and palladium. As an insulating film formed on the silicon surface, in addition to an oxide film, silicon nitride, tantalum oxide,
Aluminum oxide can be used.

【0020】以上のように本実施例はシリコンを材料と
し、半導体プロセスにより製作することができるので、
特性のそろったセルを安価に製作することができ、使い
捨て型セルの用途にも応用可能である。
As described above, in this embodiment, silicon can be used as a material and can be manufactured by a semiconductor process.
A cell having the same characteristics can be manufactured at low cost, and can be applied to the use of a disposable cell.

【0021】第2及び第3の実施例に記載した絶縁物
は、ガラス,酸化珪素,レジスト、ポリ塩化ビニルなど
の高分子を材料とし、第3の実施例のように凹部以外の
表面を被覆するか、または第2の実施例のように凹部と
凹部の間に埋設する。
The insulator described in the second and third embodiments is made of a polymer such as glass, silicon oxide, resist, or polyvinyl chloride, and covers the surface other than the concave portions as in the third embodiment. Or embedded between recesses as in the second embodiment.

【0022】図6は本発明の第4の実施例である。図5
に示したシリコンを材料とする作用電極17とガラス基
板18を張り合わせたものである。作用電極と対抗する
ガラス表面には溝19が加工されており、張り合わせに
より流路を形成することができる。(b)図はガラスに
形成される流路の形状を示したものである。作用電極と
なる凹部アレーの付近20で流路幅が増大しており、高
速で流れてきたビーズが急速に広がり、凹部アレーの中
に均一に捕捉される構造となっている。(c)図は
(a)図のcc′の線で切った断面形状を示したもので
ある。ガラスに形成された流路は、フッ酸などによりエ
ッチングされたものであり、(c)図に示した断面形状
の流路19となる。ガラスとシリコンの張り合わせには
陽極接合など、高温(500度から600度)中でガラ
スとシリコンの間に電圧を印加する方法が適している。
FIG. 6 shows a fourth embodiment of the present invention. FIG.
A working electrode 17 made of silicon and a glass substrate 18 shown in FIG. A groove 19 is formed on the glass surface opposite to the working electrode, and a flow path can be formed by bonding. (B) shows the shape of the channel formed in the glass. The flow channel width is increased in the vicinity 20 of the concave array serving as the working electrode, so that the beads flowing at a high speed spread rapidly and are uniformly captured in the concave array. (C) shows a cross-sectional shape taken along the line cc 'in (a). The flow path formed in the glass is etched by hydrofluoric acid or the like, and becomes a flow path 19 having a cross-sectional shape shown in FIG. For bonding glass and silicon, a method of applying a voltage between glass and silicon at a high temperature (500 to 600 degrees), such as anodic bonding, is suitable.

【0023】本実施例のように、作用電極のみではな
く、試料が流れるフローセルまでも一体化することによ
り、小型で、微量試料でも測定可能な電気化学発光検出
セルを提供できる。
As in the present embodiment, by integrating not only the working electrode but also the flow cell through which the sample flows, it is possible to provide a small-sized electrochemiluminescence detection cell capable of measuring even a small amount of sample.

【0024】図7は本発明の第5の実施例であり、図6
に示した実施例のフローセル21を用いて測定システム
を構築したものである。本実施例では表面にアビジンを
コーティングした磁気ビーズを用い、この磁気ビーズ
と、ビオチンを修飾した甲状腺刺激ホルモン抗体,測定
対象の甲状腺刺激ホルモン、及び電気化学発光試薬であ
るトリス(ビピルジル)ルテニウムを固定化した甲状腺
刺激ホルモン抗体とを反応させて、磁気ビーズ上に抗体
−抗原−抗体のサンドイッチ構造を形成した。上記磁気
ビーズ,フリーな抗体及び抗原を含む試料22,トリプ
ロピルアミンなどの試薬23、及び洗浄液24のボトル
から、ピペット25及びポンプ26により、必要に応じ
て試料,試薬,洗浄液を上記フローセル中に導入し、磁
石27により磁気ビーズをフローセル中の作用電極の凹
部に捕捉する。その状態でトリプロピルアミンを含む試
薬23をしばらく流し続けてノイズの原因となるフリー
な抗体を洗い流し、B/F分離を行う。
FIG. 7 shows a fifth embodiment of the present invention.
The measurement system is constructed using the flow cell 21 of the embodiment shown in FIG. In this example, magnetic beads coated with avidin on the surface were used, and the magnetic beads, thyroid stimulating hormone antibody modified with biotin, thyroid stimulating hormone to be measured, and tris (bipyridyl) ruthenium as an electrochemiluminescent reagent were immobilized. The antibody was reacted with the converted thyroid stimulating hormone antibody to form an antibody-antigen-antibody sandwich structure on the magnetic beads. A sample, a reagent, and a washing solution are added to the flow cell as needed by a pipette 25 and a pump 26 from the magnetic beads, a sample 22 containing free antibodies and antigens, a reagent 23 such as tripropylamine, and a bottle of a washing solution 24. Then, the magnetic beads are captured by the magnet 27 in the concave portion of the working electrode in the flow cell. In this state, the reagent 23 containing tripropylamine is kept flowing for a while to wash away free antibodies that cause noise, and B / F separation is performed.

