JPH10331161A - Predicting method for behavior at earth retaining excavation - Google Patents

Predicting method for behavior at earth retaining excavation

Info

Publication number
JPH10331161A
JPH10331161A JP9146240A JP14624097A JPH10331161A JP H10331161 A JPH10331161 A JP H10331161A JP 9146240 A JP9146240 A JP 9146240A JP 14624097 A JP14624097 A JP 14624097A JP H10331161 A JPH10331161 A JP H10331161A
Authority
JP
Japan
Prior art keywords
behavior
ground
value
excavation
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9146240A
Other languages
Japanese (ja)
Other versions
JP3849229B2 (en
Inventor
Shin Matsumoto
伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP14624097A priority Critical patent/JP3849229B2/en
Priority to KR1019970075824A priority patent/KR100502648B1/en
Publication of JPH10331161A publication Critical patent/JPH10331161A/en
Application granted granted Critical
Publication of JP3849229B2 publication Critical patent/JP3849229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Fuzzy Systems (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Physics (AREA)
  • Economics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a predicting method for the behavior in an earth retaining excavation with which a presumptive value does not involve dispersion and it is pos sible to make accurate presumption to suit actual measurements in a short period of time, by making definite the unknown about the ground quickly. SOLUTION: When a difference exceeding the specified value exists between the actually measured value of behavior and the initial value according to the design in this behavior predicting method to be applied at excavation in earth retaining works, the membership function centering on the strut spring coefficient ks should be set in addition to the values representing the physical properties of the ground such as its earth pressure P, reactive force coefficient ke, the sticking force C, friction angle ϕ, volume weight γ, etc., which were set at the time of calculating the initial design values (s40), followed by setting of the change amount δ to increase or decrease the physical property values and the strut spring coefficient ks on the membership function (s41), and the calculative behavior values Bn when the change amount δis increased and decreased in a plurality of runs are determined (s48). The physical property values and strut spring coefficient ks when the calculation Bn is approx. identical to the measurement A is adopted as the definite value (s51).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土留め掘削時の挙
動予測方法に関し、特に、ファジー理論を利用した挙動
予測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a behavior prediction method at the time of earth retaining excavation, and more particularly to a behavior prediction method utilizing fuzzy logic.

【0002】[0002]

【従来の技術】共同溝,立坑および構造物基礎などの地
下構造物を構築する場合に行われる掘削工事では、掘削
過程の進行に伴う、掘削面の崩落防止や、地盤沈下など
による周辺への影響を最小にし、安全に工事を進める必
要性から、通常、土留め工事が実施される。
2. Description of the Related Art In excavation work performed when constructing underground structures such as common trenches, shafts and structural foundations, the excavation process is prevented from collapsing due to the progress of the excavation process, and the excavation to the surrounding area due to land subsidence. Earth retaining works are usually implemented because of the necessity to minimize the impact and proceed safely.

【0003】このような工事における各掘削過程では、
掘削による地盤の不均衡を土留め壁,切梁,掘削面以深
の周辺地盤に分担させて、工事が進められる。ところ
が、地盤は、その物性値にバラツキが多い不確定なもの
であり、設計時に物性値に十分配慮をしていても、実際
の挙動と異なることがある。
In each excavation process in such construction,
Construction will proceed with the imbalance in the ground due to excavation being shared between the retaining wall, the girder, and the surrounding ground below the excavation surface. However, the ground is an uncertain material whose physical property values vary widely and may differ from the actual behavior even when sufficient consideration is given to the physical property values at the time of design.

【0004】このような挙動の異同は、大深度の開削工
事などで顕著に現われるため、この種の工事において
は、現場計測を行い、得られた現場計測値に基づいて、
不確定な地盤の物性値(未知数)を逆解析により推定
し、この推定値から地盤の挙動を予測し、施工管理,安
全管理に役立てる手法が行われている。
[0004] Since such a difference in behavior is remarkable in deep-cutting work or the like, in this type of construction, site measurement is performed, and based on the obtained site measurement values,
A method of estimating the physical properties (unknowns) of the uncertain ground by inverse analysis, predicting the behavior of the ground from the estimated values, and utilizing it for construction management and safety management has been performed.