【0025】その後、流れを停止し、ポテンシオスタッ
ト28により作用電極に1.4V の電圧を印加し、発光
量を光電子増倍管29で検出する。発光検出時間は1.
5 秒から2秒である。光電子増倍管の信号はフォトン
カウンター30を介してコンピュータ31に入力され、
バックグランド信号の除去,発光信号の積分,濃度への
換算などの演算処理が行われる。一方、ポテンシオスタ
ット28もコンピュータに接続されており、電圧印加の
タイミングなどが制御される。
Thereafter, the flow is stopped, a voltage of 1.4 V is applied to the working electrode by the potentiostat 28, and the amount of light emission is detected by the photomultiplier tube 29. The emission detection time is 1.
5 seconds to 2 seconds. The signal of the photomultiplier is input to the computer 31 via the photon counter 30,
Arithmetic processing such as removal of a background signal, integration of a light emission signal, and conversion into a density are performed. On the other hand, the potentiostat 28 is also connected to a computer, and the timing of voltage application and the like are controlled.

【0026】発光量測定後、作用電極に3Vの電圧を印
加して電極表面で水の電気分解を行わせ、気泡を発生さ
せることにより作用電極表面からビーズを除去し、廃液
ボトル32に保管する。ポテンシオスタットによる電圧
印加は流路中に設置されている作用電極,対極及び参照
電極33により行った。この3電極方式による測定は、
作用電極の電位を正確に制御することができるため、再
現性がよい。本実施例の構成によれば、多数の試料を連
続的に順次測定することができ、高いスループットの測
定システムを提供することができる。
After measuring the amount of emitted light, a voltage of 3 V is applied to the working electrode to cause electrolysis of water on the electrode surface, and bubbles are generated to remove beads from the surface of the working electrode and stored in a waste liquid bottle 32. . The voltage application by the potentiostat was performed by the working electrode, the counter electrode, and the reference electrode 33 provided in the flow path. The measurement using this three-electrode method
Since the potential of the working electrode can be accurately controlled, reproducibility is good. According to the configuration of the present embodiment, a large number of samples can be continuously and sequentially measured, and a high-throughput measurement system can be provided.

【0027】図8は本発明の第6の実施例である。図3
に示した第1の実施例において凹部の底面及び開口部の
形状を長方形としたものである。凹部の底面及び側面は
白金,パラジウム,イリジウム,金またはシリコンで形
成されており、作用電極となる。(a)は全体図、
(b)は(a)図のdd′の線で切った断面図、(c)
は(a)図のee′の線で切った断面図である。
FIG. 8 shows a sixth embodiment of the present invention. FIG.
In the first embodiment shown in FIG. 5, the shape of the bottom surface and the opening of the concave portion is rectangular. The bottom and side surfaces of the recess are made of platinum, palladium, iridium, gold or silicon and serve as working electrodes. (A) is an overall view,
(B) is a sectional view taken along the line dd 'in (a), (c)
(A) is a sectional view taken along the line ee 'in (a).

【0028】凹部底面の長方形の短辺の長さは第1の実
施例で記載した長さと同様であり、長辺の長さは発光さ
せる部分全域に及び、本実施例では5mmである。本実施
例では磁気ビーズは凹部の中に一列に捕捉される。長辺
の長さが決まっているので凹部中に捕捉されるビーズの
数は一定となり、再現性の良い測定を行うことができ
る。凹部中に捕捉されたビーズの多くは凹部底面及び長
辺の側面の計3箇所で作用電極と接点を持ち、その接点
から発光する。したがって、第1の実施例に比べると発
光量は少なくなるが、図2に示した従来の電極形状に比
べると高いS/Nが得られる。
The length of the short side of the rectangle at the bottom of the concave portion is the same as the length described in the first embodiment, and the length of the long side extends over the entire area where light is emitted, and is 5 mm in this embodiment. In this embodiment, the magnetic beads are captured in a row in the recess. Since the length of the long side is fixed, the number of beads captured in the concave portion is constant, and measurement with good reproducibility can be performed. Most of the beads trapped in the recess have a working electrode and a contact point at a total of three places on the bottom face and the long side face of the recess, and emit light from the contact point. Therefore, although the amount of light emission is smaller than that of the first embodiment, a higher S / N can be obtained as compared with the conventional electrode shape shown in FIG.

【0029】なお、凹部の端に捕捉されるビーズは作用
電極と4個の接点を有するが、その数は全体の0.4%
にすぎないため、発光量に及ぼす影響は小さい。一方、
洗浄時の効率を高めるために、本実施例は凹部の長辺を
試料の流れに対して平行に、したがって短辺を直角にな
るように設置することが好ましい。この構成では、本実
施例は第1の実施例より洗浄効率が高く、迅速,高スル
ープット測定に適している。なお、本実施例を第2,第
3及び第4の実施例に適用できることは言うまでもな
い。
The beads trapped at the end of the recess have four contacts with the working electrode, but the number is 0.4% of the whole.
Therefore, the influence on the light emission amount is small. on the other hand,
In this embodiment, in order to increase the efficiency at the time of washing, it is preferable that the long side of the concave portion is installed so as to be parallel to the flow of the sample, and thus the short side is at right angle. With this configuration, the present embodiment has higher cleaning efficiency than the first embodiment, and is suitable for quick and high-throughput measurement. It is needless to say that this embodiment can be applied to the second, third and fourth embodiments.

【0030】[0030]

【発明の効果】本発明によれば作用電極上に捕捉するビ
ーズの個数を一定に制御することができるため、再現性
の良い測定を行うことができる。また、凹部中における
ビーズと電極との接点の数を増やすことができるため、
従来に比べて発光量を増大させることができる。さら
に、凹部以外の作用電極表面には絶縁物が形成されてい
るため、非特異吸着に基づく発光を小さく抑えることが
できるのでノイズを低減することができる。したがっ
て、本発明は再現性がよく、高S/Nであり、従って検
出下限の低い高感度な測定システムを提供することがで
きる。
According to the present invention, since the number of beads to be captured on the working electrode can be controlled to be constant, measurement with good reproducibility can be performed. Also, since the number of contacts between the beads and the electrodes in the recess can be increased,
The light emission amount can be increased as compared with the related art. Further, since an insulator is formed on the surface of the working electrode other than the concave portion, light emission due to non-specific adsorption can be suppressed to be small, so that noise can be reduced. Therefore, the present invention can provide a highly sensitive measurement system with good reproducibility, high S / N, and low detection lower limit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】抗体固定化ビーズの説明図。FIG. 1 is an explanatory view of an antibody-immobilized bead.

【図2】従来の電気化学発光測定の概念図。FIG. 2 is a conceptual diagram of a conventional electrochemiluminescence measurement.

【図3】本発明の第1の実施例である作用電極の構造を
示す斜視および部分断面図。
FIG. 3 is a perspective view and a partial cross-sectional view showing a structure of a working electrode according to the first embodiment of the present invention.

【図4】本発明の第2の実施例の作用電極の構造を示す
部分断面図。
FIG. 4 is a partial sectional view showing a structure of a working electrode according to a second embodiment of the present invention.

【図5】本発明の第3の実施例の作用電極の構造を示す
斜視および部分断面図。
FIG. 5 is a perspective view and a partial sectional view showing the structure of a working electrode according to a third embodiment of the present invention.