【0005】このような逆解析の手法には、例えば、試
行錯誤的手法や最適化手法(直接定式化法,逆定式化
法,カルマンフィルター法など)があり、最適化手法
は、数学的処理を用いて、施工時の次段階以降の入力定
数の変化を予測するのに手間がかかるので、試行錯誤的
手法が良く用いられている。
[0005] Such an inverse analysis method includes, for example, a trial-and-error method and an optimization method (such as a direct formulation method, an inverse formulation method, and a Kalman filter method). It takes time and effort to predict changes in input constants from the next stage during construction using the method, so a trial-and-error method is often used.

【0006】しかしながら、このような試行錯誤的な逆
解析手法には、以下に説明する技術的な課題があった。
[0006] However, such a trial-and-error inverse analysis method has the following technical problems.

【0007】[0007]

【発明が解決しようとする課題】すなわち、試行錯誤的
な逆解析手法では、地盤の未知数を推定する際には、実
務経験,担当者の勘および経験に基づくノウハウなどの
要素が支配的になるため、推定値に個人差がでて、推定
値がバラツクという問題があった。
That is, in the trial and error inverse analysis method, factors such as practical experience, intuition of the person in charge, and know-how based on experience are dominant when estimating the unknown of the ground. For this reason, there is a problem that the estimated value varies between individuals and the estimated value varies.

【0008】また、複数の未知数を推定するために、時
間がかかるだけでなく、実際の挙動と容易に適合しない
などの問題があった。さらに、限られた実測値の結果か
ら、不確定な土質を対象として、施工区域の全体につい
て、正確な地盤の物性値を算出するのは、非常に難しい
作業となっていた。
Further, there are problems that it takes time to estimate a plurality of unknowns, and that it does not easily match actual behavior. Furthermore, it has been extremely difficult to calculate accurate physical property values of the ground for the entire construction area for uncertain soil properties from the results of the limited actual measurement values.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであって、推定値にバラツキがなく、短
時間に実測値に適合した正確な推定が行える土留め掘削
時の挙動予測方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and has no variation in the estimated value, and the behavior at the time of earth retaining excavation in which an accurate estimation adapted to the actually measured value can be performed in a short time. It is to provide a prediction method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、土留め壁の内部を掘削する際に、前記土
留め壁の変位,曲げモーメント,せん断力などの挙動を
実測し、得られた実測挙動値に基づいて、以後の挙動を
予測推定する土留め掘削時の挙動予測方法において、前
記実測挙動値と当初設計値とに所定以上の異同があった
場合に、前記当初設計値を演算する際に設定した、土圧
P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦
角φ,地盤の体積重量γなどの地盤物性値および切梁バ
ネ係数ksを中心値とするメンバーシップ関数をそれぞ
れ設定し、前記地盤物性値および切梁バネ係数ksを前
記メンバーシップ関数上で増減させる変化量δを設定
し、前記変化量δを複数回増減させた際の計算挙動値を
それぞれ求め、前記計算挙動値と前記実測挙動値とが概
略一致した時の前記地盤物性値および切梁バネ係数ks
を確定値とするようにした。このように構成した土留め
掘削時の挙動予測方法によれば、当初設計値を演算する
際に設定した、土圧P,地盤の反力係数ke,地盤の粘
着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤
物性値および切梁バネ係数ksを中心値とするメンバー
シップ関数をそれぞれ設定するので、当初設計値は、実
際の地盤物性値とそれほど大きな相違がなく、計算挙動
値を実測挙動値に早期に収束させることができる。この
場合、メンバーシップ関数は、二等辺三角関数に設定す
ることができる。
Means for Solving the Problems In order to achieve the above object, the present invention measures the behavior of the retaining wall, such as displacement, bending moment, and shearing force, when excavating the inside of the retaining wall, In the behavior prediction method at the time of earth retaining excavation for predicting and estimating the subsequent behavior based on the obtained actually measured behavior value, when there is a predetermined difference or more between the actually measured behavior value and the initial design value, the initial design The ground physical properties such as earth pressure P, ground reaction force coefficient ke, ground adhesive force C, ground friction angle φ, ground volume weight γ, etc., and cutting beam spring coefficient ks set when calculating the values are mainly used. A membership function as a value is set, and a change amount δ for increasing or decreasing the ground physical property value and the cut-off spring coefficient ks on the membership function is set, and a calculation is performed when the change amount δ is increased or decreased a plurality of times. Determine the behavior value and calculate The ground physical properties and Setsuhari spring constant ks when said actual behavior values Dochi has substantially aligned
Was set to the final value. According to the behavior prediction method at the time of retaining earth excavation configured in this manner, the soil pressure P, the ground reaction force coefficient ke, the ground adhesive force C, and the ground friction angle φ set when the initial design value is calculated. , The ground properties such as the volume weight γ of the ground and the membership function centering on the girder spring coefficient ks are set respectively, so the initial design values do not differ so much from the actual ground properties, and the calculation behavior The value can be quickly converged to the measured behavior value. In this case, the membership function can be set to an isosceles trigonometric function.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について添付図面を参照して詳細に説明する。図1か
ら図7は、本発明にかかる土留め掘削時の挙動予測方法
の一実施例を示している。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 7 show an embodiment of a behavior prediction method at the time of retaining earth excavation according to the present invention.