【図6】本発明の第4の実施例のフローセルの構造を示
す斜視図および平面図および正面図。
FIG. 6 is a perspective view, a plan view, and a front view showing a structure of a flow cell according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施例の測定システムの構成を
示すブロック図。
FIG. 7 is a block diagram showing a configuration of a measurement system according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施例の作用電極の構造を示す
斜視および部分断面図。
FIG. 8 is a perspective view and a partial sectional view showing the structure of a working electrode according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ビーズ、2…ビオチン−アビジン、3…抗体、4…
抗原、5…標識試薬、6…抗体固定化ビーズ、7…白金
電極、8…導電性電極、9…凹部、10…底面、11…
導電性電極、12…絶縁物、13…リード線、14…シ
リコン、15…酸化膜、16…側面、17…凹部付き作
用電極、18…ガラス板、19…溝、20…幅広流路、
21…フローセル、22…試料、23…試薬、24…洗
浄液、25…ピペット、26…ポンプ、27…磁石、2
8…ポテンシオスタット、29…光電子増倍管、30…
フォトンカウンター、31…コンピュータ、32…廃液
ボトル、33…参照電極。
1 ... beads, 2 ... biotin-avidin, 3 ... antibodies, 4 ...
Antigen, 5: labeling reagent, 6: antibody-immobilized beads, 7: platinum electrode, 8: conductive electrode, 9: recess, 10: bottom, 11 ...
Conductive electrode, 12 insulator, 13 lead wire, 14 silicon, 15 oxide film, 16 side surface, 17 working electrode with concave portion, 18 glass plate, 19 groove, 20 wide channel,
Reference numeral 21: flow cell, 22: sample, 23: reagent, 24: cleaning liquid, 25: pipette, 26: pump, 27: magnet, 2
8 Potentiometer, 29 Photomultiplier tube, 30
Photon counter, 31: Computer, 32: Waste liquid bottle, 33: Reference electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも作用電極と対極を含む複数の電
極を備え、前記電極に電圧を印加して試料中に含まれる
発光試薬の電気化学発光を検出するセルにおいて、前記
作用電極に凹部を設けたことを特徴とする電気化学発光
検出セル。
1. A cell comprising a plurality of electrodes including at least a working electrode and a counter electrode, wherein a voltage is applied to the electrodes to detect the electrochemiluminescence of a luminescent reagent contained in a sample. An electrochemiluminescence detection cell, characterized in that:
【請求項2】少なくとも作用電極と対極を含む複数の電
極を備え、前記電極に電圧を印加して試料中に含まれる
発光試薬の電気化学発光を検出するセルにおいて、前記
作用電極に凹部を設け、凹部以外の表面に絶縁物を設け
たことを特徴とする電気化学発光検出セル。
2. A cell provided with a plurality of electrodes including at least a working electrode and a counter electrode, wherein a voltage is applied to the electrodes to detect the electrochemiluminescence of a luminescent reagent contained in a sample. An electrochemiluminescence detection cell, characterized in that an insulator is provided on the surface other than the recess.
【請求項3】少なくとも作用電極と対極を含む複数の電
極を備え、前記電極に電圧を印加して試料中に含まれる
発光試薬の電気化学発光を検出するセルにおいて、磁気
ビーズ,磁石及び光検出器を備え、上記発光試薬が抗体
に標識されて抗原−抗体反応により磁気ビーズ上に導入
され、磁石により上記磁気ビーズを上記作用電極上に形
成された凹部に捕捉し、作用電極に電圧を印加すること
により発光試薬を発光させ、光検出器により発光量を測
定することを特徴とする電気化学発光検出セル。
3. A cell comprising a plurality of electrodes including at least a working electrode and a counter electrode, wherein a voltage is applied to the electrodes to detect the electrochemiluminescence of a luminescent reagent contained in a sample. A luminous reagent is labeled on an antibody, is introduced onto magnetic beads by an antigen-antibody reaction, and the magnetic beads are captured by a magnet in a recess formed on the working electrode, and a voltage is applied to the working electrode. A luminescent reagent, and the amount of luminescence is measured by a photodetector.
【請求項4】請求項1から3に記載の作用電極は、白
金,パラジウム,イリジウム,シリコン,金の中から選
択し、単独にまたは複数個を組み合わせて製作すること
を特徴とする電気化学発光検出セル。
4. A working electrode according to claim 1, wherein the working electrode is selected from platinum, palladium, iridium, silicon, and gold, and is manufactured alone or in combination. Detection cell.
【請求項5】請求項1から3に記載の作用電極の凹部
は、シリコンをエッチング加工することにより製作し、
凹部以外の表面を二酸化珪素,窒化珪素,酸化タンタ
ル,酸化アルミニウムなどの無機絶縁物で被覆し、溝が
形成されたガラス板を接合することにより試料が流れる
流路としたことを特徴とする電気化学発光検出セル。
5. The concave part of the working electrode according to claim 1, wherein the concave part is manufactured by etching silicon.
The electric field is characterized in that the surface other than the recesses is covered with an inorganic insulating material such as silicon dioxide, silicon nitride, tantalum oxide, aluminum oxide and the like, and a glass plate having grooves formed thereon is used as a flow path for the sample to flow. Chemiluminescence detection cell.
【請求項6】前記発光試薬はトリス(ビピルジル)ルテ
ニウムまたはその誘導体であることを特徴とする請求項
1から3のいずれかに記載の電気化学発光検出セル。
6. The electrochemiluminescence detection cell according to claim 1, wherein said luminescent reagent is tris (bipyridyl) ruthenium or a derivative thereof.
JP13643597A 1997-05-27 1997-05-27 Electrochemiluminescence detection cell Expired - Fee Related JP3641100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13643597A JP3641100B2 (en) 1997-05-27 1997-05-27 Electrochemiluminescence detection cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13643597A JP3641100B2 (en) 1997-05-27 1997-05-27 Electrochemiluminescence detection cell

Publications (2)

Publication Number Publication Date
JPH10332593A true JPH10332593A (en) 1998-12-18
JP3641100B2 JP3641100B2 (en) 2005-04-20

Family

ID=15175075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13643597A Expired - Fee Related JP3641100B2 (en) 1997-05-27 1997-05-27 Electrochemiluminescence detection cell

Country Status (1)

Country Link
JP (1) JP3641100B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004372A1 (en) * 1998-07-16 2000-01-27 The Board Of Regents, The University Of Texas System Sensor arrays for the measurement and identification of multiple analytes in solutions
JP2003519367A (en) * 2000-01-04 2003-06-17 ウォーターズ・インヴェストメンツ・リミテッド Capillary column using monodispersed particles
EP1892524A1 (en) * 2006-08-25 2008-02-27 F. Hoffmann-La Roche AG Cell for conducting electrochemiluminescence measurements
JP2009540270A (en) * 2006-06-02 2009-11-19 ルミネックス・コーポレーション System and method for performing measurement of one or more materials, including using magnetic particles and applying a magnetic field
GB2472882A (en) * 2009-07-29 2011-02-23 Dynex Technologies Inc A sample plate with a plurality of sample wells
JP2011511936A (en) * 2008-01-17 2011-04-14 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Integrated magnetic field generation and detection platform
US8798951B2 (en) 2006-06-02 2014-08-05 Luminex Corporation Systems and methods for performing measurements of one or more materials
WO2014122996A1 (en) * 2013-02-08 2014-08-14 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2015145280A1 (en) * 2014-03-26 2015-10-01 International Business Machines Corporation Microfluidic chip with conic bead trapping cavities and fabrication thereof
US9523701B2 (en) 2009-07-29 2016-12-20 Dynex Technologies, Inc. Sample plate systems and methods