【0012】図1は、土留め掘削時における施工管理の
全体的な流を示している。土留め掘削時の施工管理で
は、同図に示すように、まず、ある掘削(施工)ステッ
プにおいて、土留め壁の変位,曲げモーメント,せん断
力などの挙動が実測される(スイテップs1)。
FIG. 1 shows the overall flow of construction management during earth retaining excavation. In the construction management at the time of earth retaining excavation, as shown in the figure, first, in a certain excavation (construction) step, behaviors such as displacement, bending moment, and shear force of the earth retaining wall are actually measured (switch step s1).

【0013】次に、得られた実測挙動値Aと設計値との
比較が行われる(ステップs2,s3)。この場合、実
測挙動値Aと設計値とは、一般的にはあまり一致してい
ない。ステップs3で、実測挙動値Aと設計値とが概ね
一致している場合には、施工が継続される。
Next, the obtained measured behavior value A is compared with the design value (steps s2 and s3). In this case, the measured behavior value A does not generally match the design value. In step s3, when the measured behavior value A substantially matches the design value, the construction is continued.

【0014】一方、ステップs3で、実測挙動値Aと設
計値とが概ね一致していないと判断された場合(両者間
に所定以上の異同が認められた場合)には、ステップs
4で、本実施例の挙動予測方法が実行される。この挙動
予測方法の詳細は、図2以下に示している。
On the other hand, if it is determined in step s3 that the measured behavior value A and the design value do not substantially match (if a difference between the two is greater than a predetermined value), the process proceeds to step s3.
At 4, the behavior prediction method of this embodiment is executed. Details of this behavior prediction method are shown in FIG.

【0015】ステップs4の挙動予測方法で、土圧P,
地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角
φ,地盤の体積重量γなどの地盤物性値および切梁バネ
係数ksが、確定すると(ステップs5)、次に、次期
掘削(施工)ステップにおける土留めの変形予測(順解
析)が行われる(ステップs6)。
In the behavior prediction method in step s4, the earth pressure P,
When the ground physical property values such as the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, and the cutting beam spring coefficient ks are determined (step s5), the next excavation (step s5) In the step (construction), deformation prediction (forward analysis) of earth retaining is performed (step s6).

【0016】そして、この解析によって得られた変形予
測から、土留め壁に発生する応力度照査を行い(ステッ
プs7)、ステップs8で、土留め壁の安全性が確保で
きると判断された場合には、施工が継続される。
Then, based on the deformation prediction obtained by this analysis, a check is made on the stress level generated in the retaining wall (step s7), and when it is determined in step s8 that the safety of the retaining wall can be ensured. , Construction is continued.

【0017】一方、ステップs8で、土留め壁の安全性
が確保できないと判断された場合には、対策工を実施し
て(ステップs9)、施工が継続されることになる。
On the other hand, if it is determined in step s8 that the safety of the retaining wall cannot be ensured, countermeasures are implemented (step s9), and the construction is continued.

【0018】ステップs4で実行される挙動予測方法の
詳細な手順を図2に示している。同図に示した手順がス
タートすると、まず、ステップs40で、未知数である
土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の
摩擦角φ,地盤の体積重量γなどの地盤物性値および切
梁バネ係数ksに対して、それぞれファジー理論に基づ
くメンバーシップ関数が設定される。
FIG. 2 shows a detailed procedure of the behavior prediction method executed in step s4. When the procedure shown in the figure starts, first, in step s40, the ground pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, etc., which are unknown variables, are determined. A membership function based on fuzzy theory is set for each of the physical property value and the truncated spring coefficient ks.

【0019】このメンバーシップ関数は、地盤の深度方
向に沿って存在する土質層毎に設定される。図3に、設
定されるメンバーシップ関数の一例を示している。同図
に示したメンバーシップ関数は、当初設計値を演算する
際に設定した、土圧P,地盤の反力係数ke,地盤の粘
着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤
物性値および切梁バネ係数ksを中心値とする二等辺三
角形の関数となっている。
This membership function is set for each soil layer existing along the depth direction of the ground. FIG. 3 shows an example of the membership function to be set. The membership function shown in the figure includes the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, etc., which were set when the initial design values were calculated. Is a function of an isosceles triangle with the center value of the ground physical property value and the cut beam spring coefficient ks.

【0020】この二等辺三角形の関数は、設計値に対す
る確からしさ(あいまいさ)が、半分まで低下した位置
で最小および最大になっている。なお、この最大および
最小値は、例えば、地盤の粘着力C,地盤の摩擦角φな
どでは、絶対的にそれ以上ないしはそれ以下の値になら
ないことがあるので、これらの絶対的な値を最大ないし
は最小値にすることもできる。
In the function of the isosceles triangle, the likelihood (ambiguity) with respect to the design value becomes the minimum and the maximum at the position where it is reduced to half. It should be noted that the maximum and minimum values may not be absolutely higher or lower in the case of, for example, the adhesion C of the ground and the friction angle φ of the ground. Or it can be a minimum.

【0021】また、メンバーシップ関数の形状は、図3
に示したものに限られることはなく、例えば、正規分布
関数などであってもよい。
The shape of the membership function is shown in FIG.
However, the present invention is not limited to the above, and may be, for example, a normal distribution function.

【0022】続く、ステップs41では、地盤物性値
(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤
の摩擦角φ,地盤の体積重量γ)および切梁バネ係数k
sを、前述したメンバーシップ関数上で増減させる変化
量δの設定が行われる。
In step s41, the soil properties (earth pressure P, ground reaction force coefficient ke, ground adhesion C, ground friction angle φ, ground volume weight γ) and cutting beam spring coefficient k
The change amount δ for increasing or decreasing s on the membership function is set.

【0023】この場合の変化量δは、例えば、設計値の
確からしさに対して、0.1ないしは0.05といった
数値に設定される。次に、ステップs42で、計算挙動
値Bの演算の繰り返し回数nの設定が行われる。
The amount of change δ in this case is set to a numerical value such as 0.1 or 0.05 with respect to the certainty of the design value. Next, in step s42, the number of repetitions n of the calculation of the calculation behavior value B is set.

【0024】続くステップs43では、当初設計値を演
算する際に設定した地盤物性値(土圧P,地盤の反力係
数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積
重量γ)および切梁バネ係数ksに基づいて、土層毎
に、計算挙動値B0が求められる。
In the following step s43, the ground physical property values (earth pressure P, ground reaction force coefficient ke, ground adhesive force C, ground friction angle φ, ground volume weight γ) set at the time of calculating the initial design values are calculated. ) And the cut-off spring coefficient ks, a calculated behavior value B 0 is obtained for each soil layer.

【0025】ステップS44では、ステップs1で実測
されている実測挙動値Aと、計算挙動値B0の比較が、
各層毎に行われる。ステップs44で実測挙動値Aが計
算挙動値B0よりも大きいと判断された場合には、ステ
ップs45で、計算挙動値B0が大きくなるように、未
知数(土圧P,地盤の反力係数ke,地盤の粘着力C,
地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値お
よび切梁バネ係数ks)をメンバーシップ関数上で変化
量δだけ増加ないしは減少させる。
In step S44, the comparison between the measured behavior value A actually measured in step s1 and the calculated behavior value B 0 is
This is performed for each layer. In the case where the measured behavior value A is determined to be larger than the calculated behavior value B 0 step s44, in step s45, as calculated behavior value B 0 is increased, unknown (earth pressure P, the reaction force coefficient of the ground ke, adhesive strength C of the ground,
The ground property values such as the friction angle φ of the ground and the volume weight γ of the ground and the shear beam spring coefficient ks) are increased or decreased by the change amount δ on the membership function.

【0026】一方、ステップs44で実測挙動値Aが計
算挙動値B0よりも小さいと判断された場合には、ステ
ップs46で、計算挙動値B0が小さくなるように、未
知数(土圧P,地盤の反力係数ke,地盤の粘着力C,
地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値お
よび切梁バネ係数ks)をメンバーシップ関数上で変化
量δだけ減少ないしは増加させる。
On the other hand, in the case where the measured behavior value A is determined to be smaller than the calculated behavior value B 0 step s44, in step s46, as the calculation behavior value B 0 is reduced, unknown (earth pressure P, Ground reaction force coefficient ke, ground adhesive force C,
The physical properties of the ground, such as the ground friction angle φ and the ground volume weight γ, and the shear beam spring coefficient ks) are reduced or increased by the change amount δ on the membership function.

【0027】次のステップs47では、ステップs4
5,46で変化量δだけ増減させた未知数(土圧P,地
盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,
地盤の体積重量γなどの地盤物性値および切梁バネ係数
ks)の演算が行われる。
In the next step s47, step s4
The unknowns (the earth pressure P, the ground reaction force coefficient ke, the ground adhesion C, the ground friction angle φ,
The calculation of the physical properties of the ground such as the volume weight γ of the ground and the cutting beam spring coefficient ks) is performed.

【0028】ステップs48では、求められた未知数に
基づいて計算挙動値B1が演算される。続くステップs
49では、計算挙動値Bが設定された繰り返し回数nだ
け行われたか否かが判断され、n回行われていない場合
には、ステップs44に戻るとともに、n回実行された
場合には、ステップs50に移行する。
[0028] At step s48, calculated behavior value B 1 is being calculated based on the unknowns determined. Subsequent steps
In 49, it is determined whether or not the calculation behavior value B has been performed by the set number of repetitions n. If n has not been performed, the process returns to step s44. Shift to s50.

【0029】ステップs50では、実測挙動値Aとn回
繰り返し演算された計算挙動値Bnとの比較が各層毎に
行われ、これらが概ね一致している場合には、続くステ
ップs51で未知数(土圧P,地盤の反力係数ke,地
盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなど
の地盤物性値および切梁バネ係数ks)を確定して手順
が終了する。
In step s50, the measured behavior value A is compared with the calculated behavior value Bn which has been repeatedly calculated n times for each layer. The soil pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground physical properties such as the ground volume weight γ, etc., and the girder spring coefficient ks) are determined, and the procedure ends.

【0030】ステップs50で、実測挙動値Aと計算挙
動値Bnとが概ね一致していないと判断された場合に
は、ステップs41に戻り、新たに変化量δおよび繰り
返し回数を設定して、処理手順が続行される。
If it is determined in step s50 that the measured behavior value A and the calculated behavior value Bn do not substantially coincide with each other, the process returns to step s41, and a new change amount δ and the number of repetitions are set. The processing procedure continues.

【0031】図4から図7は、上記手順により得られた
計算挙動値を実測値とともに表示した演算結果である。
図4に示したグラフが繰り返し計算回数nが1、すなわ
ち、当初設計値に基づく場合であり、同図から判るよう
に、土留め壁の変形が、計算挙動値と実測挙動値でかな
りずれている。
FIGS. 4 to 7 show calculation results in which the calculated behavior values obtained by the above procedure are displayed together with the actually measured values.
The graph shown in FIG. 4 shows the case where the number of repetition calculations n is 1, that is, based on the initial design value. As can be seen from FIG. 4, the deformation of the retaining wall is considerably different between the calculated behavior value and the actually measured behavior value. I have.

【0032】なお、図4ないしは図7において、変形の
グラフ中で○で示したものが実測挙動値であり、同図中
に実線で示したものが計算挙動値である。図5に示した
グラフは、繰り返し計算回数nが2、図6に示したグラ
フは、繰り返し計算回数nが5、図6に示したグラフ
は、繰り返し計算回数nが10の場合である。
In FIGS. 4 to 7, those indicated by a circle in the graphs of deformation are measured behavior values, and those indicated by solid lines in the drawings are calculated behavior values. The graph shown in FIG. 5 shows the case where the number of repeated calculations n is 2, the graph shown in FIG. 6 shows the case where the number of repeated calculations n is 5, and the graph shown in FIG. 6 shows the case where the number of repeated calculations n is 10.

【0033】図5に示した繰り返し計算回数nが2で
は、計算挙動値と実測挙動値との一致の度合いが十分で
はないが、図6に示したように、繰り返し回数nが5に
なると、土留め壁の変形に関する計算挙動値と実測挙動
値とが、良く一致していることが判る。
When the number of repetition calculations n shown in FIG. 5 is 2, the degree of coincidence between the calculated behavior value and the actually measured behavior value is not sufficient, but as shown in FIG. It can be seen that the calculated behavior value and the measured behavior value regarding the deformation of the retaining wall match well.

【0034】計算挙動値と実測挙動値との一致の度合い
は、繰り返し回数nが10となっても、これが5の場合
と殆ど変わらず、繰り返し回数nが5回程度で、未知数
が収束することが判る。
The degree of coincidence between the calculated behavior value and the measured behavior value is almost the same as the case where the number of repetitions n is 10, even when the number of repetitions n is 10. When the number of repetitions n is about 5, the unknown converges. I understand.

【0035】さて、以上のように構成した土留め掘削時
の挙動予測方法によれば、当初設計値を演算する際に設
定した、土圧P,地盤の反力係数ke,地盤の粘着力
C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性
値および切梁バネ係数ksを中心値とするメンバーシッ
プ関数をそれぞれ設定するので、当初設計値は、実際の
地盤物性値とそれほど大きな相違がなく、数回程度の繰
り返し演算回数で、計算挙動値を実測挙動値に早期に収
束させることができる。
According to the behavior prediction method at the time of retaining earth excavation configured as described above, the earth pressure P, the ground reaction force coefficient ke, and the ground adhesive force C set at the time of calculating the initial design value are set. , Ground friction angle φ, ground volume weight γ, etc., and membership functions centered on the girder spring coefficient ks are set, so that the initial design value is much larger than the actual ground property value. There is no difference, and the calculated behavior value can be quickly converged to the actually measured behavior value with about several repetition operations.

【0036】この場合、未知数(土圧P,地盤の反力係
数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積
重量γなどの地盤物性値および切梁バネ係数ks)の確
定は、担当者の勘や経験に支配されることがなく、的確
な未知数を短時間にかつ正確に確定することができる。
In this case, the unknown values (the soil physical property values such as the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, and the ground volume weight γ, and the cut beam spring coefficient ks) are determined. Can determine the exact unknown in a short time and accurately without being influenced by the intuition or experience of the person in charge.

【0037】[0037]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかる土留め掘削時の挙動予測方法によれば、
不明確な地盤未知数を的確かつ迅速に確定することがで
きるので、解析結果を土留め掘削の施工管理,安全管理
に容易に反映させることができる。
As described above in detail in the embodiments,
According to the behavior prediction method at the time of earth retaining excavation according to the present invention,
Since the unclear ground unknowns can be determined accurately and promptly, the analysis results can be easily reflected in construction management and safety management of earth retaining excavation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる挙動予測方法が適用される土留
め掘削における施工管理の全体的な流を示すフローチャ
ート図である。
FIG. 1 is a flowchart showing an overall flow of construction management in earth retaining excavation to which a behavior prediction method according to the present invention is applied.

【図2】本発明にかかる挙動予測方法の手順の一例を示
すフローチャート図である。
FIG. 2 is a flowchart illustrating an example of a procedure of a behavior prediction method according to the present invention.

【図3】図2示した挙動予測方法で設定するメンバーシ
ップ関数の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a membership function set by the behavior prediction method shown in FIG.

【図4】図2示した挙動予測方法の繰り返し演算回数1
回目で得られた結果のグラフである。
FIG. 4 shows the number of repetition operations 1 in the behavior prediction method shown in FIG.
It is a graph of the result obtained by the second time.

【図5】図2示した挙動予測方法の繰り返し演算回数2
回目で得られた結果のグラフである。
FIG. 5 shows the number of repetitive operations 2 in the behavior prediction method shown in FIG.
It is a graph of the result obtained by the second time.

【図6】図2示した挙動予測方法の繰り返し演算回数5
回目で得られた結果のグラフである。
FIG. 6 shows the number of repetitive operations 5 in the behavior prediction method shown in FIG.
It is a graph of the result obtained by the second time.

【図7】図2示した挙動予測方法の繰り返し演算回数1
0回目で得られた結果のグラフである。
FIG. 7 shows the number of repetition operations 1 in the behavior prediction method shown in FIG.
It is a graph of the result obtained in the 0th time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 土留め壁の内部を掘削する際に、前記土
留め壁の変位,曲げモーメント,せん断力などの挙動を
実測し、得られた実測挙動値に基づいて、以後の挙動を
予測推定する土留め掘削時の挙動予測方法において、 前記実測挙動値と当初設計値とに所定以上の異同があっ
た場合に、 前記当初設計値を演算する際に設定した、土圧P,地盤
の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地
盤の体積重量γなどの地盤物性値および切梁バネ係数k
sを中心値とするメンバーシップ関数をそれぞれ設定
し、 前記地盤物性値および切梁バネ係数ksを前記メンバー
シップ関数上で増減させる変化量δを設定し、 前記変化量δを複数回増減させた際の計算挙動値をそれ
ぞれ求め、 前記計算挙動値と前記実測挙動値とが概略一致した時の
前記地盤物性値および切梁バネ係数ksを確定値とする
ことを特徴とする土留め掘削時の挙動予測方法。
1. When excavating the inside of a retaining wall, behavior such as displacement, bending moment, and shearing force of the retaining wall is actually measured, and subsequent behavior is predicted based on the actually measured behavior value obtained. In the behavior prediction method at the time of retaining earth excavation to be estimated, when there is a predetermined difference or more between the actually measured behavior value and the initial design value, the earth pressure P, the ground pressure set when calculating the initial design value, Ground physical properties such as reaction force coefficient ke, ground adhesive force C, ground friction angle φ, ground volume weight γ, and cutting beam spring coefficient k
A membership function having a center value of s is set, a change amount δ for increasing or decreasing the ground property value and the trunnion spring coefficient ks on the membership function is set, and the change amount δ is increased and decreased a plurality of times. At the time of earth retaining excavation, wherein the ground property value and the cut-off spring coefficient ks when the calculated behavior value and the actually measured behavior value approximately match each other are determined values. Behavior prediction method.
【請求項2】 メンバーシップ関数を二等辺三角関数に
することを特徴とする請求項1記載の土留め掘削時の挙
動予測方法。
2. The method according to claim 1, wherein the membership function is an isosceles trigonometric function.
JP14624097A 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation Expired - Lifetime JP3849229B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14624097A JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation
KR1019970075824A KR100502648B1 (en) 1997-06-04 1997-12-29 Behavior prediction method in excavation excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14624097A JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation

Publications (2)

Publication Number Publication Date
JPH10331161A true JPH10331161A (en) 1998-12-15
JP3849229B2 JP3849229B2 (en) 2006-11-22

Family

ID=15403279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14624097A Expired - Lifetime JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation

Country Status (2)

Country Link
JP (1) JP3849229B2 (en)
KR (1) KR100502648B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945760A (en) * 2020-08-01 2020-11-17 上海地矿工程勘察有限公司 Deep foundation pit engineering pressure reduction and precipitation control method and device, terminal and storage medium
CN112257146A (en) * 2020-10-10 2021-01-22 无锡市市政设施建设工程有限公司 Method for realizing deep foundation pit excavation support based on BIM
WO2022047970A1 (en) * 2020-09-01 2022-03-10 浙江勤业建工集团有限公司 Bim-based method for simulated calculation of deep foundation pit before construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945760A (en) * 2020-08-01 2020-11-17 上海地矿工程勘察有限公司 Deep foundation pit engineering pressure reduction and precipitation control method and device, terminal and storage medium
WO2022047970A1 (en) * 2020-09-01 2022-03-10 浙江勤业建工集团有限公司 Bim-based method for simulated calculation of deep foundation pit before construction
CN112257146A (en) * 2020-10-10 2021-01-22 无锡市市政设施建设工程有限公司 Method for realizing deep foundation pit excavation support based on BIM
CN112257146B (en) * 2020-10-10 2023-12-26 无锡市市政设施建设工程有限公司 Method for realizing deep foundation pit excavation supporting based on BIM

Also Published As

Publication number Publication date
KR19990006312A (en) 1999-01-25
JP3849229B2 (en) 2006-11-22
KR100502648B1 (en) 2005-11-08

Similar Documents

Publication Publication Date Title
US20060219026A1 (en) Structural stress analysis
Karamchandani et al. Sensitivity estimation within first and second order reliability methods
Jan et al. Neural network forecast model in deep excavation
Alkasawneh et al. A comparative study of various commercially available programs in slope stability analysis
Tan et al. Online soil parameter estimation scheme based on Newton-Raphson method for autonomous excavation
CN113378274A (en) Building construction monitoring method and system based on BIM
Kim et al. A fuzzy AHP-based decision support model for quantifying failure risk of excavation work
Tuhta et al. Dynamic Parameters Determination of Concrete Terrace Wall with System Identification Using ANN
Wang et al. Practical reliability analysis and design by Monte Carlo Simulation in spreadsheet
Wang et al. Direct probability-based design methods
CN117195507A (en) Simulation prediction method and system for landslide river-plugging impact dam area building process
JPH10331161A (en) Predicting method for behavior at earth retaining excavation
Phoon et al. Practical reliability-based design approach for foundation engineering
Chow et al. Prediction of pile capacity from stress‐wave measurements: A neural network approach
JP7246272B2 (en) Ground subsidence prediction system
JP4389316B2 (en) Measurement management method during earth retaining excavation, measurement management system during earth retaining excavation, and recording medium recording a computer program for realizing the measurement management system during earth retaining excavation
Cividini et al. Deterministic and probabilistic back analysis in rock mechanics
Hiraoka et al. A full-scale model test for predicting collapse time using displacement of slope surface during slope cutting work
JPH08158369A (en) Reverse analysis method
JPH07197785A (en) Prediction method for displacement of tunnel internal space
Leen et al. On the prediction of elastic-plastic generalized load-displacement responses for tubular joints
CN112182729A (en) Tunnel face stability rapid determination method based on naive Bayes
Hyde et al. Prediction of elastic—plastic displacements of tubular joints under combined loading using an energy-based approach
JPH08151633A (en) Execution management system for earth retaining work
Sugimoto et al. Study on shield operation method in soft ground by shield simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

EXPY Cancellation because of completion of term