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004372A1 (en) * 1998-07-16 2000-01-27 The Board Of Regents, The University Of Texas System Sensor arrays for the measurement and identification of multiple analytes in solutions
JP4773663B2 (en) * 2000-01-04 2011-09-14 ウォーターズ・テクノロジーズ・コーポレーション Capillary column using monodispersed particles
JP2003519367A (en) * 2000-01-04 2003-06-17 ウォーターズ・インヴェストメンツ・リミテッド Capillary column using monodispersed particles
US8889347B2 (en) 2006-06-02 2014-11-18 Luminex Corporation Systems and methods for performing measurements of one or more materials
US8798951B2 (en) 2006-06-02 2014-08-05 Luminex Corporation Systems and methods for performing measurements of one or more materials
US10451541B2 (en) 2006-06-02 2019-10-22 Luminsex Corporation Systems and methods for performing measurements of one or more materials
JP2009540270A (en) * 2006-06-02 2009-11-19 ルミネックス・コーポレーション System and method for performing measurement of one or more materials, including using magnetic particles and applying a magnetic field
US11125678B2 (en) 2006-06-02 2021-09-21 Luminex Corporation Systems and methods for performing measurements of one or more materials
EP1892524A1 (en) * 2006-08-25 2008-02-27 F. Hoffmann-La Roche AG Cell for conducting electrochemiluminescence measurements
US8940230B2 (en) 2006-08-25 2015-01-27 Roche Diagnostics Operations, Inc. Cell for conducting electrochemiluminescence measurements
JP2011511936A (en) * 2008-01-17 2011-04-14 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Integrated magnetic field generation and detection platform
US10969386B2 (en) 2009-07-29 2021-04-06 Dynex Technologies, Inc. Sample plate systems and methods
US10207268B2 (en) 2009-07-29 2019-02-19 Dynex Technologies, Inc. Sample plate systems and methods
US8541246B2 (en) 2009-07-29 2013-09-24 Dynex Technologies, Inc. Sample plate systems and methods
GB2472882A (en) * 2009-07-29 2011-02-23 Dynex Technologies Inc A sample plate with a plurality of sample wells
US9857367B2 (en) 2009-07-29 2018-01-02 Dynex Technologies, Inc. Sample plate systems and methods
US9244069B2 (en) 2009-07-29 2016-01-26 Dynex Technologies Sample plate systems and methods
GB2472882B (en) * 2009-07-29 2012-05-09 Dynex Technologies Inc Sample plate
US9523701B2 (en) 2009-07-29 2016-12-20 Dynex Technologies, Inc. Sample plate systems and methods
US10302641B2 (en) 2013-02-08 2019-05-28 Roche Diagnostics Operations, Inc. Automatic analysis device
CN105229449A (en) * 2013-02-08 2016-01-06 霍夫曼-拉罗奇有限公司 Automatic analysing apparatus
JP2014153178A (en) * 2013-02-08 2014-08-25 F. Hoffmann-La Roche Ag Automatic analyzer
CN105229449B (en) * 2013-02-08 2018-10-12 霍夫曼-拉罗奇有限公司 Automatic analysing apparatus
WO2014122996A1 (en) * 2013-02-08 2014-08-14 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2015145280A1 (en) * 2014-03-26 2015-10-01 International Business Machines Corporation Microfluidic chip with conic bead trapping cavities and fabrication thereof
CN106104271B (en) * 2014-03-26 2018-04-20 国际商业机器公司 Micro-fluid chip and its manufacture with conical bead trapping chamber
JP2017512987A (en) * 2014-03-26 2017-05-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Microfluidic chip with conical bead capture cavity and its fabrication
CN106104271A (en) * 2014-03-26 2016-11-09 国际商业机器公司 There is micro-fluid chip and the manufacture thereof in conical bead trapping chamber

Also Published As

Publication number Publication date
JP3641100B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US5093268A (en) Apparatus for conducting a plurality of simultaneous measurements of electrochemiluminescent phenomena
Feng et al. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker
US20190054466A1 (en) Single-use test device for imaging blood cells
US9671398B2 (en) Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
US9759681B2 (en) Biomolecule detection method, biomolecule detection device and analysis device
JP6130306B2 (en) Rapid quantification of biomolecules and methods in selectively functionalized nanofluidic biosensors
US8382968B2 (en) Conductor/insulator/porous film-device and its use with the electrochemiluminescence-based analytical methods
US20190056304A1 (en) Method of imaging blood cells
US20110117676A1 (en) Magnetic sensor, production method of the same, and target substance detecting apparatus and biosensor kit using the same
RU2568979C2 (en) Integrated carbon electrode chips for electric excitation of lanthanide chelates, and methods of analysis with their use
JP3641100B2 (en) Electrochemiluminescence detection cell
JP5685601B2 (en) Nanofluidic biosensor and its utilization and method for rapid measurement of biomolecule interactions in solution
US8920718B2 (en) Methods and devices to generate luminescence from integrated electrode chips by cathodic and bipolar pulses
Sandeau et al. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing
JPH09184842A (en) Conductive magnetic bead where physiologically active substance is immobilized
US7851202B2 (en) Biosensor and method for operating the latter
JP2023543119A (en) Auxiliary electrode and its use and manufacturing method
JP3641101B2 (en) Electrochemical flow-through cell and analytical method using the same
CN108169480B (en) Method, system and chip for detecting molecular number of biomarker
JP2009210316A (en) Emission measuring device
JP2006133137A (en) Method for detecting material to be inspected
JP2007212233A (en) Biosensor
JP3664557B2 (en) Flow-through cell
JP5481326B2 (en) Measuring apparatus and measuring method using biomaterial detection element
JP2009121861A (en) Sensor chip, and target material detection method using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees